EXTENSION OPERATORS PRESERVING JANOWSKI CLASSES OF UNIVALENT FUNCTIONS

Andra Manu

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Our main interest is devoted to study the extension operator $\Phi_{n,\alpha,\beta} : \mathcal{L}S \to \mathcal{L}S_n$ given by $\Phi_{n,\alpha,\beta}(f)(z) = \left(f(z_1), \tilde{z}\left(\frac{f(z_1)}{z_1}\right)^{\alpha}(f'(z_1))^{\beta}\right), z = (z_1, \tilde{z}) \in \mathbf{B}^n$, where $\alpha, \beta \ge 0$. We shall prove that the extension operator $\Phi_{n,\alpha,\beta}$ preserves the notion of *g*-parametric representation for $\alpha \in [0, 1], \beta \in [0, 1/2]$ and $\alpha + \beta \le 1$, where the function *g* is given by $g(\zeta) = \frac{1+A\zeta}{1+B\zeta}, \zeta \in U$ with $-1 \le B < A \le 1$. The notion of *g*-parametric representation was introduced in [3].

Theorem 1. Let $g: U \to \mathbb{C}$ be the function given by $g(\zeta) = \frac{1+A\zeta}{1+B\zeta}$, $\zeta \in U$, where $-1 \leq B < A \leq 1$. If $f \in S$ has g-parametric representation, then $F = \Phi_{n,\alpha,\beta}(f)$ also has g-parametric representation on \mathbf{B}^n for $\alpha \in [0,1]$, $\beta \in [0,1/2]$ and $\alpha + \beta \leq 1$.

The following classes of Janowski starlike mappings and Janowski almost starlike mappings on \mathbf{B}^n were introduced by Curt (see [2]).

Definition 2. (see [2]) Let be $a, b \in \mathbb{R}$ be such that $|1 - a| < b \leq a$. Also, let $S^*(a, b, \mathbf{B}^n) = \left\{ f \in \mathcal{L}S_n : \left| \frac{\|z\|^2}{\langle [Df(z)]^{-1}f(z), z \rangle} - a \right| < b, \ z \in \mathbf{B}^n \setminus \{0\} \right\}$ and $\mathcal{A}S^*(a, b, \mathbf{B}^n) = \left\{ f \in \mathcal{L}S_n : \left| \frac{\langle [Df(z)]^{-1}f(z), z \rangle}{\|z\|^2} - a \right| < b, \ z \in \mathbf{B}^n \setminus \{0\} \right\}.$

As a consequence of the previous result, the operator $\Phi_{n,\alpha,\beta}$ preserves the notions of Janowski starlikeness on \mathbf{B}^n and Janowski almost starlikeness on \mathbf{B}^n .

Corollary 3. Let $a, b \in \mathbb{R}$ be such that $|1 - a| < b \leq a$ and let $f \in S^*(a, b)$. Then $F = \Phi_{n,\alpha,\beta}(f) \in S^*(a, b, \mathbf{B}^n)$, with $\alpha \in [0, 1]$, $\beta \in [0, 1/2]$ and $\alpha + \beta \leq 1$.

Corollary 4. Let $a, b \in \mathbb{R}$ be such that $|1 - a| < b \leq a$ and let $f \in \mathcal{A}S^*(a, b)$. Then $F = \Phi_{n,\alpha,\beta}(f) \in \mathcal{A}S^*(a, b, \mathbf{B}^n)$, with $\alpha \in [0, 1]$, $\beta \in [0, 1/2]$ and $\alpha + \beta \leq 1$.

The above results continue the work in [3], [4] and [1] concerning extension operators and g-parametric representation in \mathbb{C}^n .

On the other hand, we are also concerned about some radius problems related to the operator $\Phi_{n,\alpha,\beta}$ and the Janowski class $S^*(a,b)$. We compute the radius $S^*(a,b)$ of the class S (respectively S^*).

- T. CHIRILĂ, An extension operator associated with certain g-Loewner chains, Taiwan. J. Math. 17 (2013), 1819–1837.
- [2] P. CURT, Janowski starlikeness in several complex variables and complex Hilbert spaces, *Taiwan. J. Math.* 18 (2014), no. 4, 1171–1184.
- [3] I. GRAHAM, H. HAMADA, G. KOHR, Parametric representation of univalent mappings in several complex variables, *Canadian J. Math.* **54** (2002), 324–351.
- [4] I. GRAHAM, H. HAMADA, G. KOHR, T.J. SUFFRIDGE, Extension operators for locally univalent mappings, *Michigan Math. J.* 50 (2002), 37–55.