#=================================================== # # Monic Normalized Proper Zoltarev Polynomials (3-6) # Coefficients # Version 1.0 - 18/02/19 #=================================================== {Root[-11 + 12 #1 - 2 #1^2 + 2 #1^3 + #1^4 &, 2], -1, Root[-26 - 18 #1 - 2 #1^2 + 2 #1^3 + #1^4 &, 1], 1} {Root[-19343 + 61944 #1 + 76936 #1^2 - 29116 #1^3 - 42196 #1^4 + 26332 #1^5 - 5176 #1^6 + 292 #1^7 - 12 #1^8 + 8 #1^9 + 4 #1^10 &, 2], Root[52877 - 23430 #1 + 8773 #1^2 + 11116 #1^3 + 2982 #1^4 - 932 #1^5 - 314 #1^6 - 152 #1^7 - 3 #1^8 + 6 #1^9 + #1^10 &, 1], Root[-49247 - 154396 #1 - 436428 #1^2 - 517592 #1^3 - 262724 #1^4 - 64192 #1^5 - 7388 #1^6 - 196 #1^7 + 96 #1^8 + 32 #1^9 + 4 #1^10 &,1], Root[77708 + 23328 #1 + 864 #1^2 + 8620 #1^3 + 7496 #1^4 + 1568 #1^5 + 372 #1^6 + 32 #1^7 - 12 #1^8 + 4 #1^9 + #1^10 &, 2], 1} {Root[49399619050433 + 144024581179752 #1 + 42390202098736 #1^2 - 160120948449896 #1^3 + 14187234446720 #1^4 + 52084960180736 #1^5 - 45660203338528 #1^6 + 22821007971840 #1^7 - 5035238644944 #1^8 - 365164694816 #1^9 + 942959227616 #1^10 - 350581788672 #1^11 + 69307827200 #1^12 - 7386803328 #1^13 + 390016768 #1^14 + 92469760 #1^15 - 20865536 #1^16 + 965632 #1^17 - 4608 #1^18 + 512 #1^19 + 256 #1^20 &, 4], Root[218859405947089 - 1044670380960544 #1 + 2357240777558160 #1^2 - 3159190724102048 #1^3 + 1774807744447632 #1^4 + 256619353711632 #1^5 - 789605814774496 #1^6 + 281647414281408 #1^7 + 32201164426208 #1^8 - 40354530720960 #1^9 + 9305238171488 #1^10 - 198167934720 #1^11 - 321469371136 #1^12 + 73321644288 #1^13 - 7331407616 #1^14 + 291084544 #1^15 + 1456896 #1^16 + 45056 #1^17 + 7680 #1^18 + 3072 #1^19 + 256 #1^20 &, 3], Root[24348153990155617081 - 3792309151242446288 #1 - 2475014306861899160 #1^2 - 1114721260854855808 #1^3 + 441490175671697984 #1^4 + 90417498002924832 #1^5 + 16416470976606848 #1^6 - 2447052939695680 #1^7 - 576532226982832 #1^8 - 85321982823840 #1^9 + 2665696273632 #1^10 + 1266685678848 #1^11 + 166073764992 #1^12 + 1755589120 #1^13 - 857873920 #1^14 - 106505728 #1^15 - 3022336 #1^16 - 118784 #1^17 - 10240 #1^18 + 2560 #1^19 + 256 #1^20 &, 2], Root[7308553139410433 + 15054806052718864 #1 + 4915180002600368 #1^2 - 11709669091277696 #1^3 - 12071073757084576 #1^4 - 1948954442609936 #1^5 + 3129609514216480 #1^6 + 2203306702704960 #1^7 + 569461517900160 #1^8 + 5039259532672 #1^9 - 38903859069344 #1^10 - 12438654221312 #1^11 - 2071859535360 #1^12 - 205814301696 #1^13 - 11555784192 #1^14 - 275572992 #1^15 + 129536 #1^16 - 140288 #1^17 - 2048 #1^18 + 2048 #1^19 + 256 #1^20 &, 2], Root[-3061811343439 - 1226305456200 #1 - 194624790282 #1^2 - 123031965120 #1^3 - 27493526803 #1^4 - 21849416464 #1^5 - 7265383512 #1^6 - 777178704 #1^7 - 1330816702 #1^8 - 288348856 #1^9 - 7276796 #1^10 - 24779448 #1^11 - 3845102 #1^12 - 64832 #1^13 - 198648 #1^14 - 19264 #1^15 + 2013 #1^16 - 176 #1^17 - 42 #1^18 + 8 #1^19 + #1^20 &, 1], 1}