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THE TEACHING OF MATHEMATICS 

EDITED BY MELVIN HENRIKSEN AND STAN WAGON 

A One-Sentence Proof That Every Prime p 1 (mod 4) 
Is a Sum of Two Squares 

D. ZAGIER 
Departmenit of Mathematics, University of Maryland, College Park, MD 20742 

The involution on the finite set S = {(x,y,z) E rkJ3: X2 + 4yz = p } defined by 

((x + 2z, z, y-x-z) if x <y-z 
(x,y,z) |->4 (2y - x, y, x - y + z) if y - z < x < 2y 

I(x - 2y, x -y + z, y) if x > 2y 

has exactly one fixed point, so ISI is odd and the involution defined by (x,y,z) - 
(x,z,y) also has a fixed point. O 

This proof is a simplification of one due to Heath-Brown [1] (inspired, in turn, by 
a proof given by Liouville). The verifications of the implicitly made assertions-that 
S is finite and that the map is well-defined and involutory (i.e., equal to its own 
inverse) and has exactly one fixed point-are immediate and have been left to the 
reader. Only the last requires that p be a prime of the form 4k + 1, the fixed point 
then being (1,1,k). 

Note that the proof is not constructive: it does not give a method to actually find 
the representation of p as a sum of two squares. A similar phenomenon occurs with 
results in topology and analysis that are proved using fixed-point theorems. Indeed, 
the basic principle we used: "The cardinalities of a finite set and of its fixed-point 
set under any involution have the same parity," is a combinatorial analogue and 
special case of the corresponding topological result: "The Euler characteristics of a 
topological space and of its fixed-point set under any continuous involution have 
the same parity." 

For a discussion of constructive proofs of the two-squares theorem, see the 
Editor's Corner elsewhere in this issue. 
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Inverse Functions and their Derivatives 

ERNST SNAPPER 

Department of Mathematics and Computer Science, Dartmouth College, Hanover, NH 03755 

If the concept of inverse function is introduced correctly, the usual rule for its 
derivative is visually so obvious, it barely needs a proof. The reason why the 
standard, somewhat tedious proofs are given is that the inverse of a function f(x) is 
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