Representations of Reciprocals of Lucas SEQUENCES

Hayder Raheem Hashim
University of Debrecen, Debrecen, Hungary

In 1953 Stancliff [2] noted an interesting property of the Fibonacci number $F_{11}=89$. One has that

$$
\frac{1}{89}=\frac{F_{0}}{10}+\frac{F_{1}}{10^{2}}+\frac{F_{2}}{10^{3}}+\frac{F_{3}}{10^{4}}+\frac{F_{4}}{10^{5}}+\frac{F_{5}}{10^{6}}+\ldots
$$

De Weger [1] determined all $x \geq 2$ for which $\frac{1}{F_{n}}=\sum_{k=1}^{\infty} \frac{F_{k-1}}{x^{k}}$. The solutions are as follows

$$
\begin{array}{rlrl}
\frac{1}{F_{1}}=\frac{1}{F_{2}} & =\frac{1}{1} & =\sum_{k=1}^{\infty} \frac{F_{k-1}}{2^{k}}, & \frac{1}{F_{5}}=\frac{1}{5}=\sum_{k=1}^{\infty} \frac{F_{k-1}}{3^{k}}, \\
\frac{1}{F_{10}} & =\frac{1}{55} & =\sum_{k=1}^{\infty} \frac{F_{k-1}}{8^{k}}, & \\
F_{11} & =\frac{1}{89}=\sum_{k=1}^{\infty} \frac{F_{k-1}}{10^{k}} .
\end{array}
$$

In 2014 Tengely [3] extended the above result and obtained e.g. $\frac{1}{U_{10}}=\frac{1}{416020}=$ $\sum_{k=0}^{\infty} \frac{U_{k}}{647^{k+1}}$, where $U_{0}=0, U_{1}=1$ and $U_{n}=4 U_{n-1}+U_{n-2}, n \geq 2$. In this talk we focus on the following problems. We deal with equations of the form

$$
\frac{1}{U_{n}\left(P_{2}, Q_{2}\right)}=\sum_{k=0}^{\infty} \frac{U_{k}\left(P_{1}, Q_{1}\right)}{x^{k+1}},
$$

for certain given pairs $\left(P_{1}, Q_{1}\right) \neq\left(P_{2}, Q_{2}\right)$ with $1 \leq P \leq 3$ and $Q= \pm 1$.
We also study equations of the form

$$
\sum_{k=0}^{\infty} \frac{U_{k}(P, Q)}{x^{k+1}}=\sum_{k=0}^{\infty} \frac{R_{k}}{y^{k+1}},
$$

where R_{n} is a ternary linear recurrence sequence of the form $R_{0}=R_{1}=0, R_{2}=1$ and $R_{n}=C R_{n-1}+D R_{n-2}+E R_{n-3}$. We provide results related to equations

$$
\sum_{k=0}^{\infty} \frac{U_{k}\left(P_{1}, Q_{1}\right)}{x^{k+1}}=\sum_{k=0}^{\infty} \frac{V_{k}\left(P_{2}, Q_{2}\right)}{y^{k+1}}, \quad \sum_{k=0}^{\infty} \frac{R_{k}}{x^{k+1}}=\sum_{k=0}^{\infty} \frac{T_{k}}{y^{k+1}}
$$

where $\left\{U_{k}\right\},\left\{V_{k}\right\}$ are Lucas sequences and $\left\{R_{k}\right\}$ and $\left\{T_{k}\right\}$ are ternary linear recurrence sequences. This is a joint work with (Szabolcs Tengely from the University of Debrecen).
[1] B. M. M. De Weger, A curious property of the eleventh Fibonacci number, Rocky Mountain J. Math., 25 (1995), pp. 977-994.
[2] F. Stancliff, A curious property of $a_{i i}$, Scripta Math.,19:126, 1953.
[3] Sz. Tengely,On the Lucas sequence equation $\frac{1}{U_{n}}=\sum_{k=1}^{\infty} \frac{U_{k-1}}{x^{k}}$, J. Period. Math. Hung. 71(2) (2014), 236-242.

