%% The best constants/formulae which belongs to the unit square @var=2 %% %% (1) (u0,v0)=(0,0) (1,v1) (u2,1) %% %% input formula QEPCAD %% (Ex1)(Ex2)[ L>1 /\ 0<=x1 /\ x1<=1 /\ 01 /\ 5L^2-10L+1<0 /\ 0<=x1 /\ x1<=1 /\ 01 \[And] (01 \[And] 5L^2-10L+1<0 \[And] (0(f1*f2*f3*f4*f5*f6*f7*f8),"l>1, 0<=x1, x1<=1, 0<=x2, x2<=1, (1+2*x1-x1*x2)<=l*(1-x1*x2), 1+2*x2-x1*x2<=l*(1-x1*x2), 3-2*x1-2*x2+x1*x2<=l*(1-x1*x2)",1) %% input formula INTLAB %% f02a=@(x) max(max(abs((-1-2*x(1,:)+x(1,:).*x(2,:))./(x(1,:).*x(2,:)-1)),(-1-2*x(2,:)+x(1,:).*x(2,:))./(x(1,:).*x(2,:)-1)),(-3+2*x(1,:)+2*x(2,:)-x(1,:).*x(2,:))./(x(1,:).*x(2,:)-1)) [mu,L,Ls]=verifyglobalmin(f02a,infsup(0,1)*ones(2,1)) %%OUTPUTS: L - 1 > 0 /\ 5 L^2 - 10 L + 1 >= 0 Counts for Projection Phase: ---------------------------------------------------- Level 1 2 3 Total ---------------------------------------------------- Proj Poly 33 12 0 45 Proj Fact 18 11 5 34 ---------------------------------------------------- Counts for Truth--Invariant CAD Construction Phase: ---------------------------------------------------- Level 1 2 3 Total ---------------------------------------------------- Stacks 1 21 85 107 ..Rational 1 13 45 59 Cells 43 465 817 1325 Conversion 0 0 19 19 ..Trivial 0 0 16 16 ---------------------------------------------------- *** using Lazard's method (MPP17). parisize = 8000000, primelimit = 500000 tst12, 08/06/2021 17:43:16 ? tst12([ex,ex],[l,x1,x2],(f1,f2,f3,f4,f5,f6,f7,f8)->(f1*f2*f3*f4*f5*f6*f7*f8),"l>1, 0<=x1, x1<=1, 0<=x2, x2<=1, (1+2*x1-x1*x2)<=l*(1-x1*x2), 1+2*x2-x1*x2<=l*(1-x1*x2), 3-2*x1-2*x2+x1*x2<=l*(1-x1*x2)",1) *** using Lazard's method (MPP17). [x2,5] [x1,11] [l,14] proj = 117 ms. 21 279(4,33) 18(0,69) *** combined adjacent 17 cells. time = 106 ms. %1 = [[[[p11, 2]~, +oo], [-oo, +oo], [-oo, +oo]]] ? pp %2 = [[l - 1, l - 3, l - 2, l + 1, l^3 - 7*l^2 + 23*l - 25, l^2 - 5, l^3 - 7*l^2 + 7*l + 7, l^2 - 4*l - 1, l^3 + l^2 - l - 9, l^3 - 7*l^2 + 15*l - 1, 5*l^2 - 10*l + 1, l^3 + l^2 - 9*l - 1, l, l^3 + l^2 + 7*l - 1], [x1, x1 - 1, -l + (2*x1 + 1), l + (2*x1 - 3), (x1 - 1)*l + (x1 + 1), (x1 - 1)*l + (-x1 + 3), (x1^2 - 1)*l + (-x1^2 + 2*x1 + 1), (2*x1^2 - 2*x1 + 1)*l - 1, x1*l + (-x1 + 2), (x1^2 - 2*x1 + 2)*l + (-x1^2 + 4*x1 - 4), x1*l + (x1 - 2)], [x2, x2 - 1, (x2*x1 - 1)*l + ((-x2 + 2)*x1 + 1), (x2*x1 - 1)*l + (-x2*x1 + (2*x2 + 1)), (x2*x1 - 1)*l + ((x2 - 2)*x1 + (-2*x2 + 3))]]