A = matrix(QQ, [[1,1],[-1,1],[0,0]]) pretty_print("Im χ genrsz:",A,"→" ,A.rref()) pretty_print(" ") pretty_print("Ker χ egyrsz:",A.transpose(),"→" ,A.transpose().rref())
A = matrix(QQ, [[1,0,1,-1],[-1,1,0,0],[0,-1,-1,1]]) pretty_print("Im ω genrsz:",A,"→" ,A.rref()) pretty_print(" ") pretty_print("Ker ω egyrsz:",A.transpose(),"→" ,A.transpose().rref())
A = matrix(GF(3), [[1,1,2,1],[2,1,0,2]]) pretty_print("Im ζ genrsz:",A,"→" ,A.rref()) pretty_print(" ") pretty_print("Ker ζ egyrsz:",A.transpose(),"→" ,A.transpose().rref())
A = matrix(GF(3), [[1,1,0],[1,2,2],[2,1,1],[1,0,1]]) pretty_print("Im η genrsz:",A,"→" ,A.rref()) pretty_print(" ") pretty_print("Ker η egyrsz:",A.transpose(),"→" ,A.transpose().rref())
A = matrix(GF(5), [[3,1,2],[0,4,2],[0,1,3]]) pretty_print("Im 𝜗 genrsz:",A,"→" ,A.rref()) pretty_print(" ") pretty_print("Ker 𝜗 egyrsz:",A.transpose(),"→" ,A.transpose().rref())
A = matrix([[1,2-i],[2,1],[3*i,1+3*i]]) pretty_print("Im σ genrsz:",A,"→" ,A.rref()) pretty_print(" ") pretty_print("Ker σ egyrsz:",A.transpose(),"→" ,A.transpose().rref())
A = matrix([[1,1,0],[1,2,2],[2,1,1],[1,0,1]]) pretty_print("Im τ genrsz:",A,"→" ,A.rref()) pretty_print(" ") pretty_print("Ker τ egyrsz:",A.transpose(),"→" ,A.transpose().rref())
A = matrix(QQ, [[1,1,-5],[0,4,-8],[0,1,-2]]) pretty_print("Im υ genrsz:",A,"→" ,A.rref()) pretty_print(" ") pretty_print("Ker υ egyrsz:",A.transpose(),"→" ,A.transpose().rref())
Egy ℰ bázisban megadott vektor koordinátáinak kiszámítása az ℱ bázisban:
egyrsz = matrix(QQ, [[1,-2,-1],[2,1,8]]) egyrsz.subdivide(None,[2]) pretty_print(egyrsz,"→" ,egyrsz.rref())
Rajz:
f1 = arrow2d((0,0), (1,2), 4, color='blue') f2 = arrow2d((0,0), (-2,1), 4, color='green') v = arrow2d((0,0), (-1,8), 4, color='red') w = arrow2d((0,0), (7,4), 4, color='orange') f12 = arrow2d((0,0), (2,4), 4, color='blue') f13 = arrow2d((0,0), (3,6), 4, color='blue') f21 = arrow2d((3,6), (1,7), 4, color='green') f22 = arrow2d((3,6), (-1,8), 4, color='green') f2m1 = arrow2d((3,6), (5,5), 4, color='green') f2m2 = arrow2d((3,6), (7,4), 4, color='green') var('x,y') t=implicit_plot(y==2*x, (x,-1,9), (y,-1,9), color='lightblue') t+f1+f2+v+w #t+f13+f12+f1+f22+f21+f2+v+w #t+f13+f12+f1+f22+f21+f2m1+f2m2+f2+v+w
A leképezés mátrixa a bázisáttérés formulájával:
FE = matrix(QQ, [[1,2],[-2,1]]) B = matrix(QQ, [[1,0],[0,-1]]) pretty_print("[F→E]:",FE) pretty_print(" ") pretty_print("[E→F]:",FE^(-1)) pretty_print(" ") pretty_print("[φ]_F:",B) pretty_print(" ") pretty_print("[φ]_E:",FE^(-1)*B*FE)
Egy ℰ bázisban megadott vektor koordinátáinak kiszámítása az ℱ bázisban:
egyrsz = matrix(QQ, [[1,-2,-1],[2,1,8]]) egyrsz.subdivide(None,[2]) pretty_print(egyrsz,"→" ,egyrsz.rref())
Rajz:
f1 = arrow2d((0,0), (1,2), 4, color='blue') f2 = arrow2d((0,0), (-2,1), 4, color='green') v = arrow2d((0,0), (-1,8), 4, color='red') w = arrow2d((0,0), (3,6), 4, color='orange') f12 = arrow2d((0,0), (2,4), 4, color='blue') f13 = arrow2d((0,0), (3,6), 4, color='blue') f21 = arrow2d((3,6), (1,7), 4, color='green') f22 = arrow2d((3,6), (-1,8), 4, color='green') var('x,y') t=implicit_plot(y==2*x, (x,-1,9), (y,-1,9), color='lightblue') t+v+w+f1+f2 #t+v+w+f13+f12+f1+f22+f21+f2
A leképezés mátrixa a bázisáttérés formulájával:
FE = matrix(QQ, [[1,2],[-2,1]]) B = matrix(QQ, [[1,0],[0,0]]) pretty_print("[F→E]:",FE) pretty_print(" ") pretty_print("[E→F]:",FE^(-1)) pretty_print(" ") pretty_print("[φ]_F:",B) pretty_print(" ") pretty_print("[φ]_E:",FE^(-1)*B*FE)
Egy ℰ bázisban megadott vektor koordinátáinak kiszámítása az ℱ bázisban:
egyrsz = matrix(QQ, [[1,1,0,1],[2,1,1,2],[-1,1,-1,0]]) egyrsz.subdivide(None,[3]) pretty_print(egyrsz,"→" ,egyrsz.rref())
A leképezés mátrixa a bázisáttérés formulájával:
FE = matrix(QQ, [[1,2,-1],[1,1,1],[0,1,-1]]) A = matrix(QQ, [[2,1,3],[-1,0,-2],[0,1,-1]]) pretty_print("[F→E]:",FE) pretty_print(" ") pretty_print("[E→F]:",FE^(-1)) pretty_print(" ") pretty_print("[φ]_E:",A) pretty_print(" ") pretty_print("[φ]_F:",FE*A*FE^(-1))
Egy ℰ bázisban megadott vektor koordinátáinak kiszámítása az ℱ bázisban:
egyrsz = matrix(QQ, [[1,-2,1,1],[1,3,-1,0],[-1,1,0,0]]) egyrsz.subdivide(None,[3]) pretty_print(egyrsz,"→" ,egyrsz.rref())
A leképezés mátrixa a bázisáttérés formulájával:
FE = matrix(QQ, [[1,1,-1],[-2,3,1],[1,-1,0]]) B = matrix(QQ, [[1,0,0],[0,-1,0],[0,0,-1]]) pretty_print("[F→E]:",FE) pretty_print(" ") pretty_print("[E→F]:",FE^(-1)) pretty_print(" ") pretty_print("[φ]_F:",B) pretty_print(" ") pretty_print("[φ]_E:",FE^(-1)*B*FE)
Határozzuk meg a $P$ átmenetmátrix karakterisztikus polinomját és sajátértékeit:
A = matrix(QQ, [[1,-1], [1,1]]) E = matrix(QQ, [[1,0], [0,1]]) karpol = (A-x*E).det().expand() pretty_print(karpol); pretty_print(" ") gyokok = karpol.roots() pretty_print(gyokok); pretty_print(" ") lambda_1 = gyokok[1][0] pretty_print(LatexExpr("\\lambda_1="),lambda_1); pretty_print(" ") lambda_2 = gyokok[0][0] pretty_print(LatexExpr("\\lambda_2="),lambda_2) pretty_print(LatexExpr("(A-\\lambda_1 E)^T ="),(A-lambda_1*E).transpose(),LatexExpr("\\rightsquigarrow"),(A-lambda_1*E).transpose().rref()) pretty_print(LatexExpr("(A-\\lambda_2 E)^T ="),(A-lambda_2*E).transpose(),LatexExpr("\\rightsquigarrow"),(A-lambda_2*E).transpose().rref()) Q = matrix(CC, [[-i,1], [i,1]]) D = Q*A*Q^(-1) pretty_print(LatexExpr("Q="),n(Q,1),LatexExpr("\\quad Q^{-1}="),n(Q^(-1),1)); pretty_print(" ") pretty_print(LatexExpr("D=QPQ^{-1}="),n(D,1))
A leképezés mátrixa a bázisáttérés formulájával:
FE = matrix(QQ, [[1,1,-1],[-2,3,1],[1,-1,0]]) B = matrix(QQ, [[1,0,0],[0,-1,0],[0,0,-1]]) pretty_print("[F→E]:",FE) pretty_print(" ") pretty_print("[E→F]:",FE^(-1)) pretty_print(" ") pretty_print("[φ]_F:",B) pretty_print(" ") pretty_print("[φ]_E:",FE^(-1)*B*FE)