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Abstract. Associative spectra of graph algebras are examined with the help of

homomorphisms of DFS trees. Undirected graphs are classified according to the
associative spectra of their graph algebras; there are only three distinct possibil-

ities: constant 1, powers of 2, and Catalan numbers. Associative and antiasso-

ciative digraphs are described, and associative spectra are determined for certain
families of digraphs, such as paths, cycles, and graphs on two vertices.

1. Introduction

Associativity is a fundamental property of binary operations, and one tends to
take it for granted, since the most frequently encountered operations are associative.
However, there are also many noteworthy operations that are not associative, such
as subtraction, cross product of vectors, implication, just to name a few. For a
systematic study of phenomena related to (non)associativity, one may consider an
arbitrary nonempty set A together with a binary operation x·y on A. Let us emphasize
that we denote the operation as multiplication only for notational convenience; the
operation can be any map A × A → A, (x, y) 7→ x · y. This yields the algebraic
structure A = (A; ·), called a groupoid (note that the term groupoid has a different
meaning in category theory).

Given such a groupoid, there are several ways of measuring how far our operation
is from being associative. For finite A, a natural “measure of nonassociativity” is the
number of triples (a, b, c) ∈ A3 such that (a · b) · c 6= a · (b · c). This notion was studied
by A. C. Climescu [6] as early as 1947, and later by T. Kepka and M. Trch in a long
series of papers starting with [11]. Another option is to count the minimum number
of changes one has to make in the operation table in order to make it associative [12].

B. Csákány suggested a third method, namely to look at how many of the identities
that are consequences of associativity are (not) satisfied. If the operation is associative,
then there is no need to use parentheses in a product x1 · x2 · . . . · xn, as the result
will be the same anyway, but if the operation is not associative, then one must insert
n − 2 pairs of parentheses in order to make the product unambiguous. The Catalan
numbers Cn−1 = 1

n

(
2n−2
n−1

)
give the number of ways of inserting parentheses (or round

brackets) meaningfully, and each such bracketing induces an n-variable function An →
A. For associative binary operations all these n-ary functions will be the same, but for
arbitrary operations we may get as many as Cn−1 functions. The associative spectrum
of A is the sequence {sn(A)}∞n=1 that counts the number of different n-ary functions
on A arising from bracketings of the product x1 · x2 · . . . · xn. If A is a semigroup (i.e.,
if x · y is associative), then sn(A) = 1 for all n ∈ N, and intuitively we can say that
the faster the spectrum grows, the less associative the operation is.

The associative spectrum was introduced in [8], and some basic properties and
many examples of associative spectra were presented. In particular, it was shown
that the cross product and the implication have a Catalan spectrum, hence they
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are as nonassociative as a binary operation can be. We shall call such operations
(groupoids) antiassociative. The associative spectrum of the subtraction operation
is given by sn = 2n−2, thus subtraction is somewhere between being associative and
antiassociative. Examples of groupoids with constant and linear spectra were also
given in [8], furthermore, in [14] groupoids with polynomial spectra of arbitrary degrees
were constructed. It was also proved in [14] that there exist a continuum of different
associative spectra (allowing infinite base sets, of course). Similar questions were
investigated in [2, 3, 4], where some of the earlier results were rediscovered (with a
different terminology).

In this paper we study associative spectra of certain binary operations associated
to graphs. Let us define a “multiplication” on the vertices of a graph as follows: let
u · v = u if there is an edge from u to v and let u · v = ∞ otherwise (here ∞ is an
external absorbing element). We define the arising graph algebras more precisely in
Section 2, where we also present the required background on bracketings and spectra.

For undirected graphs we obtain a full description of all possible associative spectra
in Section 3. It turns out that there are only three possibilities: we have either
sn = 1, sn = 2n−2 or sn = Cn−1. Note the sharp contrast between this result and the
abundance of different (growth rates of) spectra presented in [8, 14]. In Theorem 3.3
we also give explicit characterizations of undirected graphs corresponding to each of
the three spectra.

We determine antiassociative digraphs in Section 4; this together with the descrip-
tion of associative digraphs [15] gives us at least a picture about the two extrema of
the spectrum(!) of associative spectra of digraphs. Finally, in Section 5 we compute
the associative spectra of some concrete graphs such as cycles and paths, and we also
determine the spectra of graphs on two vertices. A more detailed analysis of the
associative spectra of general digraphs will be a topic of a forthcoming paper.

2. Preliminaries

2.1. General notation. We denote by N and N+ the set of nonnegative integers and
the set of positive integers, respectively. For a, b ∈ N, let [a, b] := {i ∈ N | a ≤ i ≤ b}.
(Thus [a, b] = ∅ if a > b.) For n ∈ N, let [n] := [1, n] = {1, . . . , n}.

2.2. Directed graphs. By a directed graph (or digraph or simply graph) we mean a
pair G = (V,E), where V = V (G) is a nonempty set of vertices and E = E(G) ⊆ V 2

is a set of edges (or the edge relation). A digraph G′ = (V ′, E′) is a subgraph of
G = (V,E) if V ′ ⊆ V and E′ ⊆ E; it is an induced subgraph of G if additionally
E′ = E ∩ (V ′ × V ′).

If e = (u, v) ∈ E, then we say that e is an edge from u to v, and we sometimes
denote this by u→ v. In this case we also say that u is an inneighbour of v and v is
an outneighbour of u. The outneigbourhood of a vertex u ∈ V (G), denoted by NG

o (u),
is the set of all outneighbours of u in G. The concept of inneighbourhood is defined
analogously. An edge of the form (u, u) is called a loop (on u) and sometimes denoted
by u 	.

A walk of length ` from u to v in G is a sequence v0, . . . , v` of (not necessarily
distinct) vertices such that v0 = u, v` = v, and there is an edge from each vertex to
the next one (except for the last vertex, of course): v0 → v1 → · · · → v`. If v0 = v`,
then we say that the walk is closed. A path (cycle) is a (closed) walk in which the
vertices are pairwise distinct (with the exception of the first and last vertex in case of
a cycle). A digraph without cycles is called acyclic.

We say that a vertex u is reachable from v if there exists a walk (equivalently, a
path) from v to u. A pair of vertices u and v are said to be strongly connected if each
one of u and v is reachable from the other. The relation of being strongly connected
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is an equivalence relation, and the induced subgraphs of its equivalence classes are
called the strongly connected components of G. A digraph is strongly connected if
it has just one strongly connected component. A one-vertex graph with no edge is
strongly connected (let us call this the trivial strongly connected graph); apart from
this trivial example, every vertex of a strongly connected digraph is contained in a
cycle of nonzero length (this includes the graph of one vertex with a loop on it).

A digraph with a symmetric edge relation is called an undirected graph. The
strongly connected components of an undirected graph are called connected compo-
nents. The underlying undirected graph of a digraph G = (V,E) is the undirected
graph (V,E′), where the edge relation E′ equals the symmetric closure of E.

A tree is an undirected graph in which any two vertices are connected by exactly one
path. A rooted directed tree is a directed acyclic graph whose underlying undirected
graph is a tree and that has a distinguished vertex, called a root, from which all
vertices are reachable. Let v be a vertex of a rooted directed tree T . Unless v is the
root of T , it has a unique inneighbour, which is referred to as the parent of v. The
outneighbours of v are called children of v. A childless vertex is called a leaf. The
vertices reachable from v are called descendants of v, and v is called an ancestor of
any of its descendants. The rooted induced subtree of T rooted at v, denoted by Tv, is
the subgraph of T induced by v and all its descendants.

The depth of a vertex v in a rooted directed tree T is the length of the (unique) path
from the root to v, denoted by dT (v). (Thus the root has depth 0.) The height of T ,
denoted by h(T ), is the maximum of the depths of its vertices: h(T ) = max{dT (v) |
v ∈ V (T )}.

2.3. Graph algebras. Graph algebras were introduced by C. R. Shallon [17]. We
associate any digraph G = (V,E) with an algebra A(G) = (V ∪ {∞}; ◦,∞) of type
(2, 0), where ∞ is a new element distinct from the vertices, and the binary operation
is defined by the following rule: for any x, y ∈ V ∪ {∞},

x ◦ y :=

{
x, if (x, y) ∈ E,

∞, otherwise.

The algebra A(G) is called the graph algebra of G. Graph algebras provide a simple
encoding of graphs as algebras, and using this encoding, the algebraic properties of
the graph algebra A(G) can be seen as properties of the graph G itself.

We are particularly interested in the satisfaction of identities by graph algebras.
Recall that a term is, informally speaking, a well-formed string comprising variables
and function symbols from the language of algebras under consideration. An identity
is an ordered pair (t, t′) of terms, usually written as t ≈ t′. An algebra A satisfies an
identity t ≈ t′ if for all assignments of values to the variables occurring in t and t′,
the two terms get the same value when the function symbols are interpreted as the
fundamental operations of A. An identity t ≈ t′ is trivial if t = t′. Trivial identities
are clearly satisfied by all algebras (of the given type). For further details, see, e.g.,
[9].

Let t be a term in the language of graph algebras. Denote by var(t) the set of
variables occurring in t and by L(t) the leftmost variable occurring in t. We say
that t is trivial if it contains an occurrence of the constant symbol ∞; otherwise t is
nontrivial. Nontrivial terms are thus just groupoid terms. To any nontrivial term t,
we can associate a digraph G(t) = (V,E), where V = var(t), and (xi, xj) ∈ E if and
only if t has a subterm (t1 ◦ t2) with L(t1) = xi and L(t2) = xj .

The following result is very helpful for determining whether a graph algebra satisfies
an identity.
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Figure 1. The DFS tree of the bracketing ((x1((x2x3)x4))x5)(x6(x7x8)).

Proposition 2.1 (Pöschel, Wessel [16, Proposition 1.5(2)]). Let G = (V,E) be a
digraph, and let A(G) denote the corresponding graph algebra. Let t and t′ be nontrivial
terms in the language of graph algebras, and assume that var(t) = var(t′) and L(t) =
L(t′). Then the following conditions are equivalent:

(i) A(G) satisfies t ≈ t′;
(ii) for every map ϕ : var(t) → V , we have that ϕ is a homomorphism of G(t)

into G if and only if ϕ is a homomorphism of G(t′) into G.

2.4. Associative spectra. Let Bn denote the set of bracketings of size n, i.e., group-
oid terms obtained from the string x1 · x2 · . . . · xn by inserting parentheses appropri-
ately. The number of bracketings of size n is given by the (n− 1)-st Catalan number
Cn−1 = 1

n

(
2n−2
n−1

)
. If A = (A; ·) is a groupoid, then the equational theory of A induces

an equivalence relation σn(A) on Bn. The sequence {σn(A)}∞n=1 is called the fine
associative spectrum of A. The associative spectrum of A is the sequence {sn(A)}∞n=1

of natural numbers defined by sn(A) := |Bn/σn(A)|. Equivalently, sn(A) is the num-
ber of distinct term operations of A induced by the bracketings of size n. Intuitively,
the faster the associative spectrum grows, the less associative the operation is. The
groupoid A is a semigroup if and only if sn(A) = 1 for all n ∈ N. On the other
extreme we have the antiassociative groupoids whose associative spectrum is given by
the Catalan numbers: sn(A) = |Bn| = Cn−1. These groupoids do not satisfy any
nontrivial identity of the form t1 ≈ t2 with t1, t2 ∈ Bn.

Since there exists only one bracketing of size 1, namely x1, and of size 2, namely
(x1x2), it is clear that s1(A) = s2(A) = 1 for every groupoid A. Therefore we
may always assume that n ≥ 3 when we consider bracketings of size n or the n-th
component of an associative spectrum.

2.5. DFS trees. It turns out that the graphs associated with bracketings are partic-
ularly nice; they are rooted directed trees of a very special form.

Definition 2.2. A DFS tree of size n is a rooted directed tree T on the vertex set
Xn := {x1, x2, . . . , xn} that has root x1 and for every vertex xi ∈ Xn, the induced
subtree Txi

has vertex set of the form X[i,i′] := {xj | j ∈ [i, i′]} for some i′ ∈ [n] with
i′ ≥ i.

The name “DFS tree” stems from the fact that the vertices are labeled in an order
in which they may be traversed by the depth-first search (DFS) (see [7, Section 22.3])
starting from the root. Figure 1 shows the DFS tree G(t) of size 8 that corresponds
to the bracketing t = ((x1((x2x3)x4))x5)(x6(x7x8)). The dotted line shows the walk
traversed by the depth first search (using the convention that the search continues
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always with the leftmost unvisited child). Note that the order of first occurrence of
the vertices along this walk is x1, x2, . . . , x8.

Lemma 2.3 (cf. [7, Theorem 22.7 (Parenthesis theorem)]). Let T be a rooted directed
tree on Xn. The following are equivalent.

(i) T is a DFS tree.
(ii) The sequence x1, x2, . . . , xn is a possible order in which the vertices of T may

be traversed by the depth-first search starting from the root.

Proof. (i) ⇒ (ii): Assume that T satisfies condition (i). Condition (ii) will follow if
we prove that for each vertex xi ∈ Xn, the vertices of the rooted induced subtree Txi

(by our assumption V (Txi
) = X[i,i′] for some i′ ≥ i) may be traversed by the depth-

first search in the order xi, xi+1, . . . , xi′ . We proceed by induction on the height of
subtrees. The claim obviously holds for rooted induced subtrees of height 0. Assume
that the claim holds for rooted induced subtrees of height at most k, and let xi ∈ Xn

be a vertex such that h(Txi
) = k + 1. Let xi1 , xi2 , . . . , xi` be the children of xi in T

with i1 < i2 < · · · < i`. By condition (i), for each s ∈ [`], V (Txis
) = X[is,i′s]

for some
i′s ≥ is; in fact i′s = is+1 − 1 for 1 ≤ s < `, i1 = i + 1, and V (Txi

) = X[i,i′`]
. By the

induction hypothesis, the vertices of Txis
may be traversed by the depth-first search

in the order xis , xis+1, . . . , xi′s ; consequently, the vertices of Txi
may be traversed in

the order xi, xi1 , xi1+1, . . . , xi′1 , xi2 , xi2+1, . . . , xi′2 , . . . , xi` , xi`+1, . . . , xi′` , that is, in the
order xi, xi+1, . . . , xi′` .

(ii) ⇒ (i): Assume that T satisfies condition (ii). For any xi ∈ Xn, xi is the
first vertex in Txi

visited by the depth-first search, all vertices of Txi
are traversed

before the depth-first search continues with vertices not belonging to Txi , and once
the depth-first search leaves the subtree Txi it will never return to it. Consequently,
condition (i) clearly holds. �

Bracketings of size n are in a one-to-one correspondence with DFS trees of size n.

Lemma 2.4 (cf. Kiss [13, Lemma 2]). Let n ∈ N.

(a) For any bracketing t ∈ Bn, the graph G(t) is a DFS tree of size n.
(b) Conversely, for every DFS tree T of size n, there is a unique bracketing t ∈ Bn

such that G(t) = T .

Proof. (a) Let t ∈ Bn. Then G(t) is a graph on Xn by definition. We will prove by
induction on the structure of terms that for every subterm t′ of t, the graph G(t′)
is a directed tree on var(t′) with root L(t′) such that for every xi ∈ var(t′), the
subtree of G(t′) rooted at xi has vertex set of the form X[i,i′] for some i′ ∈ [n] with
i′ ≥ i. The claim obviously holds for any subterm of the form t′ = xi ∈ Xn. Let now
t′ = (t1 ◦ t2), and assume that the claim holds for the subterms t1 and t2. By the
induction hypothesis, for ` ∈ {1, 2}, G(t`) is a directed tree on var(t`) with root L(t`);
moreover, var(t`) = X[p`,q`], where p` = L(t`) and q` ≥ p`. In fact, q1 = p2 − 1. Since
var(t1)∩var(t2) = ∅, G(t′) is obtained by adding the edge L(t1)→ L(t2) to the disjoint
union of G(t1) and G(t2); the resulting graph is a directed tree on var(t′) = X[p1,q2].
Moreover, given a vertex xi ∈ var(t′), we have that the subtree of G(t′) induced by
xi is identical to the one induced by xi in G(t1) if xi ∈ var(t1) \ {xp1} and identical
to the one induced by xi in G(t2) if xi ∈ var(t2); by the induction hypothesis, the
subtree has the desired form.

(b) For the purpose of this proof, we relax the notions of bracketing and DFS tree
so as to allow variable or vertex sets of the form X[a,b]. Let a, b ∈ N with a ≤ b,
and let n := b − a + 1. A term t with var(t) = X[a,b] is an [a, b]-bracketing if t can
be obtained from some t′ ∈ Bn by replacing each variable xi by xa+i−1, 1 ≤ i ≤ n.
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Similarly, a rooted directed tree T on X[a,b] is an [a, b]-DFS tree if there is a DFS tree
T ′ of size n such that the map xi 7→ xa+i−1 is an isomorphism T ′ → T .

We show that for any a, b ∈ N with a ≤ b, it holds that for every [a, b]-DFS tree T ,
there exists a unique [a, b]-bracketing t such that G(t) = T . We proceed by induction
on the length b − a of the interval [a, b]. The claim is obvious for b − a = 0, i.e.,
a = b. Assume that the claim holds whenever b−a ≤ k. Let now a and b be such that
b−a = k+1, and let T be an [a, b]-DFS tree. Let xi1 , xi2 , . . . , xi` be the children of the
root vertex xa, and assume that i1 < i2 < · · · < i`. Then T −Txi`

is an [a, i`−1]-DFS

tree and Txi`
is an [i`, b]-DFS tree, so by the induction hypothesis there exist a unique

[a, i` − 1]-bracketing r such that T − Txi`
= G(r) and a unique [i`, b]-bracketing s

such that Txi`
= G(s). Then t := (r ◦ s) is an [a, b]-bracketing and it is easy to see

that G(t) = T because L(r) = xa and L(s) = xi` . This proved existence. As for
uniqueness, assume t′ is another [a, b]-bracketing such that G(t′) = T . Since xa → xi`
is an edge in T , t′ must contain a subterm of the form (r′ ◦ s′) where L(r′) = xa,
L(s′) = xi` . Then var(r′) = X[a,i`−1], so G(r′) is the subtree of T with vertex set
X[a,i`−1], that is G(r′) = T − Txi`

= G(r). Observe that t′ contains no subterm

of the form (r′ ◦ s′) ◦ s′′ (otherwise L(s′′) =: xp would be a child of xa with p > i`,
contradicting the choice of i`). Consequently var(s′) = X[i`,b], so G(s′) = Txi`

= G(s).

By the induction hypothesis r = r′ and s = s′, so t = (r ◦ s) = (r′ ◦ s′) = t′. �

Proposition 2.5. DFS trees are uniquely determined by their depth sequences: if T
and T ′ are DFS trees of size n such that dT (xi) = dT ′(xi) for all i ∈ {1, . . . , n}, then
T = T ′.

Proof. Suppose, to the contrary, that DFS trees T and T ′ satisfy dT (xi) = dT ′(xi)
for all i ∈ {1, . . . , n} but T 6= T ′. Then there exists a vertex xd ∈ Xn such that its
parent xp in T is distinct from its parent xq in T ′. Assume without loss of generality
that p < q. Since dT (xd) = dT ′(xd), we also have dT ′(xp) = dT (xp) = dT (xd) − 1 =
dT ′(xd) − 1 = dT ′(xq) = dT (xq). It follows from this that xd ∈ Txp

and xq /∈ Txp
;

therefore p < d < q by Definition 2.2. On the other hand, xd ∈ T ′xq
; therefore q < d.

We have reached a contradiction. �

A sequence (d1, . . . , dn) of nonnegative integers is called a zag sequence1 if

(1) d1 = 0, d2 = 1, and 1 ≤ di+1 ≤ di + 1 for all i ∈ {1, . . . , n− 1}.
This notion was introduced in [8], where bracketings were represented by binary trees
instead of DFS trees. (See also Exercise 19(u) in [18].) The depth of a vertex in a
DFS tree is the same as the so-called “right depth” of the corresponding vertex in the
binary tree representing the same bracketing. Therefore, 2.8 of [8] implies that depth
sequences of DFS trees are in a one-to-one correspondence with zag sequences. We
include the easy proof of this fact for the sake of self-containedness.

Proposition 2.6. A sequence (d1, . . . , dn) of nonnegative integers is the depth se-
quence of a DFS tree of size n if and only if it is a zag sequence.

Proof. Necessity is clear: if xi+1 is a child of xi in a DFS tree T , then dT (xi+1) =
dT (xi) + 1; otherwise xi+1 is a child of one of the ancestors of xi, hence dT (xi+1) ≤
dT (xi). We prove sufficiency by induction on n. The case n = 1 is trivial, so let n ≥ 2,
and assume that every zag sequence of length less than n is the depth sequence of a
DFS tree (which is unique, by Proposition 2.5). Let (d1, . . . , dn) be a zag sequence,
and let dk = 1 be the last occurrence of 1 in the sequence (possibly k = 2). Then
d1, . . . , dk−1 and dk − 1, . . . , dn − 1 are zag sequences of length less than n, hence, by

1Another, perhaps more telling name suggested by Béla Csákány is Sisyphus sequence: zag se-
quences can increase only gradually, in steps of 1, but they can decrease arbitrarily.
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Figure 2. The Dyck path of the DFS tree of Figure 1.

our induction hypothesis, they are depth sequences of DFS trees T1 (of size k−1) and
T2 (of size n− k + 1), respectively. Let us form the disjoint union of T1 and T2 after
applying the renaming xi 7→ xi+k−1 to the vertices of T2. Now if we add an edge from
x1 (the root of T1) to xk (the new root of T2), then we obtain a DFS tree of size n
with depth sequence (d1, . . . , dn). �

Remark 2.7. Zag sequences of length n can be visualized as lattice paths from the
origin to to the line x = n − 1 using steps (1, 1), (1, 0), (1,−1), (1,−2), . . . . Another
family of lattice paths is also closely related to bracketings and DFS trees. A Dyck
path of semilength n is a lattice path from (0, 0) to (2n, 0) consisting of n up-steps
U = (1, 1) and n down-steps D = (1,−1) in such a way that the path never goes
below the x axis. To construct the Dyck path corresponding to a DFS tree T , let us
draw T in such a way that all edges point upwards, and the children of every vertex
are drawn in increasing order (of their subscripts) from left to right. (All DFS trees in
this paper are drawn using this convention.) Let us follow the depth-first search on T ,
including the backtracking steps, returning to the root in the end (see the dotted line
in Figure 1). For each step, we add an up-step U or a down-step D to our lattice path
starting at the origin according to whether we are moving upwards or downwards in
the tree. (See Figure 2 for the Dyck path corresponding to the DFS tree of Figure 1.
The first occurrence of each vertex during the depth-first search is labelled on the
diagram.) This way we obtain a bijection from the set of DFS trees of size n to the
set of Dyck paths of semilength n− 1. A wormderful explanation of this bijection is
presented in [19, p. 10], where this process is actually used to define the depth-first
order.

2.6. Collapsing maps and a few lemmas.

Definition 2.8. Let T be a DFS tree of size n, and let G be a digraph. If h = h(T )
and W : v0 → v1 → · · · → vh is a walk in G, then the mapping ϕ : Xn → V (G),
xi 7→ vdT (xi) is clearly a homomorphism of T into G. Similarly, if C : u0 → u1 →
· · · → u`−1 → u0 is a closed walk in G with ` ≥ 1, then the mapping ψ : Xn → V (G),
xi 7→ vdT (xi) mod ` is a homomorphism of T into G. Such homomorphisms ϕ and ψ
are referred to as collapsing maps of T on W and C, respectively, and we say that the
DFS tree T is collapsed on the walk W (on the closed walk C) by ϕ (by ψ).

We will often specify homomorphisms of DFS trees by giving a piecewise definition
in which each piece is a collapsing map of a subgraph. In particular, if T is a DFS
tree of size n, xd ∈ Xn, s = dT (xd) > 0, h = h(T ), h′ = h(Txd

), W : v0 → v1 →
· · · → vs → · · · → vh is a walk in G, vs−1 → u0 is an edge, and W ′ is either a walk
u0 → u1 → · · · → uh′ or a closed walk u0 → u1 → · · · → u` → u0, then the mapping
ϕ : Xn → V (G) that collapses T \ Txd

on W and Txd
on W ′ is a homomorphism of T

into G, and we will refer to ϕ as the collapsing map of (T, xd) on (W,W ′), and we say
that (T, xd) is collapsed on (W,W ′) by ϕ.
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With the help of collapsing maps and Proposition 2.1, we can derive conditions for
the edges of a digraph satisfying a bracketing identity. Let us illustrate this with a
few examples that will serve as helpful tools later.

Lemma 2.9. Let t, t′ ∈ Bn, t 6= t′, T := G(t), T ′ := G(t′), h := h(T ), and let G be
a digraph such that A(G) satisfies the identity t ≈ t′. If W : v0 → v1 → · · · → vh is a
walk in G, then (vdT (a), vdT (b)) ∈ E(G) for every (a, b) ∈ E(T ′).

Proof. The collapsing map ϕ of T to W is a homomorphism of T into G, so it is also
a homomorphism of T ′ into G by Proposition 2.1. Consequently, for every edge (a, b)
of T ′, we have (vdT (a), vdT (b)) = (ϕ(a), ϕ(b)) ∈ E(G). �

Lemma 2.10. Let t, t′ ∈ Bn, t 6= t′, T := G(t), T ′ := G(t′), and let G be a digraph
such that A(G) satisfies the identity t ≈ t′. Then the following statements hold.

(a) If u, v ∈ V (G), {(u, u), (u, v)} ⊆ E(G), and G contains arbitrarily long walks
with initial vertex v, then {(v, u), (v, v)} ⊆ E(G).

(b) If u, v, w ∈ V (G) and {(u, u), (v, v), (w,w), (v, u), (v, w)} ⊆ E(G), then
{(u,w), (w, u)} ⊆ E(G).

(c) If dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn, u, v, w ∈ V (G), {(u, v), (v, u),
(v, w)} ⊆ E(G) and G contains arbitrarily long walks with initial vertex w,
then (w, v) ∈ E(G).

(d) If dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn, u, v, u′, v′ ∈ V (G), {(u, v), (v, u),
(u, v′), (v′, u), (v, u′), (u′, v)} ⊆ E(G), then {(u′, v′), (v′, u′)} ⊆ E(G).

Proof. Since t 6= t′, there exists a vertex xd that has distinct parents in T and T ′, say
xp and xq, respectively. We have p < d and q < d, and, changing the roles of T and
T ′ if necessary, we may assume that p < q < d. By Definition 2.2, xq, xd ∈ V (Txp)
but xq /∈ V (Txd

). Let h := h(T ), s := dT (xd), r := dT (xq). Note that dT (xp) = s− 1
and r ≥ s.

For each statement, we are going to provide suitable walks W : v0 → v1 → · · · → vh
and W ′ : u0 → u1 → · · · in G, with vs−1 → u0 being an edge, and we consider the
collapsing map ϕ of (T, xd) on (W,W ′), which is a homomorphism of T into G. By
Proposition 2.1, ϕ is also a homomorphism of T ′ into G. Since (xq, xd) ∈ E(T ′), we
obtain the desired edge (ϕ(xq), ϕ(xd)) = (vr, u0) ∈ E(G).

(a) We obtain the edge v → u by letting W be the walk starting with r occurrences
of u, followed by a walk of length h − r starting at v, and letting W ′ be the cycle
u → u. We obtain the edge v → v by letting W be as above and letting W ′ be a
sufficiently long walk starting at v.

(b) We obtain the edge u → w by letting W : v → · · · → v → u → · · · → u with r
occurrences of v and h− r+ 1 occurrences of u and W ′ : w → w. By swapping u with
w in the above, we obtain also the edge w → u.

(c) We obtain the edge w → v by letting W : v0 → v1 → · · · → vh be the walk in
which v0, . . . , vr−1 alternate between vertices u and v such that vr−1 = v, followed by
the vertices of a walk of length h− r starting at w, and letting W ′ be the cycle v →
u→ v. Note that s− 1 = dT (xp) = dT (xd)− 1 ≡ dT ′(xd)− 1 = dT ′(xq) ≡ dT (xq) = r
(mod 2), so vs−1 = u and vs−1 → u0 is indeed an edge in G.

(d) We obtain the edge u′ → v′ by letting W : v0 → v1 → · · · → vh be the walk
with vi := u for i ≡ r (mod 2), i 6= r, vr := u′, and vi := v for i 6≡ r (mod 2), and
letting W ′ be the cycle v′ → u→ v′. Note that we have s− 1 ≡ r (mod 2) as above,
so vs−1 = u and vs−1 → u0 is indeed an edge in G. �

Remark 2.11. There exist arbitrarily long walks with initial vertex v if, for example,
v lies on a cycle, or there is a path from v to a vertex v′ that lies on a cycle.
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3. Associative spectra of graph algebras of undirected graphs

It is relatively easy to determine the associative spectra of graph algebras of undi-
rected graphs. It turns out that there are only three distinct possibilities: the se-
quences of all 1’s, powers of 2, and Catalan numbers. Undirected graphs are classified
into these three types in Theorem 3.3.

As we will see, a key criterion for the classification of pairs of distinct DFS trees of
size n is whether the depths of each vertex in the two trees are congruent modulo 2.

Lemma 3.1. Let ∼ be the equivalence relation on Bn that relates t and t′ if and only
if dG(t)(xi) ≡ dG(t′)(xi) (mod 2) for all xi ∈ Xn. Then |Bn/∼| = 2n−2 for n ≥ 2.

Proof. The depth sequence modulo 2 of a bracketing t ∈ Bn is the tuple dt,2 :=
(d1, d2, . . . , dn), where di := dG(t)(xi) mod 2. We clearly have dt,2 ∈ {0} × {1} ×
{0, 1}n−2, because x1 and x2 always have depths 0 and 1, respectively. On the other
hand, every tuple (d1, d2, . . . , dn) ∈ {0}×{1}×{0, 1}n−2 is the depth sequence modulo
2 of some bracketing t ∈ Bn, which we can build as follows. The vertices x1 and x2
must have depths 0 and 1, respectively. For j = 2, . . . , n, if dj 6= dj−1, then we add
xj as a child of xj−1; if dj = dj−1, then we add xj as a child of the unique parent of
xj−1. It is now obvious that |Bn/∼| = |{0} × {1} × {0, 1}n−2| = 2n−2. �

Lemma 3.2. Let K be an undirected connected graph with no loops. Assume that for
all vertices a, b, c, d of K it holds that if a→ b→ c→ d is a walk in K, then a→ d
is an edge. Then K is complete bipartite.

Proof. Suppose, to the contrary, that K is not bipartite. Then K has a cycle of odd
length m ≥ 3, say v1 → v2 → · · · → vm → v1. By applying our assumption to the
walk vm−2 → vm−1 → vm → v1, we get the edge vm−2 → v1; hence v1 → v2 → · · · →
vm−2 → v1 is a cycle of length m − 2 in K. Repeating this argument, we eventually
arrive at a cycle of length 1. This contradicts the fact that K has no loops.

We have established that K must be bipartite. It remains to show that K is
complete bipartite. Let B1, B2 be a bipartition of K, and let x ∈ B1, y ∈ B2. We
want to show that x → y is an edge in K. Since K is connected, there exists a path
x = v0 → v1 → · · · → vn = y in K, with n odd. If n ≥ 3, then our assumption implies
that v0 → v1 → · · · → vn−3 → vn is a path of length n−2 from x to y. Repeating this
argument, we eventually get a path of length 1 from x to y, i.e., an edge x→ y. �

Theorem 3.3. Let G be an undirected graph.

(i) If every connected component of G is either trivial or a complete graph (with
loops), then A(G) satisfies every bracketing identity. In this case, sn(A(G)) =
1 for all n ∈ N+.

(ii) If every connected component is either trivial, a complete graph (with loops),
or a complete bipartite graph, and the last case occurs at least once, then
A(G) satisfies a bracketing identity t ≈ t′ if and only if dG(t)(xi) ≡ dG(t′)(xi)

(mod 2) for all xi ∈ Xn. In this case, sn(A(G)) = 2n−2 for all n ≥ 2.
(iii) Otherwise A(G) satisfies no nontrivial bracketing identity. In this case,

sn(A(G)) = Cn−1 for all n ∈ N+.

Proof. Let t, t′ ∈ Bn, t 6= t′. Denote T := G(t), T ′ := G(t′). Assume that G = (V,E)
satisfies t ≈ t′.

Claim 3.3.1. Every connected component of G containing a loop is a complete graph
(with loops).

Proof. Let K be a connected component of G containing a loop. We will show that the
edge relation E(K) is reflexive, symmetric, and transitive. From this we can conclude
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that K is a complete graph with loops. The claim is obvious if K has only one vertex,
so we may assume that K has at least two vertices. The edge relation is symmetric
because G is undirected.

For reflexivity, let u be a vertex in K with a loop, and let v be a vertex adjacent
to u. It follows from Lemma 2.10(a) that (v, v) ∈ E(K) (note that v belongs to the
cycle v → u→ v). From this we can conclude that every vertex in K has a loop, that
is, the edge relation E(K) is reflexive.

For transitivity, assume that (u, v) and (v, w) are edges in K. By reflexivity we
have loops at vertices u, v and w, and by symmetry we have also the edges (v, u) and
(w, v). Now Lemma 2.10(b) implies that (u,w) ∈ E(K). �Claim 3.3.1

Claim 3.3.2. Every nontrivial connected component of G without loops is a complete
bipartite graph. Such a component exists only if dT (xi) ≡ dT ′(xi) (mod 2) for all
xi ∈ Xn.

Proof. Let K be a nontrivial connected component of G without loops. Then K
contains an edge (u, v). Then the map ϕ : Xn → V ,

ϕ(x) =

{
u, if dT (x) ≡ 0 (mod 2),

v, if dT (x) ≡ 1 (mod 2),

is clearly a homomorphism of T into G. By Proposition 2.1, ϕ is a homomorphism of
T ′ into G, so dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn.

In order to conclude that K is complete bipartite, it suffices, by Lemma 3.2, to
show that if a → b → c → d is a walk in K, then (a, d) is an edge. Since the edge
relation is symmetric, this holds by Lemma 2.10(d). �Claim 3.3.2

Proof of Theorem 3.3 continued. Claims 3.3.1 and 3.3.2 show that if G satisfies t ≈
t′, then the connected components of G are trivial, complete graphs (with loops), or
complete bipartite graphs, and if the last case occurs, then dT (xi) ≡ dT ′(xi) (mod 2)
for all xi ∈ Xn.

Assume now that the connected components of G are trivial, complete graphs
(with loops), or complete bipartite graphs, and if one of the components is a complete
bipartite graph, then dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn. In order to prove
that G satisfies t ≈ t′, we apply Proposition 2.1. Let ϕ : Xn → V be a homomorphism
of T into G. Since T is connected and contains an edge, the image of ϕ lies in a single
nontrivial connected component K of G. If K is a complete graph, then ϕ is obviously
a homomorphism of T ′ into G.

Consider then the case where K is a complete bipartite graph with bipartition
B1, B2. It is easy to see that for all xi, xj ∈ Xn, ϕ(xi) and ϕ(xj) lie in the same
part (B1 or B2) if and only if dT (xi) ≡ dT (xj) (mod 2). By our assumption, we have
dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn, which implies that ϕ is also a homomor-
phism of T ′ into G.

A similar argument shows that every homomorphism of T ′ into G is also a homo-
morphism of T into G. By Proposition 2.1, G satisfies t ≈ t′.

We have shown that G satisfies a nontrivial bracketing identity t ≈ t′ if and only if
the connected components of G are trivial, complete graphs (with loops), or complete
bipartite graphs, and if the last case occurs, then dT (xi) ≡ dT ′(xi) (mod 2) for all
xi ∈ Xn. This gives us the three possible associative spectra. If A(G) satisfies all
bracketing identities, then A(G) is associative and sn(A(G)) = 1 for all n ∈ N+. If
A(G) satisfies no nontrivial bracketing identity, then sn(A(G)) = Cn−1 for all n ∈ N+.
In the last possible case, σn(A(G)) relates t and t′ if and only if dT (xi) ≡ dT ′(xi)
(mod 2) for all xi ∈ Xn; by Lemma 3.1 we have sn(A(G)) = 2n−2. �
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Figure 3. Graphs associated with the terms of the associative iden-
tity t ≈ t′ with t := x1(x2x3), t′ := (x1x2)x3.

4. Associative and antiassociative digraphs

A digraph G is associative if A(G) satisfies the associative identity x1(x2x3) ≈
(x1x2)x3, i.e., if the associative spectrum of A(G) is constant 1. Associative digraphs
were characterized by T. Poomsa-ard [15]; the equivalence of conditions (i) and (ii) in
the following can be verified by applying Proposition 2.1 to the DFS trees associated
with the two bracketings appearing in the associative law (see Figure 3).

Proposition 4.1 (Poomsa-ard [15, Proposition 2.2]). For any digraph G = (V,E),
the following statements are equivalent.

(i) G is associative.
(ii) For any edge (u, v) ∈ E and and any vertex w ∈ V , (u,w) ∈ E if and only if

(v, w) ∈ E.
(iii) The edge relation E is transitive and for every v ∈ V , the subgraph induced

by NG
o (v) is a complete graph.

On the other extreme, we have the antiassociative digraphs whose graph algebras
satisfy no nontrivial bracketing identities, i.e., the associative spectrum of A(G) con-
sists of the Catalan numbers. The goal of this section is to characterize antiassociative
digraphs. To this end, we introduce some numerical parameters of bracketing identi-
ties in terms of the corresponding DFS trees, and we prove several necessary conditions
for a graph algebra to satisfy a given bracketing identity.

Definition 4.2. Let t, t′ ∈ Bn, t 6= t′, and let T := G(t), T ′ := G(t′).

(i) Let Ht,t′ := min{h(T ), h(T ′)}.
(ii) Let Mt,t′ be the largest integer m such that dT (xi) ≡ dT ′(xi) (mod m) for

all xi ∈ Xn. In other words, the depth sequences of T and T ′ are congruent
modulo Mt,t′ .

(iii) Let Lt,t′ be the largest integer m such that for all xi ∈ Xn,(
dT (xi) ≤ m ∨ dT ′(xi) ≤ m

)
=⇒ dT (xi) = dT ′(xi).

In other words, the DFS trees T and T ′ are identical up to level Lt,t′ .

Note that 0 ≤ Ht,t′ < n (with Ht,t′ = 0 if and only if n = 1), 0 ≤ Lt,t′ < Ht,t′ and
1 ≤Mt,t′ ≤ Ht,t′ .

Example 4.3. Figure 4 shows two DFS trees corresponding to certain terms t, t′ ∈
B20. It is straightforward to verify that Ht,t′ = 6, Mt,t′ = 3, and Lt,t′ = 2.

Lemma 4.4. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t′. Denote H := Ht,t′ , M := Mt,t′ , L := Lt,t′ . Then there exists an
integer r with L + 1 ≤ r ≤ H and r ≡ L (mod M) such that the following holds: if
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Figure 4. DFS trees with Ht,t′ = 6, Mt,t′ = 3, Lt,t′ = 2.

v0 → v1 → · · · → vH is a walk in G, then vr → vL+1 is an edge in G. In particular,
vL+1 belongs to a nontrivial strongly connected component.

Proof. By the definition of L, there exists a vertex xd ∈ Xn such that either dT (xd) =
L + 1 < dT ′(xd) or dT ′(xd) = L + 1 < dT (xd). By changing the roles of T and
T ′, if necessary, we may assume that dT (xd) = L + 1 < dT ′(xd). Let xp be the
parent of xd in T , and let xq be the parent of xd in T ′. Then dT (xp) = L, and it
follows from Definition 2.2 that V (Txp) = V (T ′xp

) because the trees T and T ′ are

identical up to level L. Since xd ∈ V (Txp
) = V (T ′xp

) and dT ′(xd) > L + 1, we

have xq ∈ V (T ′xp
) = V (Txp

) and dT ′(xq) = dT ′(xd) − 1 ≥ L + 1, so xq 6= xp; hence

dT (xq) ≥ L+1. Furthermore, by the definition of M , it holds that dT (xq) ≡ dT ′(xq) =
dT ′(xd)− 1 ≡ dT (xd)− 1 = L (mod M).

Write h := h(T ), h′ := h(T ′), and consider first the case that h ≤ h′, so h = H. In
this case, the statement holds with r := dT (xq), because L+ 1 ≤ r = dT (xq) ≤ h = H
and r = dT (xq) ≡ L (mod M), and by Lemma 2.9, it holds that if v0 → v1 → · · · →
vH is a walk in G, then (vdT (xq), vdT (xd)) = (vr, vL+1) ∈ E(G).

Consider now the case that h > h′, so h′ = H. Let u0 → u1 → · · · → uh be a
longest path in T , and write di := dT ′(ui) for i ∈ {0, . . . , h}. Now, since h > h′, the
sequence d0, d1, . . . , dh cannot be strictly increasing, so there exists an index j with
dj ≥ dj+1. Note that dj+1 ≥ L + 1, because the trees T and T ′ are identical up to
level L.

Assume that W : v0 → v1 → · · · → vH is a walk in G. By Lemma 2.9, (vdj , vdj+1) ∈
E(G); consequently C : vdj+1 → vdj+1+1 → · · · → vdj → vdj+1 is a closed walk in G.
Now, let W ′ be the walk in G that starts with v0 → v1 → · · · → vdj+1

, and then it
continues around the closed walk C until it reaches length h. More precisely, W ′ is
the walk v′0 → v′1 → · · · → v′h with v′i := vi∗ , where i∗ is the largest integer m such
that m ≤ min(i, dj) and m ≡ i (mod D), where D := dj − dj+1 + 1. By Lemma 2.9,
(v′dT (xq)

, v′dT (xd)
) = (vr, vL+1) ∈ E(G), where r := (dT (xq))∗. By definition, we have

L+ 1 ≤ r ≤ dj ≤ h′ = H and r ≡ dT (xq) (mod D). Furthermore,

D = dT ′(uj)− dT ′(uj+1) + 1 ≡ dT (uj)− dT (uj+1) + 1 = 0 (mod M),

so M | D, and it follows that r ≡ dT (xq) ≡ L (mod M).
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Now we have a closed walk vL+1 → · · · → vr → vL+1 in G. This means, in
particular, that vL+1 belongs to a nontrivial strongly connected component. �

The next lemma generalizes Lemma 2.10(a).

Lemma 4.5. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t′. Denote H := Ht,t′ , M := Mt,t′ , L := Lt,t′ . If m is a divisor of
M , U : u0 → u1 → · · · → um−1 → u0 is a closed walk in G, u0 → w is an edge, and
G contains arbitrarily long walks with initial vertex w, then w → u2 if m > 2 and
w → u0 if 1 ≤ m ≤ 2.

Proof. For m = 1 this is Lemma 2.10(a). Assume that m ≥ 2. Let r be the number
provided by Lemma 4.4, and let v0 → v1 → · · · → vH be a walk that starts by going
around the closed walk U so that vr−1 = u0 (i.e., vi := ui−r+1 mod m for 0 ≤ i ≤ r−1)
and continues with a walk of length H − r with initial vertex w. By Lemma 4.4,
vr → vL+1 is an edge. We have vr = w and vL+1 = uL+1−r+1 mod m. Since r ≡ L
(mod M) and m | M , we have r ≡ L (mod m); hence L + 1 − r + 1 ≡ 2 mod m.
Therefore w → u2 is an edge if m > 2 and w → u0 is an edge if m = 2. �

Lemma 4.6. Let t, t′ ∈ Bn, t 6= t′. Then for every m ∈ N+, the directed m-cycle Cm

satisfies t ≈ t′ if and only if m is a divisor of Mt,t′ .

Proof. Denote M := Mt,t′ . For notational simplicity, we suppose that V (Cm) = Zm

and for all i, j ∈ Zm, (i, j) ∈ E(Cm) if and only if j ≡ i+ 1 (mod m).
Assume first that m | M . By the definition of M , we have dT (xi) ≡ dT ′(xi)

(mod M) for all xi ∈ Xn. Since m | M , this implies dT (xi) ≡ dT ′(xi) (mod m) for
all xi ∈ Xn. Let ϕ : T → Cm be a homomorphism. Then ϕ is necessarily of the form
xi 7→ (dT (xi) + k) mod m for some fixed k ∈ Zm (that is, ϕ collapses T onto Cm).
Then for every edge (xi, xj) of T ′, we have

ϕ(xj) ≡ dT (xj) + k ≡ dT ′(xj) + k = dT ′(xi) + 1 + k

≡ dT (xi) + k + 1 ≡ ϕ(xi) + 1 (mod m),

so (ϕ(xi), ϕ(xj)) is an edge of Cm. Therefore ϕ is a homomorphism of T ′ into Cm. A
similar argument shows that every homomorphism ϕ : T ′ → Cm is a homomorphism
T → Cm. By Proposition 2.1, Cm satisfies t ≈ t′.

Assume now that Cm satisfies t ≈ t′. Let ϕ : T → Cm be the collapsing map of
T on Cm with ϕ(xi) = dT (xi) mod m. By Proposition 2.1, ϕ is a homomorphism
T ′ → Cm. Since the only homomorphisms of T ′ to Cm are collapsing maps xi 7→
(dT ′(xi) + k) mod m for some k ∈ Zm, and since ϕ(x1) = dT (x1) = 0 = dT ′(x1), it
follows that dT ′(xi) ≡ dT (xi) (mod m) for all xi ∈ Xn. From the definition of M it
follows that m |M . �

Definition 4.7. A digraph G = (V,E) is called an m-whirl (m ∈ N+), if there exists
a partition {B0, . . . , Bm−1} of V such that for all x, y ∈ V , (x, y) ∈ E if and only if
x ∈ Bi and y ∈ Bi+1 for some i ∈ {0, . . . ,m − 1} (addition modulo m). The sets
Bi are referred to as the blocks of G. We say that blocks Bi and Bj are consecutive
if j ≡ i + 1 (mod m); then Bi is called the predecessor of Bj and Bj is called the
successor of Bi. A digraph is called a whirl if it is an m-whirl for some m ∈ N+.

In other words, an m-whirl G is a strong homomorphic preimage of the directed
m-cycle Cm. By definition, 1-whirls are precisely the complete graphs with loops, and
2-whirls are precisely the complete bipartite graphs. (Note the role of 1- and 2-whirls
in Theorem 3.3.)

Lemma 4.8. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t′. Then every strongly connected component of G is either trivial or
an m-whirl for some divisor m of Mt,t′ .
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Proof. Let K be a nontrivial strongly connected component of G. Every vertex of K
lies on a cycle contained in K; let C be a shortest cycle in K, and assume that C has
length m. Lemma 4.6 implies that m is a divisor of Mt,t′ . We want to show that K
is an m-whirl.

Assume first that m = 1. Then K contains a vertex u with a loop. Let v be an
arbitrary vertex of K. By strong connectivity, there exists a path from u to v. Since
every vertex is contained in a cycle (again by strong connectivity), we can deduce
with the help of Lemma 2.10(a) that every vertex along the path from u to v has a
loop. We conclude that the edge relation of K is reflexive. The reflexivity of the edge
relation and Lemma 2.10(a) imply immediately that the edge relation is symmetric.
Now Lemma 2.10(b) implies in turn that the edge relation is transitive. We conclude
that K is a complete graph with loops, i.e., a 1-whirl.

Assume now that m = 2. Then Mt,t′ is even, K contains no loop, and there is a
cycle of length 2 in K, i.e., vertices u, v with (u, v), (v, u) ∈ E(G). With the help
of strong connectivity and Lemma 2.10(c), we can deduce that K is undirected. It
now follows from Lemmas 3.2 and 2.10(d) that K is a complete bipartite graph, i.e.,
a 2-whirl.

From now on, assume that m > 2. For notational simplicity, suppose that C = Zm

and for all i, j ∈ Zm, i → j is an edge if and only if j ≡ i + 1 (mod m). For each
i ∈ Zm, let

Bi := NK
o (i− 1) = NG

o (i− 1) ∩ V (K) = {v ∈ V (K) | (i− 1, v) ∈ E(K)},

i.e., Bi is the set of all outneighbours of i − 1 (addition modulo m) belonging to the
strongly connected component K. Note that i ∈ Bi by definition. We show that for
all i ∈ Zm and for all v ∈ Bi, we have NK

o (v) = Bi+1. Let i ∈ Zm and v ∈ Bi.
Considering the closed walk i − 1 → i → · · · → m − 1 → 0 → · · · → i − 1 of length
m and the edge i− 1→ v, Lemma 4.5 gives the edge v → i+ 1 (note that by strong
connectivity every vertex of K, in particular v, belongs to a cycle). Now let i ∈ Zm,
v ∈ Bi and w ∈ Bi+1. Considering the closed walk i − 1 → i → w → i + 2 → · · · →
m − 1 → 0 → · · · → i − 1 of length m and the edge i − 1 → v, Lemma 4.5 gives
the edge v → w. We have shown thus far that for all i ∈ Zm, Bi+1 ⊆ NK

o (v) for all
v ∈ Bi.

Now let i ∈ Zm, v ∈ Bi, and let w be a vertex of K with v → w. We have shown
above that v → i + 1 is an edge. Considering the closed walk v → i + 1 → · · · →
m− 1→ 0→ 1→ · · · → i− 1→ v of length m and the edge v → w, Lemma 4.5 gives
the edge w → i + 2. Considering the closed walk i − 1 → v → w → i + 2 → · · · →
m−1→ 0→ 1→ · · · → i−1 of length m and the edge i−1→ i, Lemma 4.5 gives the
edge i→ w. Thus w ∈ Bi+1. This shows that for each vertex v of Bi, N

K
o (v) ⊆ Bi+1.

It remains to show that the sets B0, B1, . . . , Bm−1 constitute a partition of V (K).
Let us show first that these sets are pairwise disjoint. Suppose, to the contrary, that
Bi ∩ Bj 6= ∅ for some i 6= j, and let v ∈ Bi ∩ Bj . Then we have i − 1 → v → i + 1
and j − 1 → v → j + 1. We will find a contradiction by showing that K contains a
cycle shorter than C. If j = i+ 1, then K contains the loop v → v, a cycle of length
1. Otherwise v → i+ 1→ · · · → j − 1→ v is a cycle shorter than C.

Suppose now, to the contrary, that
⋃m−1

i=0 Bi 6= V (K), and let v ∈ V (K)\
⋃m−1

i=0 Bi.
Since K is strongly connected, there exists a path 0 = v0 → v1 → · · · → vp = v in

K. Then there exists an index q ∈ {0, . . . , p − 1} such that vq ∈
⋃m−1

i=0 Bi and

vq+1 /∈
⋃m−1

i=0 Bi, say vq ∈ Bj . But we have shown above that NK
o (vq) = Bj+1. This

gives the desired contradiction, and we conclude that K is an m-whirl. �
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Lemma 4.9. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies the
identity t ≈ t′. Then there is no path from a nontrivial strongly connected component
of G to another.

Proof. Suppose, to the contrary, that there are distinct nontrivial strongly connected
components K and K ′ and a path P from a vertex v ∈ V (K) to a vertex v′ ∈ V (K ′).
Assume that P is the shortest possible among all such paths. Then v is the only
vertex of P lying in K. Let w be the successor of v along this path.

By Lemma 4.8, K and K ′ are m- and m′-whirls, respectively, for some divisors m
and m′ of Mt,t′ . Hence v belongs to an m-cycle C in K and v′ belongs to an m′-cycle
C ′ in K ′. Now Lemma 4.5 provides an edge from w to a vertex on C. This means
that w belongs to the strongly connected component K, a contradiction. �

Definition 4.10. Let G = (V,E) be a digraph. A walk in G is pleasant, if all its
vertices belong to trivial strongly connected components. Every pleasant walk is a
path.

Lemma 4.11. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t′. Then G has no pleasant path of length Ht,t′ .

Proof. Denote H := Ht,t′ , L := Lt,t′ . Suppose, to the contrary, that there exists a
pleasant path v0 → v1 → · · · → vH in G. By Lemma 4.4, there is an index r with
L+ 1 ≤ r ≤ H such that (vr, vL+1) is an edge of G. Consequently, vL+1 belongs to a
nontrivial strongly connected component, a contradiction. �

The necessary conditions established in the previous lemmas together are sufficient
for the satisfaction of some nontrivial bracketing identity. We prove this in the fol-
lowing theorem, which provides a complete characterization of (not) antiassociative
digraphs. Note that this does not constitute a necessary and sufficient condition for
the satisfaction of a given nontrivial bracketing identity. Finding such a condition will
be a topic of a forthcoming paper.

Theorem 4.12. Let G be a digraph. Then A(G) is not antiassociative if and only if
the following conditions hold.

(i) Every nontrivial strongly connected component of G is a whirl.
(ii) There is no path from a nontrivial strongly connected component of G to an-

other.
(iii) There is a finite upper bound on the length of the pleasant paths in G.
(iv) There is a finite upper bound on the numbers m such that G contains an

m-whirl.

Proof. Assume that A(G) satisfies a nontrivial bracketing identity t ≈ t′. By Lemma 4.4,
the pleasant paths in G have length less than Ht,t′ . By Lemma 4.8, every nontrivial
strongly connected component of G is an m-whirl for some divisor m of Mt,t′ ; such
numbers m are clearly bounded above by Mt,t′ . By Lemma 4.9, there is no path from
a nontrivial strongly connected component of G to another.

Assume now that conditions (i)–(iv) hold. We will construct a nontrivial bracketing
identity t ≈ t′ that is satisfied by A(G). We will define the terms t and t′ in terms of
the corresponding DFS trees T := G(t) and T ′ := G(t′). Let P be an upper bound
on the lengths of pleasant paths in G, as provided by condition (iii), and let

M := lcm{m ∈ N+ | G contains an m-whirl},
which is a finite natural number by condition (iv), with the convention that lcm ∅ =
1. Let n := 3P + M + 6, and let T consist of the paths x1 → · · · → x2P+M+4

and x2P+M+5 → · · · → x3P+M+6 and of the edge xP+2 → x2P+M+5. The tree
T ′ is constructed in a similar way, but we replace the edge xP+2 → x2P+M+5 by
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recurrence explicit formula OEIS entry

D2(n+ 1) = 2D2(n) D2(n) = 2n−2 A000079
D3(n+ 1) = 3D3(n)−D3(n− 1) D3(n) = F2n−3 A001519

D4(n+ 1) = 4D4(n)− 3D4(n− 1) D4(n) = 3n−2+1
2 A007051

D5(n+ 1) = 5D5(n)− 6D5(n− 1) +D5(n− 2) A080937

Table 1. Number of DFS trees with bounded height.

xP+M+2 → x2P+M+5. If ϕ : Xn → V (G) is a homomorphism of T into G, then
there is an i ∈ [1, P + 2] such that ϕ(xi) belongs to a nontrivial strongly connected
component, by the definition of P . Similarly, ϕ(xj) and ϕ(xk) belong to a nontrivial
strongly connected component for some j ∈ [P + M + 3, 2P + M + 4] and for some
k ∈ [2P +M + 5, 3P +M + 6]. Condition (ii) implies that ϕ(xi), ϕ(xi+1), . . . , ϕ(xj)
are in the same nontrivial strongly connected component K, and this includes the
vertices ϕ(xP+2), ϕ(xP+3), . . . , ϕ(xP+M+3). Similarly, also the vertices ϕ(x2P+M+5),
. . . , ϕ(xk) belong to K. By the definition of M , the component K is an m-whirl for
some divisor m of M . Therefore the vertices ϕ(xP+2) and ϕ(xP+M+2) belong to the
same block B of K, and the vertices ϕ(xP+3), ϕ(xP+M+3) and ϕ(x2P+M+5) belong to
the successor block B′ of B. This implies that ϕ(xP+M+2)→ ϕ(x2P+M+5) is an edge,
which proves that ϕ is also a homomorphism of T ′ into G. An analogous argument
shows that if ϕ is a homomorphism of T ′ into G, then ϕ is also a homomorphism
of T into G. Now if we let t and t′ be the bracketings corresponding to T and T ′,
respectively, then A(G) satisfies t ≈ t′ by Proposition 2.1. �

5. Some examples

In this section we determine the associative spectrum of a few special directed
graphs that are not covered by the results of the previous sections (i.e., they are
neither associative nor antiassociative), such as directed paths and cycles, all graphs
on two vertices, etc. For the spectra of directed paths, we shall need the number of
DFS trees of bounded height, so first we recall some known facts about these numbers.

Let us denote the number of DFS trees of size n of height at most h by Dh(n).
The generating function

∑∞
n=0Dh(n) · xn is a rational function (see [5]), hence the

sequence {Dh(n)}∞n=0 satisfies a linear recurrence relation:

Dh(n+ 1) =

(
h

1

)
Dh(n)−

(
h− 1

2

)
Dh(n− 1) +

(
h− 2

3

)
Dh(n− 2)− . . .

=

bh−1
2 c∑

k=0

(−1)k
(
h− k
k + 1

)
Dh(n− k).

We list these recurrence relations for h = 2, 3, 4, 5 in Table 1 together with explicit
formulas for Dh(n) and the corresponding OEIS entries (for h = 5 the characteristic
polynomial of the linear recurrence is x3 − 5x2 + 6x− 1, and its roots are not “nice”,
so we do not give an explicit formula for this case). Note that we have every second
Fibonacci number for h = 3 (we use the indexing F1 = F2 = 1). For more information
on the numbers Dh(n), see [5] (note that in [5] the height is defined as the number of
vertices of the longest path starting at the root, whereas in this paper the number of
edges is counted), and see also the OEIS entry A080934

https://oeis.org/A000079
https://oeis.org/A001519
https://oeis.org/A007051
https://oeis.org/A080937
https://oeis.org/A080934
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Proposition 5.1. Let G be a directed path of length `: v0 → v1 → · · · → v`. The
associative spectrum of the corresponding graph algebra is

sn(A(G)) =

{
D`(n), if n ≤ `+ 1,

D`(n) + 1, if n ≥ `+ 2.

Proof. If T is a DFS tree with h(T ) > `, then there is no homomorphism from T to
G, hence all bracketings corresponding to DFS trees of height at least ` + 1 belong
to the same equivalence class of σn(A(G)) by Proposition 2.1. (Note that such trees
exist only if n ≥ ` + 2.) If h(T ) ≤ `, then there exist homomorphisms from T to G,
for instance the collapsing map ϕ of T on G defined by ϕ(xi) = vdT (xi). Now if T ′

is another DFS tree of size n, then ϕ is a homomorphism of T ′ to G if and only if
dT ′(xi) = dT (xi) for all i ∈ [n], and this implies T ′ = T by Proposition 2.5. This
together with Proposition 2.1 shows that each bracketing whose DFS tree has height
at most ` forms a singleton class in σn(A(G)). There are D`(n) such classes, and if
n ≥ `+2, then we also have the class corresponding to trees of height at least `+1. �

Next we examine directed paths with some loops. By Theorem 4.12 (or just by
Lemma 4.9), if we have at least two loops on a path, then the graph is antiassociative,
so it suffices to consider the case of only one loop. We determine the spectrum of
directed paths with a loop on the last vertex; the other cases constitute topic for
further research. (However, see Proposition 5.7 for the path of length 1 with a loop
on the first vertex.)

Lemma 5.2. Let ∼ be the equivalence relation on Bn that relates t and t′ if and
only if T := G(t) and T ′ := G(t′) coincide up to level h, i.e., Lt,t′ ≥ h. Then
|Bn/∼| = Dh+1(n).

Proof. The equivalence relation ∼ on Bn induces naturally an equivalence relation
on the set of zag sequences of length n, and we will use the same symbol ∼ for
this relation. For any zag sequence d = (d1, . . . , dn), let β(d) = (d′1, . . . , d

′
n) be the

sequence obtained from d by replacing each element greater than h by h + 1, i.e.,
d′i = min(di, h + 1) for i = 1, . . . , n.2 It is straightforward to verify that β(d) is also
a zag sequence, and every zag sequence bounded above by h + 1 is in the image of
β (indeed, if d is bounded by h + 1, then β(d) = d). Morover, for all zag sequences
d1,d2 of size n, we have β(d1) = β(d2) if and only if d1 ∼ d2. Thus β is a surjection
from the set of all zag sequences of size n to the set of all zag sequences of size n
bounded by h+ 1, and the kernel of β is the equivalence relation ∼. This implies that
the number of equivalence classes of ∼ equals the cardinality of the image of β, which
is clearly Dh+1(n). �

Proposition 5.3. Let G be a directed path of length ` with a loop on the last vertex:
v0 → v1 → · · · → v` 	. The associative spectrum of the corresponding graph algebra
is sn(A(G)) = D`(n).

Proof. Homomorphisms of a DFS tree T into G are uniquely determined by the image
of x1: a map ϕ : Xn → V (G) with ϕ(x1) = vk is a homomorphism from T to G if
and only if ϕ(xi) = vdT (xi)+k whenever dT (xi) < ` − k and ϕ(xi) = v` whenever
dT (xi) ≥ ` − k. This implies, by Proposition 2.1, that A(G) satisfies a bracketing
identity t ≈ t′ if and only if Lt,t′ ≥ ` − 1. Therefore, Lemma 5.2 gives sn(A(G)) =
D`−1+1(n) = D`(n). �

2The map β can be explained in terms of DFS trees as follows: if T is the DFS tree corresponding

to the zag sequence d, then β(d) corresponds to the DFS tree obtained from T by turning, for each
vertex v at depth h, all descendants of v into children of v.
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For the spectrum of the directed cycle Cm, we need to count depth sequences
modulo m by Lemma 4.6 (or zag sequences modulo m, according to Proposition 2.6).
The resulting numbers are called modular Catalan numbers in [10], and they are
denoted by Cm,n. For us it will be most convenient to define these numbers simply
as Cm,n := sn+1(A(Cm)), and we refer the reader to [10] for plenty of information on
these numbers (tables of numerical values, references to OEIS entries, formulas and
various combinatorial interpretations). We give two combinatorial interpretations in
the next proposition. The second one is stated in [10], but the proof is left to the
reader there, so we include the proof here.

Proposition 5.4. The associative spectrum sn(A(Cm)) = Cm,n−1 counts the number
of zag sequences satisfying

(2) di+1 − di ∈ {2−m, 3−m, . . . , 0, 1} for all i ∈ {1, . . . , n− 1}.

Furthermore, sn(A(Cm)) = Cm,n−1 equals the number of Dyck paths of semilength
n− 1 that do not contain D · · ·DU = DmU .

Proof. According to Proposition 2.6 and Lemma 4.6, the associative spectrum of
A(Cm) counts the number of zag sequences modulo m. We claim that each zag
sequence of length n is congruent modulo m to exactly one zag sequence (d1, . . . , dn)
that satisfies (2).

Since {2−m, 3−m, . . . , 0, 1} is a complete system of residues modulo m, it is clear
that if two zag sequences satisfying (2) are congruent modulo m, then they are equal.
(Note that since all zag sequences start with 0, the differences di+1 − di uniquely
determine the zag sequence.) To prove that every zag sequence is congruent to a zag
sequence that satisfies (2), let (d1, . . . , dn) be an arbitrary zag sequence, and define the
numbers 0 = d′1, . . . , d

′
n recursively by d′i+1 = d′i+(di+1−di)∗, where (di+1−di)∗ is the

unique element of the set {2−m, 3−m, . . . , 0, 1} that is congruent to di+1−di modulo
m. Obviously, we have d′i ≡ di (mod m) and d′i+1 − d′i ≤ 1; we only need to prove
that d′i ≥ 1 for i = 1, . . . , n. Since di+1 − di ≤ 1 by the definition of a zag sequence,
we have (di+1 − di)∗ ≥ di+1 − di, and then an easy induction argument proves that
d′i ≥ di for i = 1, . . . , n. This shows that d′1, . . . , d

′
n is indeed a zag sequence, hence

our claim is proved.
We have proved so far that sn(A(Cm)) equals the number of zag sequences that

satisfy (2). Note the difference between (1) and (2): an arbitrary zag sequence can
have arbitrarily large decreases, while a sequence satisfying (2) can drop at most by
m− 2.3 To prove the statement about Dyck paths, let us rewrite (2) in terms of the
corresponding DFS tree T :

(3) dT (xi+1) ≥ dT (xi)− (m− 2) for all i ∈ {1, . . . , n− 1}.

If xi+1 is a child of xi, then this inequality holds trivially (in this case we have
dT (xi+1) = dT (xi) + 1). Otherwise, xi+1 is a child of one of the ancestors xp of xi,
thus the depth-first search goes down to xp (which has been visited before) after the
first visit of xi, and then from xp it takes one step up to reach xi+1 for the first
time. This can be seen in the Dyck path (see Remark 2.7) as a sequence of steps
D · · ·DU = DkU from the point labelled by xi to the point labelled by xi+1. (For
example, in Figure 2 we have the steps DDU from the label x4 to the label x5.) The
number of down-steps here is k = dT (xi)− dT (xp) = dT (xi)− dT (xi+1) + 1. Thus (3)
is equivalent to k ≤ m− 1, hence (2) means that any sequence of consecutive steps of
the form D · · ·DU in the Dyck path can have at most m− 1 down-steps. �

3Good news for Sisyphus!
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G sn(A(G)) result Siena Catalog

1 Thm. 3.3, Prop. 4.1 1

1 Thm. 3.3, Prop. 4.1 3

1 Thm. 3.3, Prop. 4.1 80

2 Prop. 5.1 7, 4

2n−2 Prop. 5.7 9, 55

1 Prop. 4.1 29, 6

Cn−1 Thm. 4.12 84, 82

2n−2 Thm. 3.3 33, 56

Cn−1 Thm. 3.3, Thm. 4.12 35, 58

1 Thm. 3.3, Prop. 4.1 107, 128

Table 2. Digraphs on two vertices and their associative spectra.

Remark 5.5. Proposition 5.4 implies that sn(A(Cm)) is nondecreasing in m, hence
sn(A(Cm)) ≥ sn(A(C2)) = 2n−2 for all m ≥ 2 (see Lemma 3.1). The results of [8] and
[10] imply that the associative spectrum of A(Cm) coincides with that of the operation
x+ εy on complex numbers, where ε is a primitive m-th root of unity. In particular,
for m = 2, we have that the spectrum of subtraction consists of powers of 2 (see 3.1
in [8]).

Now let us study digraphs on two vertices systematically. Up to isomorphism, there
are ten digraphs on two vertices; they are presented in Table 2. The corresponding
graph algebras are three-element groupoids, and the last column of the table indicates
the Siena Catalog numbers of their isomorphism class representatives as listed in [1],
as well as the ones of their opposite groupoids. Of these ten digraphs, only three are
not covered by Proposition 4.1 and Theorem 4.12 (i.e., that are neither associative nor
antiassociative): the undirected path of length one, the directed path of length one,
and the directed path of length one with a loop on the first vertex. The first two ones
are special cases of Theorem 3.3 and Proposition 5.1, respectively. We treat the third
one in Proposition 5.7, and for that we need to investigate an equivalence relation on
DFS trees determined by their leaves.

Let T and T ′ be DFS trees on n vertices. We say that T and T ′ are leaf-equivalent
if they have the same set of leaves.

Lemma 5.6. For n > 1, the number of leaf-equivalence classes of DFS trees on n
vertices is 2n−2.

Proof. The set of leaves of a DFS tree on n vertices is a subset of Xn that does not
contain the root x1, but it always contains xn. On the other hand, it is easy to see
that for every subset S = {xi1 , xi2 , . . . , xir} ⊆ Xn with 1 < i1 < i2 < · · · < ir = n,
there exists a DFS tree whose leaves are precisely the elements of S. For example, we
can take the tree comprising just the paths from x1 to each xij ∈ S that are disjoint
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except for the initial vertex: x1 → x2 → · · · → xi1 and x1 → xij−1+1 → · · · → xij
for 2 ≤ j ≤ r. The number of subsets of Xn containing xn but not containing x1 is
2n−2. �

Proposition 5.7. The associative spectrum sn of the graph algebra corresponding to
the graph G given by V (G) = {v, w}, E(G) = {(v, v), (v, w)} is sn = 2n−2.

Proof. For any DFS tree T of size n, a map ϕ : Xn → {v, w} is a homomorphism of T
into G if and only if all vertices that are mapped to w are leaves in T . Therefore, A(G)
satisfies a bracketing identity t ≈ t′ if and only if the corresponding trees T := G(t)
and T ′ := G(t′) are leaf-equivalent. Now Lemma 5.6 implies that sn = 2n−2. �

Finally, we consider some graphs on three vertices.

Proposition 5.8. The associative spectrum of the graph algebra corresponding to
the graph G given by V (G) = {u, v, w}, E(G) = {(u, v), (v, v), (u,w), (w,w)} is
sn(A(G)) = 2n−2.

Proof. For any DFS tree T of size n, a map ϕ : Xn → {u, v, w} is a homomorphism
of T into G if and only if either ϕ(Xn) = v or ϕ(Xn) = w, or ϕ(x1) = u and all other
vertices are mapped to {v, w} in such a way, that if a vertex of depth one is mapped
to v (to w), then all of its descendants are also mapped to v (to w):

∀p ∈ Xn : dT (p) = 1 =⇒ ϕ(V (Tp)) = {ϕ(p)} ∈ {{v}, {w}}.

Thus the set of all homomorphisms of T into G is determined by the partition {V (Tp) |
p ∈ Xn and dT (p) = 1} of the set {x2, . . . , xn}. This partition is in turn determined
uniquely by the set of depth-one vertices. Indeed, if the depth-one vertices of T are
xi1 , . . . , xis with 2 = i1 < · · · < is ≤ n, then V (Txik

) = X[ik,ik+1−1] for k = 1, . . . , s−1

and V (Txis
) = X[is,n]. By Proposition 2.1, this implies that A(G) satisfies a bracketing

identity t ≈ t′ if and only if Lt,t′ ≥ 1. Therefore, by Lemma 5.2 we have sn(A(G)) =
D2(n) = 2n−2. �

Proposition 5.9. The associative spectrum of the graph algebra corresponding to the
graph G given by V (G) = {u, v, w}, E(G) = {(u, v), (v, v), (v, w), (w, v), (w,w)} is
sn(A(G)) = 2n−2.

Proof. For any DFS tree T of size n, a map ϕ : Xn → {u, v, w} is a homomorphism
of T into G if and only if either ϕ(Xn) ⊆ {v, w}, or ϕ(x1) = u, all depth-one vertices
are mapped to v, and the other vertices are mapped to {v, w} in an arbitrary way.
Thus the set of all homomorphisms of T into G is determined uniquely by the set of
depth-one vertices. Therefore, just as in the previous proposition, we can conclude
sn(A(G)) = D2(n) = 2n−2 with the help of Lemma 5.2. �

Remark 5.10. The graph algebra of the directed path of length one with loops on
both vertices is isomorphic to the three-element groupoid with Siena Catalog num-
ber 84 and antiisomorphic to the one with number 82 (see [1]). These groupoids
were shown in [8, statements 2.4, 5.7] to be antiassociative; this result also follows
immediately from our Lemma 4.9.
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