
POLYMORPHISM-HOMOGENEITY AND

UNIVERSAL ALGEBRAIC GEOMETRY

ENDRE TÓTH AND TAMÁS WALDHAUSER

Dedicated to Maurice Pouzet on the occasion of his 75th birthday.

Abstract. We assign a relational structure to any �nite algebra in a canonical way, using solution
sets of equations, and we prove that this relational structure is polymorphism-homogeneous if and
only if the algebra itself is polymorphism-homogeneous. We show that polymorphism-homogeneity
is also equivalent to the property that algebraic sets (i.e., solution sets of systems of equations) are
exactly those sets of tuples that are closed under the centralizer clone of the algebra. Furthermore,
we prove that the aforementioned properties hold if and only if the algebra is injective in the
category of its �nite subpowers. We also consider two additional conditions: a stronger variant for
polymorphism-homogeneity and for injectivity, and we describe explicitly the �nite semilattices,
lattices, Abelian groups and monounary algebras satisfying any one of these three conditions.

1. Introduction

Various notions of homogeneity appear in several areas of mathematics, such as model theory,
group theory, combinatorics, etc. Roughly speaking, a structure A is said to be homogeneous if
certain kinds of local morphisms (i.e., morphisms de�ned on �small� substructures of A) extend
to endomorphisms of A. Specifying the kind of morphisms that are expected to be extendible,
one can de�ne many di�erent versions of homogeneity. We consider a variant called polymorphism-
homogeneity introduced by C. Pech and M. Pech [15] that involves �multivariable� homomorphisms:
we require extendibility of homomorphisms de�ned on �nitely generated substructures of direct
powers of A (see Section 2.4 for the precise de�nition).

We study polymorphism-homogeneity of �nite algebraic structures and of certain relational struc-
tures constructed from algebras. Since homomorphisms depend on the term operations, not on the
particular choice of basic operations, we work mainly with the clone C = Clo(A) of term operations
of the algebraic structure A = (A,F ) (i.e., C is the clone generated by F ; see Section 2.1). An n-ary
operation f : An → A can be regarded as an (n+ 1)-ary relation, called the graph of f , denoted by
f• (see Section 2.3). Probably the most natural way to convert A into a relational structure is to
consider the graphs of the operations of A, thus we de�ne C• = {f• : f ∈ C} to be the set of graphs
of term operations of A. We will prove that if the relational structure (A,C•) is polymorphism-ho-
mogeneous, then the algebra A is also polymorphism-homogeneous, but the converse is not true in
general.

To construct a relational structure that is equivalent to A in terms of polymorphism-homogeneity,
observe that the relation f• is nothing else than the solution set of the equation f(x1, . . . , xn) =
xn+1. We might consider more general equations where the right hand side is not necessarily a single
variable: let C◦ be the set of solution sets of equations of the form f(x1, . . . , xn) = g(x1, . . . , xn),
where f, g ∈ C. It turns out that (A,C◦) is the �right� choice for a relational counterpart of
A: the algebra A is polymorphism-homogeneous if and only if the relational structure (A,C◦) is
polymorphism-homogeneous.

The elements of C◦ are solution sets of single equations, hence intersections of such sets are
solution sets of systems of equations. The latter are also called algebraic sets, as they are analogues
of algebraic varieties1 investigated in algebraic geometry; the study of these sets can thus be regarded
as universal algebraic geometry [16]. Motivated by the fact that a set of vectors over a �eld is
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1Note that the word variety has a di�erent meaning in universal algebra: a variety is an equationally de�nable
class of algebras, or, equivalently, a class of algebras that is closed under homomorphic images, subalgebras and direct
products.

1



2 E. TÓTH AND T. WALDHAUSER

(A,C•) is polymorphism-
homogeneous

(A,C◦) is polymorphism-
homogeneous

A is polymorphism-
homogeneous

A is injective in HSP(A) A is injective in SPfin(A) A has property (SDC)

Figure 1. Relationships between property (SDC) and several variants of polymor-
phism-homogeneity and injectivity.

the solution set of a system of (homogeneous) linear equations if and only if it is closed under
a�ne linear combinations (all linear combinations), we investigated the possibility of characterizing
algebraic sets by means of closure conditions in [18, 19]. If algebraic sets over A are exactly those
sets of tuples that are closed under a suitably chosen set of operations, then we say that A has
property (SDC) (see Section 2.3 for an explanation). We will see that this property is equivalent to
polymorphism-homogeneity of (A,C◦) and of A.

The categorical notion of injectivity also asks for extensions of certain homomorphisms, so it is
not surprising that a �nite algebra A is polymorphism-homogeneous if and only if it is injective
in a certain class of algebras, namely in the class of �nite subpowers of A (see Section 2.5 for the
de�nitions). Perhaps it is more natural to consider injectivity in the variety HSPA generated by A,
hence we will also investigate the relationship between this notion and polymorphism-homogeneity.

Figure 1 shows the six properties that we are concerned with in this paper. In Section 3 we prove
all the implications and equivalences indicated in the �gure. It turns out that for �nite algebras
four of the six conditions are equivalent, thus we have actually three di�erent properties marked
by the three boxes. In Section 4 we determine �nite semilattices, lattices, Abelian groups and
monounary algebras possessing these three properties, and these examples will justify all of the
�non-implications� in Figure 1.

2. Preliminaries

2.1. Clones and relational clones. Let O(n)
A denote the set of all n-ary operations on a set A

(i.e., maps f : An → A), and let OA be the set of all operations of arbitrary �nite arities on A. In
this paper we will always assume that the set A on which we consider operations and relations is
�nite. A set C ⊆ OA of operations is a clone if C is closed under composition and contains the
projections (x1, . . . , xn) 7→ xi for 1 ≤ i ≤ n. We use the symbol C(n) for the n-ary part of C, i.e.,
C(n) = C ∩ O(n)

A . The clone generated by F ⊆ OA is the least clone Clo(F ) containing F . This is
nothing else but the clone of term operations of the algebra A = (A,F ), hence we will also use the
notation Clo(A) for this clone.

A k-ary partial operation on A is a map h : domh → A, where the domain of h can be any set
domh ⊆ Ak. The set of all partial operations on A is denoted by PA, and the set of all k-ary partial
operations on A is denoted by P(k)

A . A strong partial clone is a set of partial operations that is
closed under composition, contains the projections, and contains all restrictions of its members to
arbitrary subsets of their domains. Note that if C ⊆ OA is a clone, then the least strong partial
clone Str(C) containing C consists of all restrictions of elements of C, i.e., h ∈ PA belongs to Str(C)

if and only if h can be extended to a total operation ĥ ∈ C.
An n-ary relation on A is a subset of An; the set of all relations (of arbitrary arities) on A is

denoted by RA. Given a set of relations R ⊆ RA, a primitive positive formula Φ(x1, . . . , xn) over
R is an existentially quanti�ed conjunction:

(2.1) Φ(x1, . . . , xn) = ∃y1 · · · ∃ym
t̄

i=1

ρi
(
z

(i)
1 , . . . , z(i)

ri

)
,
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where ρi ∈ R is a relation of arity ri, and each z(i)
j is a variable from the set {x1, . . . , xn, y1, . . . , ym}

for i = 1, . . . , t, j = 1, . . . , ri. The relation ρ = {(a1, . . . , an) : Φ(a1, . . . , an) is true} ⊆ An is then
said to be de�ned by the primitive positive formula Φ. The set of all primitive positive de�nable
relations over R is denoted by 〈R〉∃, and such sets of relations are called relational clones. If we
allow only quanti�er-free primitive positive formulas, then we obtain the weak relational clone 〈R〉@.

2.2. Galois connections between operations and relations. IfM = (mij) ∈ An×k is an n×k
matrix over the set A, then we denote the i-th row and the j-th column of M by Mi∗ and M∗j ,
respectively:

Mi∗ = (mi1, . . . ,mik) (i = 1, . . . , n),

M∗j = (m1j , . . . ,mnj) (j = 1, . . . , k).

If h ∈ P(k)
A is a partial operation of arity k such that the rows of M are in the domain of h, then we

can apply h to each row of M . The resulting n-tuple is the same as the one obtained by applying
h to the k columns of M componentwise:(

h(M1∗), . . . , h(Mn∗)
)

= h(M∗1, . . . ,M∗k).

We will often use the above equality without further mention.
We say that a k-ary (partial) operation h preserves the relation ρ ⊆ An, denoted as h B ρ, if

for every matrix M ∈ An×k such that each column of M belongs to ρ (and each row of M is in
the domain of h), we have h(M∗1, . . . ,M∗k) ∈ ρ. If R is a set of relations, then we write h B R
to indicate that h preserves all elements of R. In other words, h B R holds if and only if h is a
(partial) polymorphism of the relational structure A = (A,R), i.e., h is a homomorphism from (the
substructure domh of) Ak to A. The set of all (partial) operations preserving each relation of R
is denoted by PolR (pPolR), and the set of all relations preserved by each member of a set F of
(partial) operations is denoted by InvF :

PolR =
{
h ∈ OA : h B ρ for every ρ ∈ R

}
;

pPolR =
{
h ∈ PA : h B ρ for every ρ ∈ R

}
;

InvF =
{
ρ ∈ RA : h B ρ for every h ∈ F

}
.

Note that PolR = pPolR ∩ OA.
The closed sets under the Galois connection Pol− Inv (pPol− Inv) between (partial) operations

and relations are exactly the (strong partial) clones and the (weak) relational clones; this makes
these Galois connections fundamental tools in clone theory.

Theorem 2.1 ([2, 9, 17]). For any set of operations F ⊆ OA and any set of relations R ⊆ RA, we
have Clo(F ) = Pol InvF and 〈R〉∃ = Inv PolR. For any set of partial operations F ⊆ PA and any
set of relations R ⊆ RA, we have Str(F ) = pPol InvF and 〈R〉@ = Inv pPolR.

2.3. Universal algebraic geometry and centralizers. Let A be a �nite algebra and let C =
Clo(A). If f and g are n-ary term operations of A, then f(x1, . . . , xn) = g(x1, . . . , xn) is an equation
in n variables over A, which we may simply write as a pair (f, g). The solution set of (f, g) is then
the set Sol(f, g) = {(a1, . . . , an) ∈ An : f(a1, . . . , an) = g(a1, . . . , an)}. Of special interest are the
equations of the form f(x1, . . . , xn) = xn+1; the solution set of this equation is the (n + 1)-ary
relation f• = {(a1, . . . , an, an+1) ∈ An+1 : f(a1, . . . , an) = an+1)}, which is called the graph of f .
We use the symbols C• and C◦ for the set of graphs and for the set of all solution sets of equations
over C:

C• =
{
f• : f ∈ C

}
;

C◦ =
{

Sol(f, g) : f, g ∈ C(n), n ∈ N
}
.

Note that C• ⊆ C◦, and it is easy to verify that 〈C•〉∃ = 〈C◦〉∃ (see Lemma 3.2 of [19]), but in
general 〈C•〉@ and 〈C◦〉@ may be di�erent weak relational clones.

The members of 〈C◦〉@ are intersections of solution sets of �nitely many equations, i.e., 〈C◦〉@
consists of solution sets of �nite systems of equations over A. Allowing in�nite systems of equations,
we obtain the so-called algebraic sets, which are the main objects of study in universal algebraic
geometry [16]. Since we deal only with �nite algebras, every system of equations is equivalent to a
�nite system of equations, thus the elements of 〈C◦〉@ are exactly the algebraic sets.
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As mentioned in Section 1, basic results of linear algebra hint at the possibility that algebraic sets
can sometimes be described by closure conditions. It turns out that if there is a clone D such that
algebraic sets are exactly those sets of tuples that are closed under D, then D must be the clone
C∗ = PolC• (see Corollary 3.7 in [19]). This clone is called the centralizer of C, since it consists
of those operations that commute with every member of C; in other words, a k-ary operation h
belongs to C∗ if and only if h is a homomorphism from Ak to A. (Observe that since 〈C•〉∃ = 〈C◦〉∃,
the centralizer can equivalently be de�ned as C∗ = PolC◦, by Theorem 2.1.)

If the algebraic sets (i.e., solution sets of systems of equations) of A coincide with the C∗-closed
sets of tuples, then we say that the algebra A has property (SDC); this abbreviation stands for
�Solution sets are De�nable by closure under the Centralizer�. We proved in [18] that every two-
element algebra has this property, and in [19] �nite semilattices and lattices with property (SDC)
were characterized (see Sections 4.1 and 4.2). In general, property (SDC) is easily seen to be
equivalent to the condition 〈C◦〉∃ = 〈C◦〉@, i.e., the algebra A has property (SDC) if and only if
quanti�ers can be eliminated from primitive positive formulas over C◦ (see Theorem 3.6 of [19]).

2.4. Polymorphism-homogeneity. A �rst-order structureA (i.e., a set A equipped with relations
and/or operations) is said to be k-polymorphism-homogeneous, if every homomorphism h : B → A
de�ned on a �nitely generated substructure B ≤ Ak extends to a homomorphism ĥ : Ak → A.
(Considering only �nite structures, the assumption that B is �nitely generated can be omitted from
the de�nition.) The case k = 1 gives the notion of homomorphism-homogeneity introduced by
P. J. Cameron and J. Ne²et°il [4]. If A is k-polymorphism-homogeneous for every natural number
k, then we say that A is polymorphism-homogeneous [15]. These two notions are linked by the
following result, which was proved for relational structures by C. Pech and M. Pech [15] and for
algebraic structures by Z. Farkasová and D. Jakubíková-Studenovská [6], but the same proof works
for arbitrary �rst-order structures.

Proposition 2.2 ([6, 15]). A �rst-order structure A is polymorphism-homogeneous if and only if
Ak is homomorphism-homogeneous for all natural numbers k.

In the next proposition we recall a useful result from [15] that relates polymorphism-homogeneity
and quanti�er elimination for �nite relational structures; we give a short proof utilizing the Galois
connections between (partial) operations and relations.

Proposition 2.3 ([15]). A �nite relational structure has quanti�er elimination for primitive positive
formulas if and only if it is polymorphism-homogeneous.

Proof. A �nite relational structure A = (A,R) has quanti�er elimination for primitive positive
formulas if and only if 〈R〉@ = 〈R〉∃. Using the Galois connections Pol− Inv (clones and relational
clones) and pPol− Inv (strong partial clones and weak relational clones), we can reformulate this
condition in several steps to reach polymorphism-homogeneity:

〈R〉@ = 〈R〉∃ ⇐⇒ Inv pPolR = Inv PolR

⇐⇒ pPol Inv pPolR = pPol Inv PolR

⇐⇒ pPolR = Str(PolR)

⇐⇒ {h ∈ PA : h B R} = {h ∈ PA : h extends to ĥ ∈ OA such that ĥ B R}
⇐⇒ A is polymorphism-homogeneous. �

2.5. Injectivity. Let K be a class of algebras and A ∈ K. We say that A is injective in K if
every homomorphism h : B → A extends to a homomorphism ĥ : C → A whenever B,C ∈ K and
B ≤ C. Clearly, if A is injective in K, then A is also injective in every subclass of K that contains
A. Injectivity is most often considered in the largest relevant class K; for example, if A is a group
or a lattice, then K is usually chosen to be the class of all groups or lattices. In this paper we shall
consider smaller classes, namely the variety HSPA generated by A and the set of �nite subpowers
SPfin A of A (the latter consists of all subalgebras of �nite direct powers of A). Let us mention that
in [14] a group A is called relatively injective if it is injective in the variety HSPA.
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3. Polymorphism-homogeneity, algebraic sets and injectivity

First let us prove the equivalences shown on the right hand side of Figure 1. The equivalence
of property (SDC) and polymorphism-homogeneity of (A,C◦) follows immediately from Proposi-
tion 2.3.

Proposition 3.1. If A is a �nite algebra and C = Clo(A), then A has property (SDC) if and only
if (A,C◦) is polymorphism-homogeneous.

Proof. By Theorem 3.6 of [19], property (SDC) of A is equivalent to quanti�er elimination for
primitive positive formulas for the relational structure (A,C◦), and the latter is equivalent to poly-
morphism-homogeneity of (A,C◦) by Proposition 2.3. �

In the next theorem we establish the connection between �algebraic� and �relational� polymor-
phism-homogeneity. We need two technical lemmas for the proof of this result.

Lemma 3.2. Suppose that A is a �nite algebra, C = Clo(A) and h ∈ P(k)
A is a k-ary partial

operation on A. If domh is a subalgebra of Ak, then the following three conditions are equivalent:

(a) h B C•;
(b) h B C◦;
(c) h is a homomorphism from domh to A.

Proof. To show that (a) implies (b), assume that h B C•, and let ρ = Sol(f, g), where f, g ∈ C(n);
we shall prove that h B ρ. Let M ∈ An×k be a matrix such that each row of M belongs to
domh and each column of M belongs to ρ. Then we have f(M1∗, . . . ,Mn∗) ∈ domh, as domh is
a subalgebra of Ak and f ∈ C. Now let M ′ ∈ A(n+1)×k be the matrix obtained by adding the
row f(M1∗, . . . ,Mn∗) to the bottom of M . Since f(M1∗, . . . ,Mn∗) = (f(M∗1), . . . , f(M∗k)), every
column of M ′ belongs to f•, hence applying h to each row of M ′, we obtain a tuple in f•, because
h preserves f• by our assumption. This means that

(3.1) h(f(M∗1), . . . , f(M∗k)) = f(h(M∗1, . . . ,M∗k)).

Using a similar argument, replacing f by g, we obtain

(3.2) h(g(M∗1), . . . , g(M∗k)) = g(h(M∗1, . . . ,M∗k)).

All columns of M were assumed to be in the relation ρ = Sol(f, g); therefore,

(3.3) f(M∗1) = g(M∗1), . . . , f(M∗k) = g(M∗k).

Combining (3.1), (3.2) and (3.3), we can conclude that f(h(M∗1, . . . ,M∗k)) = g(h(M∗1, . . . ,M∗k)),
hence h(M∗1, . . . ,M∗k) ∈ ρ, and this proves that h B ρ.

Next suppose that (b) holds; to prove that h is an algebra homomorphism, consider an operation
f ∈ C(n) and tuples d1, . . . ,dn ∈ domh. Since domh is a subalgebra, we have f(d1, . . . ,dn) ∈
domh. LetM ∈ A(n+1)×k be the matrix whose rows are d1, . . . ,dn, f(d1, . . . ,dn). Then all columns
ofM belong to f•, hence (h(d1), . . . , h(dn), h(f(d1, . . . ,dn))) ∈ f•, since h was assumed to preserve
C◦ (recall that C◦ ⊇ C•). Thus we have f(h(d1), . . . , h(dn)) = h(f(d1, . . . ,dn)), proving that h is
indeed a homomorphism.

Finally, assume (c) and let us verify (a). Let f ∈ C(n), and let M ∈ A(n+1)×k be an arbitrary
matrix whose rows and columns belong to domh and to f•, respectively; in particular, the last
row of M is f(M1∗, . . . ,Mn∗). We need to show that h(M∗1, . . . ,M∗k) ∈ f•, which is equivalent to
f(h(M1∗), . . . , h(Mn∗)) = h(f(M1∗, . . . ,Mn∗)). The latter equality is justi�ed by the fact that h is
a homomorphism. �

Lemma 3.3. Let C be a clone on a �nite set A, and let h ∈ P(k)
A be a k-ary partial operation on

A. If h preserves C◦, then h can be extended to a partial operation h̃ ∈ P(k)
A such that h̃ B C◦ and

dom h̃ = [domh] (the subalgebra of Ak generated by domh).

Proof. If a ∈ [domh], then a can be obtained from the elements of domh by an operation t ∈ C.
Adding inessential variables to t if necessary, we can assume that actually all elements of domh are
used, and thus the arity of t is m := |domh|. Therefore, we can write a = t(d1, . . . ,dm), where
domh = {d1, . . . ,dm} and t ∈ C(m). We then de�ne the desired extension of h at a by

(3.4) h̃(a) = t(h(d1), . . . , h(dm)).
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First we need to verify that h̃ is well de�ned. Suppose that an element a ∈ [domh] can be written
in more than one way in the above form: a = t1(d1, . . . ,dm) = t2(d1, . . . ,dm) with t1, t2 ∈ C(m).
Setting ρ = Sol(t1, t2) ∈ C◦, and letting D ∈ Am×k be the matrix with rows d1, . . . ,dm, every
column of D belongs to the relation ρ. Since h preserves ρ, we have h(D∗1, . . . , D∗k) ∈ ρ, and
therefore t1(h(D∗1, . . . , D∗k)) = t2(h(D∗1, . . . , D∗k)) holds. This implies that h̃ is well de�ned, as
the value of h̃(a) in (3.4) does not depend on the particular choice of the operation t:

t1(h(d1), . . . , h(dm)) = t1(h(D1∗), . . . , h(Dm∗))

= t1(h(D∗1, . . . , D∗k))

= t2(h(D∗1, . . . , D∗k))

= t2(h(D1∗), . . . , h(Dm∗))

= t2(h(d1), . . . , h(dm)).

Choosing the i-th projection t(x1, . . . , xm) = xi in (3.4), we see that h̃(di) = h(di) for all
i ∈ {1, . . . ,m}, thus h̃ is an extension of h. It remains to prove that h̃ preserves C◦.

Let f, g ∈ C(n), let ρ = Sol(f, g) ∈ C◦, and let M ∈ An×k be a matrix such that all rows of M
are in dom h̃ and each column of M belongs to the relation ρ. Since Mi∗ ∈ dom h̃ = [domh], we
can write Mi∗ = ti(d1, . . . ,dm) for suitable operations ti ∈ C(m) for i = 1, . . . , n. Since M∗j ∈ ρ,
we have f(M∗j) = g(M∗j) for j = 1, . . . , k, or, equivalently, f(M1∗, . . . ,Mn∗) = g(M1∗, . . . ,Mn∗).
Combining the latter two observations, we get that

f(t1, . . . , tn)(d1, . . . ,dm) = f(t1(d1, . . . ,dm), . . . , tn(d1, . . . ,dm))

= f(M1∗, . . . ,Mn∗)

= g(M1∗, . . . ,Mn∗)

= g(t1(d1, . . . ,dm), . . . , tn(d1, . . . ,dm))

= g(t1, . . . , tn)(d1, . . . ,dm).

Setting f ′ = f(t1, . . . , tn) and g′ = g(t1, . . . , tn), we can summarize the above calculation as
f ′(d1, . . . ,dm) = g′(d1, . . . ,dm), which means that the columns of the matrix D belong to the
relation ρ′ := Sol(f ′, g′). The clone C is closed under composition, thus f ′, g′ ∈ C, hence ρ′ ∈ C◦.
We assumed that h B C◦; therefore, we have (h(d1), . . . , h(dm)) ∈ ρ′, and this is equivalent to
f ′(h(d1), . . . , h(dm)) = g′(h(d1), . . . , h(dm)). Expanding this last equality using the de�nition of
f ′ and g′ together with (3.4), we obtain h̃(M∗1, . . . ,M∗k)) ∈ ρ, which completes the proof of h̃ B C◦:

f(h̃(M∗1, . . . ,M∗k)) = f(h̃(M1∗), . . . , h̃(Mn∗))

= f
(
h̃(t1(d1, . . . ,dm)), . . . , h̃(tn(d1, . . . ,dm))

)
= f

(
t1(h(d1), . . . , h(dm)), . . . , tn(h(d1), . . . , h(dm))

)
= f(t1, . . . , tn)(h(d1), . . . , h(dm))

= f ′(h(d1), . . . , h(dm))

= g′(h(d1), . . . , h(dm))

= g(t1, . . . , tn)(h(d1), . . . , h(dm))

= g
(
t1(h(d1), . . . , h(dm)), . . . , tn(h(d1), . . . , h(dm))

)
= g
(
h̃(t1(d1, . . . ,dm)), . . . , h̃(tn(d1, . . . ,dm))

)
= g(h̃(M1∗), . . . , h̃(Mn∗))

= g(h̃(M∗1, . . . ,M∗k)). �

Theorem 3.4. If A is a �nite algebra and C = Clo(A), then A is polymorphism-homogeneous if
and only if (A,C◦) is polymorphism-homogeneous.

Proof. Assume �rst that A is polymorphism-homogeneous, and consider an arbitrary partial poly-
morphism h of (A,C◦), i.e., h ∈ P(k)

A preserves C◦. By Lemma 3.3, h can be extended to a
C◦-preserving partial operation h̃ de�ned on the subalgebra [domh] ≤ Ak. Applying Lemma 3.2 to
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h̃, we see that h̃ is an algebra homomorphism from [domh] to A. Since A is polymorphism-homoge-

neous, h̃ extends to a homomorphism ̂̃
h : Ak → A. Using Lemma 3.2 again, we see that ̂̃h preserves

C◦, hence it is a polymorphism of the relational structure (A,C◦), and this proves that the latter
is polymorphism-homogeneous.

Now suppose that (A,C◦) is polymorphism-homogeneous, and let h ∈ P(k)
A be a homomorphism

from a subalgebra domh ≤ Ak to A. Lemma 3.2 shows that h B C◦, i.e., h is a partial polymorphism
of (A,C◦). Since (A,C◦) is polymorphism-homogeneous, h can be extended to a polymorphism ĥ of
(A,C◦). By Lemma 3.2, ĥ : Ak → A is a homomorphism, and this proves that A is polymorphism-
homogeneous. �

To complete the proof of the equivalences in the box on the right hand side of Figure 1, we relate
injectivity and polymorphism-homogeneity.

Proposition 3.5. If A is a �nite algebra, then A is polymorphism-homogeneous if and only if A is
injective in SPfin(A).

Proof. Assume that A is polymorphism-homogeneous, and let B,C ∈ SPfin(A) such that B ≤ C.
Then we have B ≤ C ≤ Ak for some k ∈ N; in particular, B is a subalgebra of Ak. Therefore, if
h : B→ A is a homomorphism, then h extends to a homomorphism ĥ : Ak → A by the polymorphism-
homogeneity of A. A restriction of ĥ then gives a homomorphism form C to A that extends h, thereby
proving the injectivity of A.

Conversely, if A is injective in SPfin(A) and h ∈ P(k)
A is a homomorphism from a subalgebra

domh ≤ Ak to A, then the injectivity of A immediately yields an extension ĥ : Ak → A of h, thus
A is indeed polymorphism-homogeneous. �

Corollary 3.6. If A is a �nite algebra and C = Clo(A), then the following conditions are equivalent:

(i) A has property (SDC);
(ii) A is polymorphism-homogeneous;
(iii) (A,C◦) is polymorphism-homogeneous;
(iv) A is injective in SPfin(A).

Proof. Combine propositions 3.1 and 3.5 and Theorem 3.4. �

It remains to verify the �one-way� implications in Figure 1. Since HSP(A) ⊇ SPfin(A), it is trivial
that if A is injective in HSP(A), then it is also injective in SPfin(A). We end this section by proving
the remaining implication; in fact, we formulate it in a bit more explicit form, which will be useful
in the next section.

Proposition 3.7. If A is a �nite algebra and C = Clo(A), then (A,C•) is polymorphism-homoge-
neous if and only if (A,C◦) is polymorphism-homogeneous and 〈C•〉@ = 〈C◦〉@.

Proof. According to Proposition 2.3, we need to prove the following equivalence:

〈C•〉@ = 〈C•〉∃ ⇐⇒ 〈C◦〉@ = 〈C◦〉∃ and 〈C•〉@ = 〈C◦〉@.

This follows immediately from the following chain of containments (the last containment is Lemma 3.2
of [19], the others are trivial):

〈C•〉@ ⊆ 〈C◦〉@ ⊆ 〈C◦〉∃ = 〈C•〉∃. �

4. Examples

We describe explicitly the �nite algebras satisfying the properties considered in the previous
section in certain well known varieties: semilattices, lattices, Abelian groups and monounary alge-
bras. These characterizations will provide counterexamples showing that the only valid implications
among these properties are the ones shown in Figure 1.
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4.1. Semilattices. If we consider �nite semilattices, then it turns out that �ve of the six conditions
of Figure 1 are equivalent, and these semilattices have already been determined in the literature.

Theorem 4.1. If A is a �nite semilattice and C = Clo(A), then the following conditions are
equivalent:

(i) A has property (SDC);
(ii) A is polymorphism-homogeneous;
(iii) (A,C◦) is polymorphism-homogeneous;
(iv) A is injective in SPfin(A);
(v) A is injective in HSP(A);
(vi) A is the semilattice reduct of a �nite distributive lattice.

Proof. We know that conditions (i)�(iv) are equivalent (see Corollary 3.6), and it was proved in
Theorem 5.5 of [19] that (i) is equivalent to (vi). G. Bruns and H. Lakser [3] and, independently,
A. Horn and N. Kimura [10] showed that the injective objects in the category of semilattices are
the semilattice reducts of completely distributive lattices. Therefore, if A is the semilattice reduct
of a �nite distributive lattice, then A is injective in the variety of all semilattices, thus A is also
injective in HSP(A). This proves that (vi) implies (v), and taking into account that (v) obviously
implies (iv), the proof is complete. �

The top left condition of Figure 1 is not equivalent to the others; in fact, there is no nontrivial
�nite semilattice for which (A,C•) is polymorphism-homogeneous.

Lemma 4.2. Let A be a two-element semilattice and let C = Clo(A). Then the relational structure
(A,C•) is not polymorphism-homogeneous.

Proof. We can assume without loss of generality that A = ({0, 1},∧) with the usual ordering 0 < 1.
Let us consider the equation x ∧ y ∧ z = x ∧ y. Obviously, the solution set S = {0, 1}3 \ {(1, 1, 0)}
of this equation is de�ned by a quanti�er-free primitive positive formula over C◦. The nontrivial
3-variable equalities that can appear in a quanti�er-free primitive positive formula over C• are the
following:

x = y, x = x ∧ y, x = x ∧ z, x = y ∧ z, x = x ∧ y ∧ z,

y = z, y = x ∧ y, y = x ∧ z, y = y ∧ z, y = x ∧ y ∧ z,

z = x, z = x ∧ y, z = x ∧ z, z = y ∧ z, z = x ∧ y ∧ z.

It is easy to check that S does not satisfy any of the equalities above; therefore, S cannot be de�ned
by a quanti�er-free primitive positive formula over C•. Thus S belongs to 〈C◦〉@ but not to 〈C•〉@,
hence (A,C•) is not polymorphism-homogeneous by Proposition 3.7. �

Theorem 4.3. If A is a nontrivial �nite semilattice and C = Clo(A), then the relational structure
(A,C•) is not polymorphism-homogeneous.

Proof. Let a, b ∈ A such that a < b, and let us consider the same equation as in the proof of
Lemma 4.2. Now for the solution set S of this equation we have that S∩{a, b}3 = {a, b}3\{(b, b, a)}.
The same argument as in the proof of Lemma 4.2 shows that S cannot be de�ned by a quanti�er-free
primitive positive formula over C•. �

4.2. Lattices. For �nite lattices the situation is very similar to the case of semilattices: �ve of the
six conditions of Figure 1 are equivalent, and the sixth one is satis�ed only by trivial lattices.

Theorem 4.4. If A is a �nite lattice and C = Clo(A), then the following conditions are equivalent:

(i) A has property (SDC);
(ii) A is polymorphism-homogeneous;
(iii) (A,C◦) is polymorphism-homogeneous;
(iv) A is injective in SPfin(A);
(v) A is injective in HSP(A);
(vi) A is a �nite Boolean lattice (i.e., a direct power of the two-element chain).
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Proof. Just as in the proof of Theorem 4.1, the equivalence of (i)�(iv) follows from Corollary 3.6,
and the equivalence of (i) and (vi) is Theorem 4.8 of [19]. (Let us mention that I. Dolinka and
D. Ma²ulovi¢ [5] proved that a �nite lattice is homomorphism-homogeneous if and only if it is a
chain or a Boolean lattice. This together with Proposition 2.2 can also be used to prove that (ii) and
(vi) are equivalent.) To complete the proof, it su�ces to prove that (vi) implies (v). This follows
immediately from a result of R. Balbes [1]: the injective objects in the category of distributive
lattices are the complete Boolean lattices (observe that if A is a nontrivial Boolean lattice, then
HSP(A) is the variety of distributive lattices). �

Lemma 4.5. Let A be a two-element lattice and let C = Clo(A). Then the relational structure
(A,C•) is not polymorphism-homogeneous.

Proof. We can assume without loss of generality that A = ({0, 1},∨,∧) with the usual ordering 0 <
1. Let us consider the equation (x1∨x2)∧(x3∧x4) = x3∧x4; the solution set S = {0, 1}4\{(0, 0, 1, 1)}
of this equation is de�ned by a quanti�er-free primitive positive formula over C◦. If S can be
de�ned by a quanti�er-free primitive positive formula Φ over C•, then we can assume without loss
of generality that Φ consists of a single equality, as S misses only one element of {0, 1}4 (in other
words, S is meet-irreducible in the lattice of subsets of {0, 1}4). Thus S is the solution set of an
equation of the form f(x1, x2, x3, x4) = u, where u ∈ {x1, x2, x3, x4}. Note that since f is generated
by the lattice operations ∨ and ∧, it is a monotone function. We consider four cases corresponding
to the variable u.

(1) If u = x1, then f(x1, x2, x3, x4) = x1 holds for all (x1, x2, x3, x4) ∈ S and f(0, 0, 1, 1) = 1.
In particular, we have f(0, 1, 1, 1) = 0 < 1 = f(0, 0, 1, 1), contradicting the monotonicity of
f .

(2) If u = x2, then f(x1, x2, x3, x4) = x2 holds for all (x1, x2, x3, x4) ∈ S and f(0, 0, 1, 1) = 1.
In particular, we have f(1, 0, 1, 1) = 0 < 1 = f(0, 0, 1, 1), contradicting the monotonicity of
f .

(3) If u = x3, then f(x1, x2, x3, x4) = x3 holds for all (x1, x2, x3, x4) ∈ S and f(0, 0, 1, 1) = 0.
In particular, we have f(0, 0, 1, 0) = 1 > 0 = f(0, 0, 1, 1), contradicting the monotonicity of
f .

(4) If u = x4, then f(x1, x2, x3, x4) = x4 holds for all (x1, x2, x3, x4) ∈ S and f(0, 0, 1, 1) = 0.
In particular, we have f(0, 0, 0, 1) = 1 < 0 = f(0, 0, 1, 1), contradicting the monotonicity of
f .

We see that S cannot be de�ned by a quanti�er-free primitive positive formula Φ over C•, hence
〈C◦〉@ 6= 〈C•〉@, and thus (A,C•) is not polymorphism-homogeneous by Proposition 3.7. �

Theorem 4.6. If A is a nontrivial �nite lattice and C = Clo(A), then the relational structure
(A,C•) is not polymorphism-homogeneous.

Proof. Let a, b ∈ A such that a < b, and let us consider the same equation as in the proof of
Lemma 4.5. Now for the solution set S of this equation we have that S ∩ {a, b}4 = {a, b}4 \
{(a, a, b, b)}. If S can be de�ned by a quanti�er-free primitive positive formula Φ over C•, then at
least one of the equalities in Φ de�nes the set {a, b}4 \ {(a, a, b, b)} when restricted to the sublattice
{a, b}, and this leads to a contradiction using the same argument as in the proof of Lemma 4.5. �

4.3. Abelian groups. For Abelian groups all six conditions of Figure 1 are equivalent, and these
groups have already been determined, so we only need to combine some results from the literature
to prove the following theorem.

Theorem 4.7. If A is a �nite Abelian group and C = Clo(A), then the following conditions are
equivalent:

(i) A has property (SDC);
(ii) A is homomorphism-homogeneous;
(iii) A is polymorphism-homogeneous;
(iv) (A,C◦) is polymorphism-homogeneous;
(v) (A,C•) is polymorphism-homogeneous;
(vi) A is injective in SPfin(A);
(vii) A is injective in HSP(A);
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(viii) each Sylow-subgroup of A is homocyclic, i.e., A ∼= Zm1
q1 × · · · × Zmk

qk
, where q1, . . . , qk are

powers of di�erent primes and m1, . . . ,mk ∈ N.

Proof. Conditions (i), (iii), (iv) and (vi) are equivalent by Corollary 3.6. It is clear that (iv) is
equivalent to (v), since we have C• = C◦ for groups: every equality can be written in an equivalent
form where there is only a single variable on the right hand side. The equivalence of (ii) and (viii)
follows from the description of quasi-injective Abelian groups presented as an exercise in [7] (for
�nite groups quasi-injectivity is equivalent to homomorphism-homogeneity). The class of groups
given in (viii) is closed under taking �nite direct powers, so we can conclude with the help of
Proposition 2.2 that (iii) and (viii) are equivalent. It seems to be a folklore fact that the injective
members of the variety of Abelian groups de�ned by the identity nx = 0 with n = q1 · . . . · qk are
exactly the groups given by (viii) (see, e.g., [8]). Therefore, (viii) implies (vii), and this completes
the proof, as (vii) trivially implies (vi). �

4.4. Monounary algebras. A monounary algebra is an algebra A = (A, f) with a single unary
operation f ∈ O(1)

A . An element a ∈ A is cyclic if there is a natural number k such that fk(a) = a.
(Here fk(a) stands for f(· · · f(a) · · · ) with a k-fold repetition of f , and we also use the convention
f0(a) = a.) If A is �nite, then for every element a ∈ A there is a least nonnegative integer ht(a),
called the height of a, such that fht(a)(a) is cyclic. If a ∈ A \ f(A), i.e., a has no preimage, then
we say that a is a source. (Note that ht(a) = 0 if and only if a is cyclic; in particular, ht(a) ≥ 1 for
any source a.)

Polymorphism-homogeneous monounary algebras were characterized by Z. Farkasová and D. Ja-
kubíková-Studenovská in [6] using Proposition 2.2 and the description of homomorphism-homoge-
neous monounary algebras obtained by É. Jungábel and D. Ma²ulovi¢ [13]. As an illustration of the
results of Section 3, we present a simple self-contained proof, which relies on the following technical
lemma about quanti�er elimination in monounary algebras.

Lemma 4.8. Let A = (A, f) be a �nite monounary algebra, and let C = Clo(A). The algebra A is
polymorphism-homogeneous if and only if there is a quanti�er-free primitive positive formula Ψ(x)
over C◦ such that

(4.1) ∀a ∈ A : Ψ(a) ⇐⇒ ∃a0 ∈ A : a = f(a0).

Proof. We use Theorem 3.4: we prove that the existence of Ψ is necessary and su�cient for poly-
morphism-homogeneity of (A,C◦). By Proposition 2.3, the necessity is obvious; to prove su�ciency,
let us consider an arbitrary primitive positive formula Φ(x1, . . . , xn) over C◦. We show how to elim-
inate one quanti�er; repeatedly applying this procedure we can eliminate all quanti�ers from Φ.
So we may assume without loss of generality that Φ involves only one quanti�er, hence it has the
following form:

Φ(x1, . . . , xn) = ∃y
t̄

i=1

(
fri(ui) = fsi(vi)

)
,

where t, ri, si are nonnegative integers, and the variables ui, vi belong to the set {x1, . . . , xn, y} for
i = 1, . . . , t. We de�ne the weight of Φ as w(Φ) =

∑
ui=y(ri + 1) +

∑
vi=y(si + 1). Informally

speaking, w(Φ) shows how �deeply� y is involved in Φ.
If y occurs in at least two equalities in Φ, then we can use (at least) one of the following four

types of substitutions to decrease the weight of the formula (we omit trivial equalities):

fk(y)=f `(xi) & fm(y)=fn(xj) fk−m+n(xj)=f
`(xi) & fm(y)=fn(xj), if k ≥ m;

fk(y)=f `(xi) & fm(y)=fn(y)  fk−m+n(y)=f `(xi) & fm(y)=fn(y), if k ≥ m, m > n;

fk(y)=f `(xi) & fm(y)=fn(y)  fm−k+`(xi)=f
n(y) & fk(y)=f `(xi), if k < m, m > n;

fk(y)=f `(y) & fm(y)=fn(y)  fk−m+n(y)=f `(y) & fm(y)=fn(y), if k ≥ m, k > `, m > n.

After �nitely many steps we arrive at a formula Φ′ such that Φ′ is equivalent to Φ, and it is not
possible to decrease the weight of Φ′ any more using the substitutions above. This implies that the
variable y appears in at most one equality in Φ′. We have one of the following three cases for Φ′.

(1) If y does not appear at all, then we can simply drop the quanti�er ∃y from Φ′.



POLYMORPHISM-HOMOGENEITY AND UNIVERSAL ALGEBRAIC GEOMETRY 11

(2) If y appears in an equality of the form fk(y) = f `(y), then there is no �interaction� between
y and the other variables. If there is an element a ∈ A such that fk(a) = f `(a), then we
can again omit the quanti�er ∃y and the equality fk(y) = f `(y) from Φ′, and the resulting
quanti�er-free formula is equivalent to Φ′ (hence also equivalent to Φ). If there is no element
a ∈ A such that fk(a) = f `(a), then Φ′(x1, . . . , xn) is never satis�ed: it de�nes the empty
n-ary relation. In this case the empty relation can be de�ned by the quanti�er-free formula
fk(x1) = f `(x1), thus this formula is equivalent to Φ.

(3) If y appears in an equality of the form fk(y) = f `(xi), then let Φ′′(x1, . . . , xn) be the formula
that is obtained from Φ′ by deleting the quanti�er ∃y and the equality fk(y) = f `(xi). Then
the quanti�er-free formula Φ′′(x1, . . . , xn)&Ψ(· · · (Ψ(f `(xi))) · · · ) is equivalent to Φ (with a
k-fold iteration of Ψ), since Ψ(· · · (Ψ(f `(xi))) · · · ) expresses the fact that ∃y(fk(y) = f `(xi)),
according to (4.1). �

Theorem 4.9 ([6]). If A = (A, f) is a �nite monounary algebra and C = Clo(A), then the following
conditions are equivalent:

(i) A has property (SDC);
(ii) A is polymorphism-homogeneous;
(iii) (A,C◦) is polymorphism-homogeneous;
(iv) A is injective in SPfin(A);
(v) Either A has no sources, or all sources of A have the same height: ∀a, b ∈ A\f(A) : ht(a) =

ht(b).

Proof. Conditions (i)�(iv) are equivalent by Corollary 3.6, so it su�ces to prove the equivalence of
(ii) and (v). As a preliminary observation, let us note that an element a ∈ A is cyclic if and only if
a = f `(a), where ` is the least common multiple of the lengths of the cycles of A.

Suppose that (v) holds, and assume �rst that there are no sources in A. Then every element
is cyclic, thus the formula x = x can be chosen for Ψ(x) in (4.1). Suppose now that all sources
in A have the same height n ≥ 1. Then an arbitrary element a ∈ A is not a source if and only if
ht(a) ≤ n − 1, i.e., if fn−1(a) is cyclic. Thus, the formula fn−1(x) = fn−1+`(x) can be chosen for
Ψ(x) in (4.1), hence (ii) follows by Lemma 4.8.

Conversely, assume that there exists a formula Ψ(x) satisfying (4.1). We can write Ψ(x) in the
following form, and we can assume without loss of generality that ri < si for i = 1, . . . , t:

Ψ(x) =
t̄

i=1

(
fri(x) = fsi(x)

)
.

If a is a cyclic element, then Ψ(a) must hold according to (4.1). This implies that ri ≡ si (mod `)
for all i ∈ {1. . . . , t}.

Now suppose for contradiction that there exist sources a, b ∈ A\f(A) with ht(a) < ht(b). Clearly,
Ψ(f(b)) must be true by (4.1), thus we have fri(f(b)) = fsi(f(b)) for each i. This is equivalent
to fri+1(b) = fsi+1(b), which implies that fri+1(b) is a cyclic element (recall that ri < si), hence
we have ht(b) ≤ ri + 1. Since ht(a) ≤ ht(b) − 1, we can conclude that ht(a) ≤ ri, i.e., fri(a) is a
cyclic element. The length of every cycle is a divisor of `, and we know that ri ≡ si (mod `), thus
fri(a) = fsi(a). This means that Ψ(a) is true, contradicting the fact that a is a source. �

Next we determine �nite monounary algebras corresponding to the top left box of Figure 1.

Theorem 4.10. Let A = (A, f) be a �nite monounary algebra, and let C = Clo(A). Then the
relational structure (A,C•) is polymorphism-homogeneous if and only if f is either bijective or
constant.

Proof. If f is constant, then it is clear that (A,C•) is polymorphism-homogeneous. Assume now
that f is bijective. Then the condition of Theorem 4.9 is satis�ed (there are no sources at all), so
A is polymorphism-homogeneous, and thus by Theorem 3.4 (A,C◦) is polymorphism-homogeneous
as well. Therefore, by Proposition 3.7, it su�ces to show that 〈C◦〉@ = 〈C•〉@. This is clear, as any
equality of the form fk(x) = f `(x) with k < ` is equivalent to x = f `−k(x), since f is bijective.

For the other direction, let us suppose that (A,C•) is polymorphism-homogeneous. By Proposi-
tion 3.7, (A,C◦) is also polymorphism-homogeneous, and then Theorem 4.9 (together with Theo-
rem 3.4) implies that either there are no sources, or there is an integer n ≥ 1 such that every source
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in A has height n. If there are no sources in A, then every element is cyclic, and therefore f is
bijective. From now on let us suppose that A has sources with a common height n. Proposition 3.7
shows that there exists a quanti�er-free primitive positive formula Φ(x, y) over C• such that Φ(x, y)
is equivalent to f(x) = f(y). We can write Φ(x, y) in the following form:

Φ(x, y) =
t̄

i=1

(
fri(ui) = vi

)
,

where t, ri are nonnegative integers, and ui, vi ∈ {x, y} for i = 1, . . . , t. Obviously, Φ(a, a) holds for
every element a ∈ A. Let us choose a to be of height n, i.e., let a be a source. Then fri(ui) = vi
holds for ui = vi = a if and only if ri = 0, thus Φ(x, y) is equivalent either to x = y or to
x = x. Taking into account that Φ(x, y) is also equivalent to f(x) = f(y), we can conclude that
f(x) = f(y) ⇐⇒ x = y or f(x) = f(y) ⇐⇒ x = x. In the �rst case f is a bijection, and in the
second case f is constant. �

Injective objects in the category of all monounary algebras were determined by D. Jakubíková-
Studenovská [11]; in the �nite case these are exactly the monounary algebras A = (A, f) where f is
bijective and has a �xed point. However, in order to complete the picture of Figure 1 for monounary
algebras, we need to describe those monounary algebras A that are injective in the variety HSPA.
This has been done by D. Jakubíková-Studenovská and G. Czédli, but this result appeared only in
Hungarian in the masters thesis [12] of T. Jeges, a student of G. Czédli.

Theorem 4.11 ([12]). A �nite monounary algebra A = (A, f) is injective in the variety HSP(A) if
and only if all of its sources have the same height and it has a one-element subalgebra (i.e., f has
a �xed point).

Let us note that comparing theorems 4.9, 4.10 and 4.11, one can construct examples illustrating
each one of the �non-implications� of Figure 1.
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