#=================================================== # # Examples for RRC/PRF/RQE based geometrical inequality proving - gen file [1] # Each example is given with their inputs for # for easy copy/pasting (TempDecision: Infos are (will be) put to a different place) # # Version 1.0 - 29/3/20 #=================================================== #=================================================== #1: IsoB1.1a (dervied from Bottema 1.1, b=c, wlog b=1) #QEPCAD [] (m,a) 1 (Ea)[ m>0 /\ a>0 /\ 2-a>0 /\ (2+a)^2=m (1+2a)]. #MMA Resolve[ Exists[a, m > 0 \[And] 0 < a < 2 \[And] (2 + a)^2 == m (1 + 2 a)], Reals] #RRC R:=PolynomialRing([a,m]): IS:=[(2+a)^2-m*(1+2*a)],[],[m,a,2-a],[]: rrc:=RealRootClassification(IS,1,1..k,R); #PRF IS:=[(2+a)^2-m*(1+2*a)=0, m>0,a>0,2-a>0],[a],[m]: cc:=CellDecomposition(IS); #2: IsoB1.1b (dervied from Bottema 1.1, b=c, wlog a=1) #QEPCAD [] (m,b) 1 (Eb)[ m>0 /\ 2b>1 /\ (1+2b)^2=m (2b+b^2)]. # #3: IsoB1.1d (derived from Bottema 1.1 GGBA/man generated problem) #QEPCAD #MMA Resolve[ Exists[{v10, v11}, m > 0 \[And] v11 > 0 \[And] v10^2 - v11^2 + 1/4 == 0 \[And] (4 v11^2 + 4 v11 + 1)==m (v11^2 + 2 v11)], m,Reals] #4: TriB1.1a (dervied from Bottema 1.1, wlog c=1) #QEPCAD [] (m,b,a) 1 (Eb)(Ea)[ m>0 /\ a+b-1>0 /\ a+1-b>0 /\ b+1-a>0 /\ (a+b+1)^2=m (a b+b+a)]. #MMA Resolve[ Exists[{a,b}, m > 0 \[And] a+b>1 \[And] a+1-b>0 \[And] b+1-a>0 \[And] (a+b+1)^2 == m (a b + b + a)], Reals] #5 TriB1.1.d (derived from Bottema-1.1,a GGBA/man genrated problem, wlog c=1) #MMA Resolve[ Exists[{v5, v7, v8}, (m > 0) \[And] ((v7 + v8 + 1)^2 == m*(v7*v8 + v8 + v7)) \[And] (v8 > 0) \[And] (v7 > 0) \[And] (-v7^2 + v8^2 - 2*v5 + 1 == 0) \[And] v8^2 - v5^2 >= 0], Reals] #QEPCAD (m,v7,v8,v5) 1 (Ev7)(Ev8)(Ev5)[ m>0 /\ v7>0 /\ v8>0 /\ v8^2-v5^2>=0 /\ -v7^2+v8^2-2v5+1=0 /\ (v7+v8+1)^2=m(v7 v8+ v8+v7)]. #3: Bottema 1-3 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ m (b+c-1) (1+c-b) (1+b-c)= 8 b c ]. finish #4: Bottema 1-4 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ m b c=(b+1) (c+1) (b+c) ]. finish #5: Bottema 1-5 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (1+b) (1+c) (b+c) = m (1^3+b^3+c^3) ]. assume[m>0]. finish #6: Bottema 1-6 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (1 + b + c) (1^2 + b^2 + c^2) = m (1^3 + b^3 + c^3 + 3 b c) ]. assume[m>0]. finish #7: Bottema 1-7 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (b + c - 1) + b^2 (1 + c - b) + c^2 (1 + b - c) = m 2 b c ]. assume[m>0]. finish #8: Bottema 1-8 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ 8 (b c (b + c) + 1 c (1 + c) + 1 b (1 + b)) = m (b + c - 1) (1 + c - b) (1 + b - c) ]. assume[m>0]. finish #9: Bottema 1-9 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ 1^3 (b + c - 1) + b^3 (1 + c - b) + c^3 (1 + b - c) = m b c (1 + b + c) ]. assume[m>0]. finish #10: Bottema 1-11 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ 1^2 b (1-b)+b^2 c (b-c)+c^2 1 (c-1) = m]. finish #11: Bottema 1-12 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (1+b+c)^3 (b+c-1) (1+c-b) (1+b-c)= 64 m (1 b c)^2]. assume[m>0]. finish #12: Bottema 1-13-a1 (b,c,m,q) 3 (Eq)[q>0 /\ 2 q^2=(1-b)^2+(b-c)^2+(c-1)^2 /\ 1+b>c /\ 1+c>b /\ b+c>1 /\ m b c = 2 ((1/2)(1+b+c)-q) (1+b+c+q)^2]. assume[m>0]. proj-op(m,m,h) finish #13: Bottema 1-13-a2 (m,b,c) 1 (Eb)(Ec)[c - b - 1 < 0 /\ c - b + 1 > 0 /\ c + b - 1 > 0 /\ b c m + 2 c^3 - 3 b c^2 - 3 c^2 - 3 b^2 c - 15 b c - 3 c + 2 b^3 - 3 b^2 - 3 b + 2 < 0 /\ b^2 c^2 m^2 + 4 b c^4 m - 6 b^2 c^3 m - 6 b c^3 m - 6 b^3 c^2 m - 30 b^2 c^2 m - 6 b c^2 m + 4 b^4 c m - 6 b^3 c m - 6 b^2 c m + 4 b c m - 27 b^2 c^4 - 54 b c^4 - 27 c^4 + 54 b^3 c^3 + 108 b^2 c^3 + 108 b c^3 + 54 c^3 - 27 b^4 c^2 + 108 b^3 c^2 + 243 b^2 c^2 + 108 b c^2 - 27 c^2 - 54 b^4 c + 108 b^3 c + 108 b^2 c - 54 b c - 27 b^4 + 54 b^3 - 27 b^2 = 0]. assume[m>0]. finish #14: Bottema 1-14 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ m (1+b+c) b c = 2 (b^2 c^2+c^2+b^2)]. assume[m>0]. finish #15: Bottema 1-15 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (1+b+c) ((1+c-b)(1+b-c)+(b+c-1)(1+b-c)+(b+c-1)(1+c-b)) = m (b+c-1) (1+b-c) (1+c-b)]. assume[m>0]. finish #16: Bottema 1-16 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (c+1)(b+1)+b(b+c)(b+1)+c(b+c)(c+1) =m (b+c)(c+1)(b+1)]. assume[m>0]. finish #17: Bottema 1-17 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (b+c+3)(b+1)(c+1)+(1+c+3b)(b+1)(b+c)+(1+b+3c)(c+1)(b+c)=2 m (b+c)(1+b)(1+c)]. assume[m>0]. finish #18: Bottema 1-18 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (b-1)(c-1) + m b c=(c^2-c)+(b^2-b)]. assume[m>0]. finish #19: Bottema 1-19 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (1^2+b^2+c^2) = m (1+b+c)^2]. assume[m>0]. finish #20: Bottema 1-20-1 (b,x,y,z,u,c) 5 (Ec)[x>0 /\ y>0 /\ z>0 /\ u>0 /\ 2 x^2=1+b+c /\ 2 y^2=b+c-1 /\ 2 z^2=1+c-b /\ 2 u^2=1+b-c /\1+b>c /\ 1+c>b /\ b+c>1]. finish #21: Bottema 1-20-2 (x,y,z,u,b) 4 (Eb)[x - 1 > 0 /\ y > 0 /\ y^2 - x^2 + 1 = 0 /\ z > 0 /\ z^2 - x^2 + b = 0 /\ u > 0 /\ u^2 + x^2 - b - 1 = 0]. finish #22: Bottema 1-20-3 (m,x,y,z,u) 1 (Ex)(Ey)(Ez)(Eu)[ y+z+u = m x /\ x - 1 > 0 /\ y > 0 /\ y^2 - x^2 + 1 = 0 /\ z > 0 /\ u > 0 /\ u^2 + z^2 - 1 = 0]. finish #23: Bottema 1-23 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (1+b+c)^3 = (m (b c (b+c)+c (c+1)+b (b+1))-3 b c)]. assume[m>0]. finish #24: Bottema 1-24 (m,b,c) 1 (Eb)(Ec)[1+b>c /\ 1+c>b /\ b+c>1 /\ (b+1)(c+1)=m b c+(b+b^2)+(c+c^2)]. assume[m>0]. finish