IRREDUCIBLE POLYADIC SEMIGROUPS ADMITTING THE
ADJUNCTION OF A NEUTRAL ELEMENT

JEAN-LUC MARICHAL, PIERRE MATHONET, AND TAMAS WALDHAUSER

ABSTRACT. It was claimed in [|4] that for any integer n > 2, a neutral element
can be adjoined to an n-ary semigroup if and only if the n-ary semigroup is
reducible to a binary semigroup. We show that the ‘only if’ direction of this
statement is incorrect when n is odd. Moreover, we offer a comprehensive
characterization of the class of irreducible n-ary semigroups, for odd n, that
admit the adjunction of a neutral element.

1. INTRODUCTION

Let X be a nonempty set and let n > 2 be an integer. Recall that an n-ary
operation F: X™ — X is said to be associative if it satisfies the following system of
functional equations:

F(zy,...,2i 10, F(2iy ..., Tisn-1), Tisny - -, T2n-1)
= F(xla'"7'riaF(xi+17"'7xi+n)7xi+n+1a"'7x2n—1)
for all x1,...,29,-1 € X and all 1 <i<n-1. The pair (X, F) is commonly known

as an n-ary semigroup, or alternatively, a polyadic semigroup when the arity n is
not specified. This concept was introduced by Dérnte [3] and has subsequently led
to the development of the notion of an n-ary group, which was first studied by
Post [6].

An associative n-ary operation F: X" — X is said to be reducible to (or derived
from) an associative binary operation o: X? — X if it satisfies the following equation
(where o is used in its standard infix notation):

F(xy,20,23...,2,) = (- ((z10mg)o0x3)0 +)om,

= xi0Xg90x30 - 0T, (1, 22,23,..., 2, € X).

In this case, the n-ary semigroup (X, F) is also said to be reducible to (or derived
from) the semigroup (X, o).
Let us provide a straightforward example of an irreducible ternary semigroup.

Example 1.1. The real associative operation F:R? - R, defined by
F(xy,22,73) = 1 — T2+ 23 for x1,x9,73 € R,

is irreducible. Indeed, suppose that this operation is reducible to an associative
binary operation o:R? - R and let ¢ = 00 0. Then, for any = € R\ {c}, we have
cox =x = xoc and hence also x = coxoc = 2c—x, which implies x = ¢, a contradiction.
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Recall also that an element e € X is said to be neutral for an n-ary operation
F: X™ - X (or an n-ary semigroup (X, F')) if, for any x € X, the following condition
is satisfied:

F(eF ™tz en™) = ¢ (k=1,...,n).

Here and throughout, for any k € {0,...,n} and any z € X, the symbol z* represents
the list x,...,x, with k copies of x. For instance, for any x,y, z € X, we have

F(z®,y°,2%) = F(z,2,2,2,2).

Recall that, when n = 2, the neutral element is unique and often also called an
identity element.

Dudek and Mukhin |4, Proposition 2] made the following appealing and intrigu-
ing claim: “one can adjoin a neutral element to an n-ary semigroup if and only if
the n-ary semigroup is reducible to a binary semigroup” (see Definition below
for the formal definition of adjoining a neutral element).

The main objective of this paper is to present a counter-example that unfortu-
nately disproves the ‘only if’ direction of their statement when n is an odd integer.
This means that there exists at least one irreducible n-ary semigroup, where n is
odd, that admits the adjunction of a neutral element.

The structure of the paper is as follows. In Section 2, we revisit the ‘if” direction
of Dudek and Mukhin’s statement and establish that the ‘only if” direction holds
when n is even. In Section 3, we provide a comprehensive characterization of
the class of irreducible n-ary semigroups, for odd n, that admit the adjunction
of a neutral element. Section 4 presents a method for constructing such n-ary
semigroups, along with explicit examples that serve to refute the ‘only if’ direction
when n is odd.

2. PRELIMINARIES

Let us review two important results given by Dudek and Mukhin. We begin by
examining the following straightforward lemma, which complements [4, Lemma 1].

Lemma 2.1. If an n-ary semigroup (X, F') has a neutral element e € X, then the
structure (X, o) defined by the equation

zoy = F(x,e"%y)  formyeX,
is a semigroup and, for any k€ {1,...,n}, we have
z10 oz = F(xy,..., x5 e" ") (x1,...,2p € X).

In particular, (X, F) is reducible to the semigroup (X,o); this semigroup also has
e as its neutral element and is the unique reduction of (X, F') having this property.

Proof. We first observe that the operation o defined in the statement is associative.
In fact, for any x,y, 2z € X, we have

(zoy)oz = F(F(x,e"?y),e"? 2)
F(x7en72’F(y76n727z)) = xo(on)'

Moreover, it is clear that e is also the neutral element for o.
Let us now prove the stated formula by induction on k. The identity holds tri-
vially for k = 1 since e is a neutral element for F'. Assume now that it holds for
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some 1 < k <n-1, and let us show that it also holds for k+1. By using associativity
and the fact that e is a neutral element for F', we obtain

F(x10-0xp,e" 2, 2p41)

= F(F(xy0-o0 xk,enﬂ,xk“),e"*l)

= F(zio-omxp, F(e" 2, xps1,€),e"2)

= F(xlo"'oxkaxk+laen72)

(v100m) 0 Tpy1

= F(F(xh"'7mkvenik)7xk+1;en72)
= F(xl""7xk7F(€n_k,$k+1,ek_l),en_k_l)
= F(l‘l,...7jjk7xk+1’e7’b—k:—l)’

which shows that the identity still holds for k£ + 1. Taking k& = n immediately
establishes the reducibility of (X, F).
Now, suppose that (X,¢) is a reduction of (X, F) that has e as the neutral
element. Then, for any z,y € X, we have
roy = xoeo - oeoy = F(r,e"2y) = zoy.

—_—
n

Therefore, the semigroup (X, o) is the unique reduction of (X, F') that has e as the
neutral element. O

It is well known and easy to verify (see, e.g., Clifford and Preston |2, p. 4]) that
a neutral element can always be adjoined to a semigroup. In the next proposition,
we restate [4, Proposition 1] and its proof, using our notation; it asserts that this
property also holds for any reducible n-ary semigroup. We begin with a formal
definition.

Definition 2.2. We say that a neutral element can be adjoined to an n-ary semi-
group (X, F) if there exists an n-ary semigroup (X*, F'*), where X* = X u {e} for
some e ¢ X, such that the operation F*:(X*)" — X* satisfies the following two
properties:

L] F*|Xn = F,

e ¢ is neutral for F'*.

Proposition 2.3. A neutral element can be adjoined to any reducible n-ary semi-
group.

Proof. Let (X, F') be an n-ary semigroup that is reducible to a semigroup (X, o) and
let (X*, %) be the semigroup obtained from (X,o) by adjoining a neutral element
e ¢ X. One can readily see that the n-ary structure (X*, F*), where the n-ary
operation F*:(X*)" - X* is defined by the equation

F*(x1,...,2p) = T1% - *Tp for x1,...,x, € X¥,
is a (reducible) n-ary semigroup with e as a neutral element, whose restriction to

X is the n-ary semigroup (X, F’). |

Remark 2.4. If an n-ary semigroup has a neutral element e, then it is reducible by
Lemma [2.1] Moreover, by Proposition [2.3] we can always adjoin a neutral element
to it. However, the element e need not remain a neutral element for the resulting
semigroup.
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The following example demonstrates that it is not possible to adjoin a neutral
element to the real ternary semigroup mentioned in Example

Example 2.5. The irreducible ternary semigroup (R, F'), defined by
F(zq,29,23) = 1 —To+ 23 for x1,x2,23 € R,

does not admit the adjunction of a neutral element. Indeed, suppose on the contrary
that we can adjoin a neutral element e ¢ R to it. By Lemma the resulting
semigroup is then the ternary extension of a unique monoid (X*,*), with X* =
R u {e} and neutral element e. Now, let v € R and define v = u * u. For any
x € R\ {v}, we then have

xrv = zruru = F(z,u,u) = = Flu,u,z) = uru*x = v*zx,
and hence
T = VT *U.
If v € R, then this implies = F'(v,z,v) = 2v — z, which is impossible. This proves
that u * u = e, i.e., the square of every element of X* is the neutral element e, thus
(X*, *) is a group of exponent 2. Such groups are commutative, hence
y = F(z,z,y) = xxxxy = xxyxz = F(r,y,7) = 2v-y

for all x,y € R, a contradiction.

In the following proposition, we show that, when n is even, any n-ary semigroup

that admits the adjunction of a neutral element is reducible. We first consider a
definition and a lemma.

Definition 2.6. We say that an n-ary semigroup (X, F') is an n-ary IN-semigroup
if it is irreducible and admits the adjunction of a neutral element.

According to Examples and the real ternary semigroup (R, F) with
F(x1,22,%3) = 1 —x2+x3 is irreducible, but not an IN-semigroup, thereby showing
that not all irreducible n-ary semigroups are n-ary IN-semigroups.

Lemma 2.7. Let (X,F) be an n-ary IN-semigroup, let (X*,F*) be the n-ary
semigroup obtained from (X,F) by adjoining a neutral element e ¢ X, and let
(X*, %) be the reduction of (X*,F*) whose operation * is defined by

zry = F(z,e" 2, y) (z,y e X).
Then, there exist a,be X such that a *b=e.

Proof. We only need to prove that X cannot be closed under the operation x.
Suppose, on the contrary, that X is closed under *. Then (X, *) is a semigroup
and, for any x1,...,z, € X, we have

F(xy,...,zn) = F*(x1,...,2n) = T * % 2, € X,

and hence (X, F') is reducible to the semigroup (X, *), a contradiction. It follows
that there must exist a,b e X such that a*xb¢ X, i.e., axb=e. (I

Proposition 2.8. Let (X, F) be an n-ary semigroup, where n is even. If we can
adjoin a neutral element to (X, F), then it is reducible.
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Proof. Suppose on the contrary that (X,F) is an n-ary IN-semigroup and let
(X*, F*) and (X*,*) be the semigroups defined in Lemma Then, there exist
a,be X such that a * b=e. We then have

n/2
e = ex-—%e = (axb)* - *(axbh)
= F*(a,b,...,a,b) = F(a,b,...,a,b) € X,
—_— | ——
a contradiction (since e ¢ X). O

Corollary 2.9. If n is even, then a neutral element can be adjoined to an n-ary
semigroup if and only if it is reducible.

3. A CHARACTERIZATION OF ALL THE n-ARY IN-SEMIGROUPS

In the following theorem, we provide a characterization of the family of all n-
ary IN-semigroups, i.e., all the n-ary semigroups that, while irreducible, admit the
adjunction of a neutral element. We first introduce a special class of monoids.

Definition 3.1. We say that a semigroup (M, *), endowed with a neutral element
e, is a W-monoid if there exists an element a € M such that the following three
conditions are satisfied:

(W1) for any z,y € M, we have

xxy=e <= (r=aandy=a) or (r=candy-=e);
(W2) for any z,y € M, we have
zry=a <= (r=aandy=e) or (z=candy-=a);

(W3) a is noncentral for *.

Note that condition (W1) ensures the uniqueness of a, while condition (W3) implies
that a # e.

Theorem 3.2. If (X,F) is an n-ary IN-semigroup, then n is odd. Adjoining a
neutral element e ¢ X to (X, F), we obtain an n-ary semigroup (X*, F*) that is
the n-ary extension of the W-monoid (X*,*) defined by the equation

zxy = F*(x,e" 2 y) for x,ye X*.

Moreover, (X*,*) is the only such monoid with neutral element e.
Conversely, let (M, *) be any W-monoid with neutral element e, and let us con-
sider its n-ary extension F*: M™ — M defined by

F*(21,...,Tp) = T1 % = *Tp (1,..., 2 € M).
If n is odd, then the n-ary semigroup (X, F*|xn) with X = M ~ {e} is an n-ary
IN-semigroup.

Proof. Let us prove the first part of the theorem. Let (X,F) be an n-ary IN-
semigroup, i.e., (X, F') is irreducible and admits the adjunction of a neutral element
e ¢ X. By Proposition 2.8 n must be odd, i.e., n = 2k + 1 for some integer k > 1.
By Lemma the n-ary semigroup (X*, F*) obtained from (X, F') by adjoining
a neutral element e ¢ X is reducible to the binary semigroup (X*,*) defined by

T > y = F*(x3 en727y)’
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and (X*,*) is the unique reduction that has e as its neutral element.

Now, we only need to prove that (X*, ) is a W-monoid. By Lemma there
exist a,b € X such that a * b = e. The following claim states that e cannot be
expressed as a composition of three elements of X.

Claim 1. For any z,y,z € X* such that x »y * z = e, we have e € {x,y, z}.

Proof of Claim[1 Suppose on the contrary that x =y * z = e for some z,y,z € X.
Since e is a neutral element for *, we have

F(x7y727a7b7"'aa7b) = F*(x,y,z,a,b7...,a7b)
(ryx2)*(axb)* - x(axb) = e.

k -1 pairs

This is a contradiction since F' ranges in X and e ¢ X. O

Let us now show that condition (W1) of Definition holds. By Claim (I} we
see that
e = (axb)*(axb) = ax(bxa)*b
implies that b * a = e, since a # e # b. From this, it follows that
a*(bxb)xa = (a*b)*(brxa) = e = (bxa)*(a*b) = bx(axa)*b.
Applying Claim [I] again, we obtain a * @ = b * b = e. We then see that b = a, since
b=-=ecxb=(axb)*b =ax(bxb) = axe = a.

Now, if e has another factorization e = ¢ * d with ¢,d € X, then we can derive
similarly that ¢ = d. Moreover, we have

e = (axa)*(c*xc) = ax(axc)*c,

and then a * ¢ = e by Claim [I} and hence a = ¢ by the preceding argument. This
shows that the only nontrivial factorization of e is e = a * a, thus proving condition
(W1).

Let us now show that condition (W2) holds. If a = x * y for some z,y € X*, then
e=ax*a=(x*y)*a, and hence e € {x,y} by Claim [I} which also implies that
{z,y} = {a,e}, as e is the neutral element for *.

To verify that condition (W3) also holds, suppose for contradiction that a is a

central element for *. Then, for any x € X and any k € {1,...,n}, we have
F(a" ' z,a"™") = F* (" 2,a"") = a" T swaxa™" = 2xax - xa = 1,
—_——

n -1 (even)

which shows that a is a neutral element for F'. This is a contradiction, since F is
irreducible.

Let us now prove the second part of the theorem. Let (M, *) be a W-monoid
with neutral element e € M, and let a € M \ {e} be as defined in Definition Let
also n be an odd integer, and let (M, F'*) be the n-ary extension of (M, *).

Claim 2. For any x1,...,z, € M, we have z1 * - * 2, € {a,e} if and only if
Z1,...,%n € {a,e}. Moreover, in this case we have

f ) : i = is dd7
ook w i, = {a, if {i:z;=a}]iso

e, if |{i:x;=a}|is even.
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Proof of Claim[3 By conditions (W1) and (W2), we have x1 * 22 € {a,e} if and
only if x1, 25 € {a,e}, and then a routine induction argument shows that

Ty * - kT, €{a, e} = @1,...,2, €{a,e}.

The second statement of the claim follows from the fact that the subsemigroup
({a, e}, *) is isomorphic to (Zz,+) under the isomorphism e~ 0, a — 1. O

Set X = M ~ {e}, and let us show that X is closed under F*.
Claim 3. For any z1,...,2, € X, we have F*(z1,...,2,) € X.

Proof of Claim[3. Suppose on the contrary that there exist z1,...,z, € X such that
F*(21,...,2,) = e. By Claim[2| we have z1,...,z, € {a,e} and |{i : z; = a}| is even.
Since n is odd, this implies that some x; equals e, contrary to our assumption. ¢

Now we can define the restriction F' = F*|xn, and we will show that the n-
ary semigroup (X, F) is an n-ary IN-semigroup. It is clear by definition that it
admits the adjunction of the neutral element e. To see that it is irreducible, we
first establish a claim.

Claim 4. The n-ary semigroup (X, F') has no neutral element.

Proof of Claim [} Suppose on the contrary that (X, F') has a neutral element u € X.
We then have F'(u"!,a) = a, that is,

Uk - *U*A = Q, and hence Uk - *U = €.

SN—— S~———

n—-1 n-1

It follows by Claim [2 that u = a (since u # e), which means that a is a neutral
element for F'. But then, for any z € X, we have (by Claim [2} using that n -2 is
odd)

z = F(a,z,a"%) = F*(a,2,a"%) = axx*a* - *a = a*T*a,
————
n—2
which, upon multiplying by a on the left, implies that a is a central element for *,
a contradiction. O

Let us now show that the n-ary semigroup (X, F') is irreducible. Suppose, on
the contrary, that (X, F) is reducible to a semigroup (X, o). Then, for any = € X,
we have

n-1
ao-oaox = F(a"'z) = F*(a" ' )
= Q% - *A*T = exT = T,
n-1
and similarly,
TO@O 0@ = T*A* %A = T
n-1 n-1

n—1
—_—
Therefore, a o -+ o a is a neutral element for (X, o) and hence also for (X, F'). This
contradicts Claim [4] and therefore completes the proof of the theorem. O
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In the next section, we present examples of W-monoids which, in view of The-
orem [3.2] establish the existence of n-ary IN-semigroups for odd n. This observa-
tion enables us to refute the ‘only if’ direction of Dudek and Mukhin’s statement
in |4, Proposition 2] for odd n. In fact, the flaw in their argument lies only in their
proof of this implication. In our notation, they erroneously assert that the existence
of elements a,b € X such that a*b = e (see Lemma contradicts the assumption
that e ¢ X.

4. CONSTRUCTIONS OF W-MONOIDS

In this final section, we outline a procedure for constructing W-monoids via
specific ideal extensions of semigroups. We begin by recalling some fundamental
definitions. For background, the reader may consult, e.g., Clifford and Preston [2],
Petrich [5], and Rees [7].

Given a semigroup (S, ), a subset I c S is called an ideal of (S, *) if, for all
1€l and z €S, we have i x x € I and x =7 € I. The Rees congruence associated
with I is the relation ~ on S defined by x ~ y if and only if x,y € I or z =y. The
corresponding quotient S/I is referred to as the Rees quotient.

An ideal extension of a semigroup S by a semigroup T with a zero element is a
semigroup ¥ that contains S as an ideal and for which the Rees quotient ¥/S is
isomorphic to T

Using these concepts, we can easily derive the following proposition, which de-
scribes the monoids satisfying conditions (W1) and (W2) of Definition [3.1]in terms
of Rees quotients and ideal extensions. The proof is straightforward and is therefore
omitted.

Proposition 4.1. Let (M,*) be a monoid with neutral element e and let a €
M ~ {e}. Then the following assertions are equivalent.
(i) The monoid (M, *) satisfies conditions (W1) and (W2) of Definition[3.1]
(ii) The subset I = M ~{a,e} is an ideal of (M, *) and the Rees quotient M /I is
isomorphic to the set T = {-1,0,1} endowed with the usual multiplication,
where the equivalence class [a] corresponds to -1.
(iii) (M, *) is an ideal extension of a semigroup S by the semigroup T = {-1,0,1}
endowed with the usual multiplication.

According to Proposition to establish the existence of W-monoids, it suffices
to construct an ideal extension (M, =) of a semigroup S by the semigroup T =
{a,0,e} = {-1,0,1}, in which the element a is noncentral for *. To this end,
the following theorem adapts a result due to Clifford [1] (see also Clifford and
Preston |2, Theorem 4.19]). For simplicity, we denote the operations in both 7" and
S by concatenation.

Theorem 4.2. Any semigroup homomorphism h:T* = {-1,1} 2 Zs - S defines an
ideal extension (M, *) of S by T ={-1,0,1}, where M = SuT* and the operation
* 15 defined by

Ty, ifx,yeT™,

h(z)y, ifxeT* andyceS,

zh(y), ifzxeS andyeT”,

Ty, ifx,yelS.

THYy =
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Moreover, if S has a neutral element, then every ideal extension of S by T arises
in this manner.

As stated, Theorem provides a straightforward method for constructing a
wide range of W-monoids. The following example illustrates a particularly simple
instance of such monoids.

Example 4.3. Let (S,0) be a monoid with a neutral element id, and let A ¢
S be an element satisfying Ao A = id. It is straightforward to verify that the
map h:T* = {-1,1} - S defined by h(1) = id and h(-1) = A is a semigroup
homomorphism. By Theorem this induces an ideal extension (M, *) of S by
T, where M = SuT*. Moreover, if A is noncentral in S, then it remains noncentral
in M, and consequently, (M, *) is a W-monoid. As a concrete example, one can
consider the general linear group S = GL2(R) of all invertible 2 x 2 matrices over R
and the involutive matrix A = diag(1,-1).

Remark 4.4. If the semigroup (M, *) constructed by Theorem is a monoid,
then it is not difficult to see that h(1) must be a neutral element for S. Conversely,
according to the last statement of the theorem, all W-monoids (M, %) such that
S = M \ {a,e} has a neutral element are necessarily constructed along the lines of

Example

We now observe that a result by Yoshida [8] (see also Petrich [5, Theorem I11.2.2])
offers a description of all ideal extensions, based on the concept of the translational
hull. To proceed, we first recall some fundamental concepts related to semigroups
(see 5 p. 63]). Given a semigroup (.5, 0),

o a left translation of S is a map \:.S — S satisfying
AMzoy) = Mz)oy  (z,yel);

o a right translation of S is a map p: S — S satisfying

p(zoy) = woply)  (z,yeS);
e a bitranslation of S is a pair (A, p) such that

zo(y) = p(x)ey  (z,y€5),
where A is a left translation and p is a right translation of S
e the translational hull of S is the semigroup (S) of all the bitranslations.
Associativity implies that the pair (A, p) with A(y) = aoy and p(z) =z oa is a
bitranslation for any given a € S.
Applying Yoshida’s result, we obtain the following characterization of the class
of W-monoids.

Theorem 4.5. Let (S,0) be a semigroup and consider a bitranslation (L, R) of S
satisfying L? = R?> =id, LR = RL, and L #+ R. Then, the structure (M, +), where
M =S u{a,e} for some a,e ¢ S, with e neutral for x, and

x o y’ Z.f 1‘7 y E S7

L(y), ifzx=aandyels,

R(z), ifzeS andy=a,

e, ifx=a and y=a.

Try =

is a W-monoid. Moreover, all W-monoids can be constructed in this manner.
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Proof. By Proposition 1.1} a W-monoid is an ideal extension (M, *) of a semigroup
(S,0) by T = {a,0,e}, with the additional properties that e is a neutral element
for * and a is noncentral for *. We first observe that T* = {a,e} forms a group,
and hence the ramification set |5, p. 68] of T is empty. Consequently, such an
extension is determined by a homomorphism 6:T* — Q(S), which maps T* onto a
set of permutable bitranslations. Since e is the neutral element for *, we must have
0(e) = (id,id). Moreover, setting 6(a) = (L, R), the map 6 is an homomorphism if
and only if L? = R? = id. In addition, it has permutable values |5, p. 68] if and only
if LR = RL. Note also that the condition L # R is equivalent to a being noncentral
for . Finally, Yoshida’s result (see [5, Theorem II1.2.2]) guarantees that (M, *) is
a W-monoid and that all W-monoids can be constructed in this way. O

We can actually prove Theorem without making use of Yoshida’s theory
or any semigroup theory beyond the basic definition of a bitranslation. We now
present such an elementary proof.

Self-contained proof of Theorem[{.5 Assume first that (M, +) is a W-monoid with
neutral element e, and let a € M be the element provided by Definition Condi-
tions (W1) and (W2) guarantee that (.9, 0), with S := M \ {a, e}, is a subsemigroup
of M (here o denotes the restriction of * to S in order to be consistent with the
notation of the theorem). Let L(y) = a * y and R(z) = = * a; then (L,R) is a
bitranslation of M. It is clear from (W1) and (W2) that S is closed under L and
R, hence their restriction to S constitutes a bitranslation of (S,0). Associativity
immediately implies LR = RL, while associativity together with a *a = e shows that
L? = R? = id. Condition (W3) ensures that L # R, and the formula for * stated in
the theorem follows from the definition of o, L, and R.

Conversely, if (M, ) is constructed as described in the theorem, then a simple
verification yields that = is associative (using the associativity of o, the definition
of a bitranslation, and the assumptions L? = R? =id and LR = RL). The definition
of the operation * shows that = * y € {a,e} can happen only if z,y € {a,e}, and
then (W1) and (W2) follow from a * a = e and from the fact that e is the neutral
element for (M, ). Finally, L # R implies condition (W3). O

In the following example, we construct a W-monoid using Theorem that
cannot be obtained via Theorem

Example 4.6. Let (X,¢) be a monoid with a neutral element id and let 4,75 €
X \ {id} be elements satisfying i o7 = j o j = id. Consider also the semigroup (.5, 0),
where S = X x X and 0:5% - S is the binary operation defined by

(z,y)o(a'y) = (zod'y).
It is then easy to verify that the maps L:S — S and R:S — S defined by

L((z,y)) = (iex,y) and R((z,y)) = (zoi,yej)
satisfy the properties stated in Theorem For instance, for any x,y € X, we
have
R*((z,y9)) = R(zoiyoj) = (voioiyojoj) = (a.y).

Using Theorem we immediately obtain a W-monoid. If | X| > 2, then S does not
have a neutral element, hence the corresponding W-monoid cannot be obtained via
Theorem [£.2] (see Remark [4.4). As a concrete example, we can take X = {0,1} = Z,
and ¢ = j = 1, and the binary operation ¢ is the addition modulo 2.
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