Diszkrét matematika III gyakorlat

Linkek: 5.1(a), 5.1(b), 5.1(c), 5.1(d), 5.3(b), 5.3(c)

Euklideszi algoritmus egész számokkal

%display latex a = 44 b = 34 while b!=0: a, b = b, a%b a

Ha már nem emlékszel erre, itt egy részletesebb magyarázat.

Euklideszi algoritmus polinomokkal

%display latex R.<x> = PolynomialRing(QQ) a = x*(x+1)*(x+12)*(x+13) b = x*(x+1)*(x+14) while b!=0: a, b = b, a%b a

Írjuk ki részletesen a lépéseket:

%display latex R.<x> = PolynomialRing(QQ) f = x*(x+1)*(x+12)*(x+13) g = x*(x+1)*(x+14) def eukl(f,g): while g!=0: q, r = f.quo_rem(g) pretty_print("osztandó: \t", f) pretty_print("osztó: \t", g) pretty_print("hányados: \t", q) pretty_print("maradék: \t", r) pretty_print("---------------------------") f, g = g, r pretty_print("lnko: \t", f) eukl(f,g)

5.1(a) feladat

R.<x> = PolynomialRing(QQ) f = 2*x^4 - 3*x^3 - 2*x^2 + 2*x - 1 g = 2*x^3 - x^2 - 4*x - 1 eukl(f,g) #g/gcd(f,g)

5.1(b) feladat

#5.1(b) R.<x> = PolynomialRing(QQ) f = -x^4 - 4*x^3 + 34*x^2 + 76*x - 105 g = x^4 + 6*x^3 - 6*x^2 + 6*x - 7 eukl(f,g)

5.1(c) feladat

R.<x> = PolynomialRing(GF(13)) f = x^8 - 1 g = x^6 - 1 eukl(f,g)

5.1(d) feladat

R.<x> = PolynomialRing(GF(5)) f = 4*x^4 + 2*x^3 + x^2 + x + 2 g = 2*x^4 + 3*x^2 + 1 eukl(f,g)

5.3(b) feladat

R.<x> = PolynomialRing(GF(2)) f = x^5 + x^4 + x^3 + 1 g = x^4 + 1 eukl(f,g)

5.3(c) feladat

R.<x> = PolynomialRing(GF(5)) f = x^4 + x^3 + x + 1 g = x^3 + 2*x^2 + 2*x + 1 eukl(f,g)

Üres cellák