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BASES FOR THE SPACE OF FIXED POINTS OF THE

REED-MULLER-FOURIER TRANSFORM

TAMÁS WALDHAUSER

Abstract. We prove that the space of fixed points of the Reed-Muller-Fourier
transform of n-variable functions on a p-element domain always has a basis.

For odd p our proof is constructive and it proves the conjecture of C. Moraga,

R. S. Stanković, M. Stanković and S. Stojković about the number of fixed
points presented at ISMVL 2017. For even p we give a nonconstructive proof

that relies on our earlier proof of the above mentioned conjecture.

1. Introduction

The Reed-Muller-Fourier transform (RMF transform, for short) was defined in
[10] as a generalization of the Fourier transform of Gibbs [2] from Boolean functions
to multiple-valued functions. It also coincides with the Reed-Muller transform [7, 8,
16, 17] in the Boolean case, hence it can be regarded as a common generalization of
the Reed-Muller and Fourier transforms. (Note that the Reed-Muller transform has
other extensions to the multiple-valued case [3].) For functions of one variable, the
RMF transform also agrees with the Pascal transform [1, 4]. For more information
on the RMF and other transforms we refer the reader to [11, 12, 13].

The eigenfunctions of the Reed-Muller transform of Boolean and multiple-valued
functions have been studied in [9] and [6], respectively. For the RMF transform, the
study of the eigenfunctions has been initiated in [5], and the following conjecture
has been formulated (note that it agrees with the result of [9] for p = 2).

Conjecture 1 ([5]). For every p ≥ 2 and n ≥ 1, the number of fixed points of
the Reed-Muller-Fourier transform of n-variable functions defined on a p-element
domain is pbp

n/2c if n is odd, and it is pdp
n/2e if n is even.

We proved this conjecture for odd values of p as well as for n = 1 (with arbitrary
p) in [15], and we settled the case of even p in [14]. This paper is an extended version
of [15], so we do not include here results of [14] (which was written later than [15]
and contains some more general results). Instead, we focus on the existence of bases
in the space of fixed points, not merely on the number of fixed points. Our main
theorem is the following.

Theorem 2. For every p ≥ 2 and n ≥ 1, the space of fixed points of the Reed-
Muller-Fourier transform of n-variable functions defined on a p-element domain
has a basis of cardinality bpn/2c if n is odd, and it has a basis of cardinality dpn/2e
if n is even.

Clearly, Theorem 2 implies Conjecture 1. For odd values of p, our proof of
Theorem 2 does indeed provide a self-contained proof for Conjecture 1. However,
for even values of p we perform a kind of “reverse engineering”: we use from [14]
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the fact that the number of fixed points is pp
n/2 to prove that the space of fixed

points has a basis (and then it is obvious that the basis has cardinality pn/2).
After presenting the required definitions and tools in Section 2, we settle the case

n = 1 (both for odd and even p) in Section 3. Besides the fixed points (eigenfunc-
tions with eigenvalue 1), we also consider eigenfunctions with eigenvalue −1, and
we prove that both eigenspaces have bases. We show in Section 4, assuming that p
is odd, how to build bases for the eigenspaces of n-variable functions corresponding
to the eigenvalues 1 and −1 from one-variable functions. In Section 5 we discuss
why the case of even p’s is substantially different, and we give an (unfortunately
nonconstructive) proof for the existence of bases in both eigenspaces.

2. Preliminaries

The Reed-Muller-Fourier transform is defined in terms of the Gibbs convolution,
but it can also be given explicitly as follows. Let T1 = (tij)

p−1
i,j=0 ∈ Zp×pp be the p×p

matrix over the ring Zp of modulo p residue classes of integers with entries

(1) tij = (−1)
j+1 ·

(
i

j

)
,

using the convention
(
i
j

)
= 0 whenever i < j. As an example, see the left half of the

matrix of Table 1, which shows T1 for p = 8. Note that we number rows and columns
starting from zero; in particular, we refer to the top row of the matrix as “row 0”.
Two important properties of this matrix are that it is triangular and self-inverse,
i.e., T 2

1 = I. (Here and in the sequel, I denotes the identity matrix; the size of the
matrix shall be clear from the context.) If f : Zp → Zp is a one-variable function

over Zp, then we can associate the column vector vf = (f (0) , . . . , f (p− 1))
T ∈ Zpp

to f , which we shall call the value vector of f . Then the RMF transform of f is the
function whose value vector is T1vf . Before presenting the definition for functions
of several variables (see Definitions 5 and 6), let us recall some notions of linear
algebra.

Working with the RMF transform means that we deal with matrices and vectors
over Zp. If p is a prime, then Zp is a field and Zmp is a vector space over Zp for every
natural number m. However, if p is a composite number, then Zp is not a field and
Zmp is not a vector space (but a module), and in this case we cannot use all the
standard linear algebraic tools. Therefore, we state precisely those definitions and
facts that we shall need, and we point out what does (not) remain true when p is
composite. We will still use the more familiar linear algebraic terminology, e.g., we
talk about subspaces instead of submodules.

Let V = {v1, . . . ,vk} be a set of (column) vectors in Zmp . By a linear combination
of V we mean a sum of the form α1v1+ · · ·+αkvk with coefficients α1, . . . , αk ∈ Zp.
We say that V is linearly independent if the zero vector can be obtained from V only
in a trivial way, i.e., α1v1+ · · ·+αkvk = 0 implies α1 = · · · = αk = 0. Equivalently,
V is linearly independent iff every vector of Zmp has at most one representation as
a linear combination of V. However, linear independence is not equivalent to the
property that no element of V can be expressed as a linear combination of the others
(see Example 3). If a set U ⊆ Zmp is closed under linear combinations, then U is a
subspace of Zmp . If V ⊆ U and every element of U is a linear combination of V, then
we say that V generates the subspace U . If in addition V is linearly independent,
then V is a basis of U . If U has a basis of cardinality k, then every element of
U has a unique representation as a linear combination of the basis vectors, hence
|U | = pk. This implies that every basis of U has the same size k, and in this case U
is called a k-dimensional subspace. As the following example illustrates, a subspace
does not always have a basis.
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Example 3. Let v1 = (2, 0) , v2 = (0, 2) ∈ Z2
4. Clearly, no element of V =

{v1,v2} is a linear combination of the other, yet V is not linearly independent, as
2v1 + 2v2 = 0. The subspace generated by V is U = {0,v1,v2,v1 + v2}, and this
subspace has no basis. In fact, no subset of U is linearly independent, not even the
one-element subsets, since 2u = 0 holds for every u ∈ U .

If A ∈ Zm×mp is an m × m matrix and v ∈ Zmp is a nonzero column vector
such that Av = λv with some λ ∈ Zp, then v is an eigenvector of A and λ is the
corresponding eigenvalue. The set of all eigenvectors corresponding to λ together
with the zero vector form the eigenspace Uλ =

{
v ∈ Zmp : Av = λv

}
, which is

always a subspace of Zmp (but it may fail to have basis; see Example 8).

If A = (aij) ∈ Zm×np and B = (bij) ∈ Zr×sp are matrices of arbitrary sizes, then
their Kronecker product is the mr × ns block matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .

The Kronecker product is associative but not commutative, it distributes over
sums, and it satisfies the following mixed product identity (for arbitrary matri-
ces A,B,C,D of appropriate sizes so that both sides are defined):

(2) (A⊗B) (C ⊗D) = (AC)⊗ (BD) .

If x ∈ Zrp and y ∈ Zsp are column vectors, then we can interpret their Kronecker
product x⊗ y by regarding x and y as an r × 1, respectively s× 1 matrix:

x⊗ y = (x1y1, x1y2, . . . , x1ys, x2y1, . . . , xrys)
T
.

We will need the following fact about the Kronecker product of two linearly inde-
pendent sets of vectors.

Fact 4. Suppose that {x1, . . . ,xk} ⊆ Zrp and {y1, . . . ,y`} ⊆ Zsp are linearly inde-
pendent sets of vectors. Then {xi ⊗ yj : i = 1, . . . , k, j = 1, . . . , `} ⊆ Zrsp is also
linearly independent.

With the help of the Kronecker product we can now define the RMF transform
for functions of several variables.

Definition 5. Let f : Znp → Zp be an n-variable function over Zp. The value

vector of f is the column vector vf ∈ Zpnp consisting of the values f (x) listed in
the lexicographic order of x ∈ Znp :

vf =(f(0,0, . . . ,0) , f(0,0, . . . ,1) , . . . , f(p− 1, . . . , p− 1))
T
.

Definition 6. For all natural numbers n, we define the RMF transform matrix Tn
as the n-th Kronecker power of the matrix T1 defined by (1):

Tn = T⊗n1 = T1 ⊗ · · · ⊗ T1︸ ︷︷ ︸
n

.

The Reed-Muller-Fourier transform of a function f : Znp → Zp is the function
RMF (f) : Znp → Zp whose value vector is Tnvf :

vRMF(f) = Tnvf .

It is not hard to verify that Tn is a triangular matrix, and the mixed product
identity (2) shows that T 2

1 = I implies T 2
n = I.
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Remark 7. The Kronecker product of vectors has the following simple “functional”
interpretation. Let f and g be functions of r and s variables, respectively, and define
the function h : Zr+sp → Zp by h (x1, . . . , xr+s) := f (x1, . . . , xr) ·g (xr+1, . . . , xr+s).
Then we have vh = vf ⊗ vg.

Our main objects of study are the fixed points of the RMF transformation; these
are (apart from the zero vector) exactly the eigenvectors of Tn with eigenvalue 1.

For arbitrary λ ∈ Zp, let U
(n)
λ denote the eigenspace of Tn corresponding to the

eigenvalue λ:

U
(n)
λ =

{
v ∈ Zp

n

p : Tnv = λv
}
.

Then the number of fixed points of the RMF transform of n-variable functions on

Zp is
∣∣U (n)

1

∣∣. We will see that in order to find a basis in U
(n)
1 , we also need to

consider the eigenspace U
(n)
−1 . Our main results are Theorem 12 and Theorem 15,

which state that the subspaces U
(n)
1 and U

(n)
−1 have bases, and the cardinalities of

these bases will also be determined.
The existence of bases in eigenspaces is not trivial: as the following example

illustrates, some eigenspaces do not have bases.

Example 8. Let us consider the eigenspaces corresponding to λ = 2 and λ = 3 for
p = 6 and n = 1:

U
(1)
2 =

{
(x0,−x0, x2,−x0, x4,−x0 − x2 + x4) : x0, x2, x4 are even

}
;

U
(1)
3 =

{
(0, x4, x4, x3, x4, x5) : x3, x4, x5 are divisible by 3

}
.

Here U
(1)
2 has size 33 and U

(1)
3 has size 23, and neither of these numbers is a power

of 6, hence these two eigenspaces have no bases.

3. Functions in one variable

As an illustration, let us first consider the case p = 8, n = 1. The eigenvectors
of T1 with eigenvalue λ = ±1 can be found by solving T1x = λIx

(
x ∈ Z8

8

)
, which

is a system of 8 linear equations over Z8 with 8 unknowns. We could write this
system in the form (T1 − λI) x = 0, but the patterns appearing in the coefficients
will be more clear if keep the system in the original form, i.e., we consider the 8×16
matrix (T1 | λI), and, for the same reason, we do not reduce the numbers modulo
8 (see Table 1). Here, and in the following computations, one can see the matrix
corresponding to p = 7 by ignoring the gray entries; we use this to emphasize the
difference between the cases of even and odd p.

Now we start an elimination procedure. We could transform the left half of the
matrix to a diagonal form, but then the right half would become too complicated.
Thus one must be careful to perform “just enough” elimination so that both halves
of the matrix become manageable. First we subtract from each row the row im-
mediately above it, but we stop at row 2: we subtract row 6 from row 7, . . . , row
1 from row 2 (recall that we number the rows from 0 to 7). Then we obtain the
matrix shown in Table 2. Next we subtract again from each row the row above it,
but this time we stop already at row four: we subtract row 6 from row 7, . . . , row
3 from row 4 (see Table 3). Finally, we subtract row 6 from row 7 and row 5 from
row 6 (see Table 4). This matrix represents a system of linear equations that is
equivalent to the original system T1x = λIx. Let us subtract the right hand side
of each equation from the left hand side, so that we get a system of homogeneous
linear equations corresponding to the matrix of Table 5.
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Now we consider the cases λ = 1 and λ = −1 separately. If λ = 1, then our
matrix is 

−2 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 2 −2 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 −2 4 −2 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 2 −6 6 −2 0
0 0 0 1 −3 3 −1 0


.

Here every second row is the double of the next one, so we can delete them. However,
if p = 7, then we cannot delete the last row (it is not the double of the next row,
simply because the next row does not exist). Thus, we obtain the following matrices:

p = 8 :


−1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 1 −3 3 −1 0

 ;

p = 7 :


−1 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 −1 2 −1 0 0
0 0 0 2 −6 6 −2

 .

In both cases the first 4 = dp/2e variables can be expressed uniquely from the last
bp/2c variables. (Note that if p = 7, then we can divide the last equation by 2, as
2 is relatively prime to 7. We cannot (and do not need to) perform such a division
when p = 8.) Thus the solutions of our systems of equations are the following:

p = 8 :



x0 = 0
x1 = 5x4 + 2x5 + 2x6
x2 = 5x4 + 2x5 + 2x6
x3 = 3x4 + 5x5 + x6
x4 ∈ Z8

x5 ∈ Z8

x6 ∈ Z8

x7 ∈ Z8

p = 7 :



x0 = 0
x1 = 5x4 + x5 + 2x6
x2 = 5x4 + x5 + 2x6
x3 = 3x4 + 4x5 + x6
x4 ∈ Z7

x5 ∈ Z7

x6 ∈ Z7

From these solutions we can get a basis of U
(1)
1 by giving the value 1 to one of the

free variables and 0 to the others. The size of the basis is bp/2c in both cases (see
Table 6).
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Now let us consider the case λ = −1. Then our matrix is

0 0 0 0 0 0 0 0
−1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 −3 2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 4 −5 2 0 0
0 0 0 0 0 0 0 0
0 0 0 1 −5 9 −7 2


.

Here every second row is constant 0, so we can delete them:

p = 8 :


−1 2 0 0 0 0 0 0
0 1 −3 2 0 0 0 0
0 0 −1 4 −5 2 0 0
0 0 0 1 −5 9 −7 2

 ;

p = 7 :

−1 2 0 0 0 0 0
0 1 −3 2 0 0 0
0 0 −1 4 −5 2 0

 .

In both cases the first bp/2c variables can be expressed uniquely from the last 4 =
dp/2e variables. Thus the solutions of our systems of equations are the following:

p = 8 :



x0 = 6x4 + 4x6
x1 = 3x4 + 4x5 + 6x6 + 4x7
x2 = 7x4 + 6x5 + 4x6
x3 = 5x4 + 7x5 + 7x6 + 6x7
x4 ∈ Z8

x5 ∈ Z8

x6 ∈ Z8

x7 ∈ Z8

p = 7 :



x0 = 6x3 + 5x4 + 5x5
x1 = 3x3 + 6x4 + 6x5
x2 = 4x3 + 2x4 + 2x5
x3 ∈ Z7

x4 ∈ Z7

x5 ∈ Z7

x6 ∈ Z7

From these solutions we can get a basis of U
(1)
−1 by giving the value 1 to one of the

free variables and 0 to the others. The size of the basis is dp/2e in both cases (see
Table 6).

One can obtain bases of U
(1)
1 and U

(1)
−1 in a similar manner for arbitrary p. Table 6

shows such bases for p ≤ 8. We can see some regularities in the basis vectors; e.g.,

the first component is always 0 for the basis vectors for U
(1)
1 , and (0, . . . , 0, 1) is

included in the basis of U
(1)
−1 whenever p is odd, and these facts are not difficult to

verify for every p. However, it is not clear how to write up a general formula for
the basis vectors. Still, at least we can see a nice pattern of binomial coefficients in
the p× 2p matrix that was the result of the elimination process (see Table 4). We

use this observation in the next theorem to prove the existence of a basis of U
(1)
1 as

well as for U
(1)
−1 , and we also determine their cardinalities. This proves Conjecture 1

for n = 1.
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Theorem 9. For every p ≥ 2, the subspaces U
(1)
1 , U

(1)
−1 ≤ Zpp have bases of cardi-

nalities
⌊
p
2

⌋
and

⌈
p
2

⌉
, respectively.

Proof. We need to determine the set of vectors x ∈ Zpp satisfying (T1 − λI) x = 0
for λ = 1 and for λ = −1. We apply the elimination procedure presented above to
the p × 2p matrix (T1 | λI). More precisely, we perform the following elimination
steps:

• subtract row p−2 from row p−1, . . . , row 1 from row 2;
• subtract row p−2 from row p−1, . . . , row 3 from row 4;
• subtract row p−2 from row p−1, . . . , row 5 from row 6;
• . . .
• subtract row p−2 from row p−1, and if p is even, then also subtract row
p−3 from row p−2.

The pattern of binomial coefficients occurring during the elimination is quite
clear, so we omit the proof (which is a straightforward computation using elemen-
tary properties of binomial coefficients); we only give the formula for the entries of
the matrix (L | R) that we obtain at the end of the process (cf. Table 4):

`ij = (−1)
j+1 ·

(
di/2e
i− j

)
and rij = (−1)

i−j ·
(
bi/2c
i− j

)
· λ

for i, j = 0, 1, . . . , p − 1. Let us mention that the above formulas also follow from
Lemma 4.2 of [14], where the elimination was done at once by multiplying from the
left by a suitable matrix. Subtracting the right hand side from the left hand side,
we get (the system of homogeneous linear equations corresponding to) the matrix
H := L−R with entries

hij = (−1)
j+1 ·

(
di/2e
i− j

)
− (−1)

i−j ·
(
bi/2c
i− j

)
· λ

= (−1)
j+1 ·

((
di/2e
i− j

)
+ (−1)

i ·
(
bi/2c
i− j

)
· λ
)
.(3)

From this point on, we treat the cases λ = 1 and λ = −1 separately.

If λ = 1 and i = 2k, then hij = (−1)
j+1 · 2 ·

(
k
i−j
)

and hi+1,j = (−1)
j+1 ·((

k+1
i+1−j

)
−
(

k
i+1−j

))
= (−1)

j+1 ·
(
k
i−j
)
, where the last equality is justified by the

basic recurrence relation of the Pascal triangle. We see that hij = 2·hi+1,j whenever
i is even and i < p− 1, hence we can drop the even-numbered rows from H (except
for row p − 1 when p is odd) without changing the set of solutions of the system
Hx = 0. If p is even, then we obtain a (p/2)× p matrix of the following shape:

−1 ∗ · · · ∗ ∗ · · · ∗
0 1 · · · ∗ ∗ · · · ∗
...

...
. . .

...
...

...
...

0 0 · · · (−1)
p/2 ∗ · · · ∗

 .

This matrix is in row echelon form, hence we can see that in the corresponding
system of linear equations the last p/2 variables are free, and the first p/2 variables

can be uniquely determined from the free variables. Thus U
(1)
1 has a basis of

cardinality p/2 (the basis vectors correspond to the free variables). If p is odd, then
we cannot delete the last row hence we obtain a dp/2e × p matrix of the following
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shape: 
−1 ∗ · · · ∗ ∗ ∗ · · · ∗
0 1 · · · ∗ ∗ ∗ · · · ∗
...

...
. . .

...
...

...
...

...

0 0 · · · (−1)
bp/2c ∗ ∗ · · · ∗

0 0 · · · 0 (−1)
dp/2e · 2 ∗ · · · ∗

 .

Since p is odd, 2 is relatively prime to p, hence we can multiply the last row by
the multiplicative inverse of 2 so that the first nonzero entry becomes ±1. Then,
similarly to the previous case, we can conclude that the last bp/2c variables are

free, therefore U
(1)
1 has a basis of cardinality bp/2c.

Next we assume that λ = −1. In this case (3) implies that hij = 0 whenever i
is even, so we can delete the even-numbered rows from H (here it does not matter
whether p is even or odd). The remaining rows form a bp/2c × p matrix of the
following shape: 

−1 ∗ · · · ∗ ∗ · · · ∗
0 1 · · · ∗ ∗ · · · ∗
...

...
. . .

...
...

...
...

0 0 · · · (−1)
bp/2c ∗ · · · ∗

 .

Just as before, this means that we have dp/2e free variables, hence U
(1)
−1 has a basis

of cardinality dp/2e. �

4. Functions over domains of odd cardinality

We use an inductive argument to determine bases in the eigenspaces U
(n)
1 and

U
(n)
−1 . The initial step of the induction is provided by Theorem 9. In the induction

step we will rely on the fact that Zpnp is the direct sum of U
(n)
1 and U

(n)
−1 , which is

true unfortunately only when p is odd (see Section 5). In general, we say that Zmp
is the direct sum of the subspaces U and Ũ (notation: Zmp = U ⊕ Ũ) if Zmp = U + Ũ

and U ∩ Ũ = {0}. There are several characterizations of direct sum decompositions
of vector spaces over fields; however, we must take special care when applying these,
since if p is not a prime, then Zp is not a field, and some subspaces of Zmp do not
even have a basis. Therefore, we provide the proof of the following lemma, even
though it consists of very standard arguments of linear algebra.

Lemma 10. If Zmp is the direct sum of the subspaces U and Ũ , then the following
hold.

(i) Every element of Zmp can be uniquely written as a sum of a vector from U

and a vector from Ũ .
(ii) If B is a basis of U and B̃ is a basis of Ũ , then B ∪ B̃ is a basis of Zmp .

(iii) If B ⊆ U , B̃ ⊆ Ũ , and B ∪ B̃ is a basis of Zmp , then B is a basis of U and

B̃ is a basis of Ũ .

Proof. Suppose that Zmp = U ⊕ Ũ . By definition, this immediately implies that

Zmp = U + Ũ , thus every v ∈ Zmp can be written as v = u + ũ with u ∈ U, ũ ∈ Ũ .

Assume that v = w + w̃ is another such decomposition of v with w ∈ U, w̃ ∈ Ũ .
Then we have u −w = w̃ − ũ ∈ U ∩ Ũ = {0}, as the left hand side belongs to U

and the right hand side belongs to Ũ . We can conclude that u = w and ũ = w̃,
and this proves (i).

For (ii), let B = {u1, . . . ,ur} be a basis of U and let B̃ = {ũ1, . . . , ũs} be a

basis of Ũ . From Zmp = U + Ũ it follows that B ∪ B̃ generates Zmp . To prove linear
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independence, assume that α1u1 + · · · + αrur + α̃1ũ1 + · · · + α̃sũs = 0 for some
αi, α̃j ∈ Zp. Then we have α1u1 + · · ·+αrur = −α̃1ũ1−· · ·− α̃sũs ∈ U ∩ Ũ = {0},
hence α1u1 + · · · + αrur = 0 and α̃1ũ1 + · · · + α̃sũs = 0. Since B is linearly
independent, α1u1 + · · ·+ αrur = 0 implies that α1 = · · · = αr = 0, and similarly
we have α̃1 = · · · = α̃s = 0.

In order to prove (iii), let us assume that B = {u1, . . . ,ur} ⊆ U and B̃ =

{ũ1, . . . , ũs} ⊆ Ũ such that B ∪ B̃ is a basis of Zmp . Then B ∪ B̃ is linearly

independent, thus B and B̃ are linearly independent, too. It remains to prove
that B generates U and B̃ generates Ũ . For arbitrary u ∈ U , we have u =
α1u1 + · · ·+αrur+ α̃1ũ1 + · · ·+ α̃sũs with suitable coefficients αi, α̃j ∈ Zp, as B∪B̃
generates Zmp . Now u − α1u1 − · · · − αrur = α̃1ũ1 + · · · + α̃sũs ∈ U ∩ Ũ = {0},
hence u− α1u1 − · · · − αrur = 0. Therefore, u = α1u1 + · · ·+ αrur, i.e., B indeed
generates U . An analogous argument shows that B̃ generates Ũ , and this completes
the proof. �

Lemma 11. For every odd p ≥ 2 and n ≥ 1, we have Zpnp = U
(n)
1 ⊕ U (n)

−1 , i.e.,

each element of Zpnp can be expressed uniquely in the form u+ + u− with u+ ∈
U

(n)
1 ,u− ∈ U (n)

−1 .

Proof. First we prove that Zpnp = U
(n)
1 + U

(n)
−1 . For arbitrary u ∈ Zpnp , let u+ =

1
2 (u + Tnu) and u− = 1

2 (u− Tnu). Here 1
2 denotes the multiplicative inverse of

2 modulo p (it exists, because 2 and p are relatively prime). Clearly, we have

u = u+ + u−; moreover, u+ ∈ U (n)
1 , u− ∈ U (n)

−1 follow from the fact that T 2
n = I:

Tnu+ =
1

2

(
Tnu + T 2

nu
)

=
1

2
(Tnu + u) = u+;

Tnu− =
1

2

(
Tnu− T 2

nu
)

=
1

2
(Tnu− u) = −u−.

Now assume that w ∈ U (n)
1 ∩ U (n)

−1 . Then we have Tnw = w = −w, hence 2w = 0.

Since p is odd, w = 0 follows, and this proves that U
(n)
1 ∩ U (n)

−1 = {0}. �

Using the above lemma, we can now prove that U
(n)
1 and U

(n)
−1 have bases, and

we can determine the sizes of their bases. Note that in the induction step we need

to use the induction hypothesis for both U
(n)
1 and U

(n)
−1 , thus we have to treat the

two cases in parallel.

Theorem 12. For every odd p ≥ 2 and n ≥ 1, the subspaces U
(n)
1 and U

(n)
−1 have

bases B(n)1 and B(n)−1 respectively, such that B(n)1 ∪ B(n)−1 is a basis of Zpnp . The sizes
of the bases are ∣∣B(n)1

∣∣ =

{
bpn/2c , if n is odd,

dpn/2e , if n is even;∣∣B(n)−1 ∣∣ =

{
dpn/2e , if n is odd,

bpn/2c , if n is even.

Proof. We prove the theorem by induction on n. For the initial step n = 1, The-

orem 9 guarantees that there exist bases B(1)1 of U
(1)
1 and B(n)−1 of U

(1)
−1 ; moreover,

we have and
∣∣B(1)1

∣∣ =
⌊
p
2

⌋
and

∣∣B(1)−1∣∣ =
⌈
p
2

⌉
. Lemma 10 and Lemma 11 show that

B(1)1 ∪ B
(1)
−1 is indeed a basis of Zpp.

For the induction step, assume that B(n)1 is a basis of U
(n)
1 and B(n)−1 is a basis of

U
(n)
−1 , as stated in the theorem; in particular, B(n)1 ∪ B(n)−1 is a basis of Zpnp . Let us
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put

B(n+1)
1 :=

(
B(n)1 ⊗ B(1)1

)
∪
(
B(n)−1 ⊗ B

(1)
−1
)

and

B(n+1)
−1 :=

(
B(n)1 ⊗ B(1)−1

)
∪
(
B(n)−1 ⊗ B

(1)
1

)
.

We are going to prove that these are bases in U
(n+1)
1 and U

(n+1)
−1 , respectively. It

follows from the mixed product identity (2) that if Tnu = λu and T1v = µv, then

Tn+1 (u⊗ v) = (Tn ⊗ T1) (u⊗ v) = (Tnu)⊗ (T1v)

= λu⊗ µv = λµ (u⊗ v) .

Therefore, B(n+1)
1 ⊆ U (n+1)

1 and B(n+1)
−1 ⊆ U (n+1)

−1 .
By Fact 4, the system of vectors

B(n+1)
1 ∪ B(n+1)

−1 =
(
B(n)1 ∪ B(n)−1

)
⊗
(
B(1)1 ∪ B

(1)
−1
)
⊆ Zp

n+1

p

is linearly independent, since, by the induction hypothesis, B(n)1 ∪B(n)
−1 is a basis of

Zpnp and B(1)1 ∪ B
(1)
−1 is a basis of Zpp. The cardinality of B(n+1)

1 ∪ B(n+1)
−1 is∣∣B(n+1)

1 ∪ B(n+1)
−1

∣∣ =
∣∣B(n)1 ∪ B(n)−1

∣∣ · ∣∣B(1)1 ∪ B
(1)
−1
∣∣ = pn · p = pn+1.

Clearly, any linearly independent system of pn+1 vectors in Zpn+1

p is a basis of Zpn+1

p ,

as pn+1 is the dimension of Zpn+1

p . Thus we can conclude that B(n+1)
1 ∪ B(n+1)

−1 is

a basis of Zpn+1

p . Now Lemma 10 and Lemma 11 imply that B(n+1)
1 is a basis of

U
(n+1)
1 and B(n+1)

−1 is a basis of U
(n+1)
−1 .

To finish the proof, we need to compute the cardinalities of these two bases. If
n is even, then we have, by the induction hypothesis∣∣B(n+1)

1

∣∣ =
∣∣B(n)1

∣∣ · ∣∣B(1)1

∣∣+
∣∣B(n)−1 ∣∣ · ∣∣B(1)−1∣∣

=
⌈pn

2

⌉
·
⌊p

2

⌋
+
⌊pn

2

⌋
·
⌈p

2

⌉
=
⌊pn+1

2

⌋
,

∣∣B(n+1)
−1

∣∣ =
∣∣B(n)1

∣∣ · ∣∣B(1)−1∣∣+
∣∣B(n)−1 ∣∣ · ∣∣B(1)1

∣∣
=
⌈pn

2

⌉
·
⌈p

2

⌉
+
⌊pn

2

⌋
·
⌊p

2

⌋
=
⌈pn+1

2

⌉
.

Similarly, if n is odd, then we have∣∣B(n+1)
1

∣∣ =
∣∣B(n)1

∣∣ · ∣∣B(1)1

∣∣+
∣∣B(n)−1 ∣∣ · ∣∣B(1)−1∣∣

=
⌊pn

2

⌋
·
⌊p

2

⌋
+
⌈pn

2

⌉
·
⌈p

2

⌉
=
⌈pn+1

2

⌉
,

∣∣B(n+1)
−1

∣∣ =
∣∣B(n)1

∣∣ · ∣∣B(1)−1∣∣+
∣∣B(n)−1 ∣∣ · ∣∣B(1)1

∣∣
=
⌊pn

2

⌋
·
⌈p

2

⌉
+
⌈pn

2

⌉
·
⌊p

2

⌋
=
⌊pn+1

2

⌋
.

�

Remark 13. The proof of Theorem 12 provides a method to construct the bases

of U
(n)
1 and U

(n)
−1 explicitly from the bases of U

(1)
1 and U

(1)
−1 . Let us illustrate this

in the case of p = 3. From Table 6 we see that U
(1)
1 has a basis {u} and U

(1)
−1 has a
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basis {v, w}, where the functions u, v, w are defined on Z3 as follows:

u (0) = 0, u (1) = 1, u (2) = 1;

v (0) = 2, v (1) = 1, v (2) = 0;

w (0) = 0, w (1) = 0, w (2) = 1.

A basis of U
(2)
1 can be given by(

{u} ⊗ {u}
)
∪
(
{v, w} ⊗ {v, w}

)
= {u⊗ u, v ⊗ v, v ⊗ w,w ⊗ v, w ⊗ w} ,

where the Kronecker products can be computed by Remark 7 (for example, v ⊗ w
is the two-variable function v (x1) · w (x2)). Similarly, U

(1)
−1 has the basis(

{u} ⊗ {v, w}
)
∪
(
{v, w} ⊗ {u}

)
= {u⊗ v, u⊗ w, v ⊗ u,w ⊗ u} .

In general, the functions g1 (x1) · . . . · gn (xn) with gi ∈ {u, v, w} constitute a basis
of all n-variable functions over Z3; those with an even number of gi-s belonging to

{v, w} form a basis of U
(n)
1 , while those with an odd number of gi-s belonging to

{v, w} form a basis of U
(n)
−1 .

5. Functions over domains of even cardinality

If p is even, then the direct sum decomposition given in Lemma 11 is not valid.
Indeed, we have

U
(n)
1 ∩ U (n)

−1 =
{

v ∈ Zp
n

p : Tnv = v = −v
}

=
{

v ∈ Zp
n

p : Tnv = v and 2v = 0
}
.

Thus U
(n)
1 ∩ U (n)

−1 consists of those fixed points whose components are all divisible
by p/2, and this set contains nonzero vectors. For example, with p = 6 and n = 1
we have

U
(1)
1 ∩ U (1)

−1 =
{

(0,−x4,−x4, x3, x4, x5) : x3, x4, x5 are divisible by 3
}
.

This subspace does not even have a basis (its cardinality is 23, which is not a power

of 6). It is not true either that U
(n)
1 + U

(n)
−1 = Zpnp ; again, in the case p = 6, n = 1

we have

U
(1)
1 + U

(1)
−1 =

{
(x0, x1, x2, x3, x4, x5) : x0 is even, and x1 ≡ x2 ≡ x4 (mod 2)

}
,

and this subspace has no basis either (its cardinality is 33 · 63).

The method of constructing bases in U
(n)
1 and U

(n)
−1 with the help of Kronecker

products outlined in Remark 13 does not work either if p is even. For example, let

us consider the bases B(1)1 and B(1)−1 of U
(1)
1 and U

(1)
−1 , respectively, given in Table 6

for p = 4. Then
(
B(1)1 ⊗B

(1)
1

)
∪
(
B(1)−1 ⊗B

(1)
−1
)

consists of the following eight vectors

in Z16
4 :

(0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0) ;

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0) ;

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0) ;

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) ;

(0, 2, 2, 0, 2, 1, 3, 0, 2, 3, 1, 0, 0, 0, 0, 0) ;

(0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 1, 0, 0, 0, 0) ;

(0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 3, 1, 0) ;

(0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1) .

This system of vectors is linearly dependent (consider, for instance, their linear

combination with all coefficients equal to 2), hence it cannot be a basis in U
(2)
1 .
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Due to these difficulties, we can only give a nonconstructive proof for the exis-

tence of a basis in U
(n)
1 and U

(n)
−1 when p is even. We will use Theorem 5.1 of [14]

that tells us that if these subspaces have bases, then the bases are of cardinality
pn/2.

Lemma 14. Let p be an even natural number, and let Q ∈ Zp/2×p/2p be the matrix
formed by the entries in the lower left quarter of T1:

qij = (−1)
j+1 ·

(
i+ p/2

j

)
(i, j = 0, 1, . . . , p/2− 1) .

Then Q has an inverse matrix in the ring Zp/2×p/2p .

Proof. Let us consider the integer matrices A and B of size p/2× p/2 defined by

aij =

(
i

j

)
, bij = (−1)

j+1 ·
(
p/2

j − i

)
(i, j = 0, 1, . . . , p/2− 1) .

Note that A is lower triangular (it is actually the Pascal matrix), B is upper tri-
angular, and the diagonal entries in both matrices are ±1. This implies that they
have unit determinant, and consequently their inverses contain only integer entries.
Therefore, A and B are also invertible over Zp. To prove our lemma, it suffices to
verify that AB = Q. Let us illustrate this equality for p = 10:

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

 ·

−1 5 −10 10 −5
0 1 −5 10 −10
0 0 −1 5 −10
0 0 0 1 −5
0 0 0 0 −1

 =


−1 5 −10 10 −5
−1 6 −15 20 −15
−1 7 −21 35 −35
−1 8 −28 56 −70
−1 9 −36 84 −126

 .

The (i, j) entry of AB is

p/2−1∑
k=0

aik · bkj =

p/2−1∑
k=0

(
i

k

)
· (−1)

j+1 ·
(
p/2

j − k

)
= (−1)

j+1 ·
i∑

k=0

(
i

k

)
·
(
p/2

j − k

)
.

Thus we need to prove that

(4)

i∑
k=0

(
i

k

)
·
(
p/2

j − k

)
=

(
i+ p/2

j

)
.

This identity has an easy combinatorial interpretation. If we have i black balls and

p/2 white balls, then we can choose j balls in
(
i+p/2
j

)
many ways. On the other

hand, we may choose first k black balls for some k ∈ {0, 1, . . . , i} in
(
i
k

)
many ways,

and then we can choose j − k white balls in
(
p/2
j−k
)

many ways. This shows that

the number of choices is given by the left hand side of (4), and this completes the
proof. �

Theorem 15. For every even p ≥ 2 and n ≥ 1, the subspaces U
(n)
1 and U

(n)
−1 have

bases of size pn/2.

Proof. The subspace U
(n)
λ is the set of all solutions of (Tn − λI) x = 0. This is

a system of pn linear equations in pn unknowns. Let us consider only the pn/2

equations that correspond to the bottom half of the matrix Tn − λI, and let Û
(n)
λ

denote the solution set of this system of equations. Clearly, we have Û
(n)
λ ⊇ U

(n)
λ .

We will prove that Û
(n)
λ has a basis of cardinality pn/2 for every λ ∈ Zp, and we

will also prove that if λ = 1 or λ = −1, then Û
(n)
λ = U

(n)
λ .
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Let us consider the following schematic view of the matrix Tn − λI:

L R

We have split the bottom half of Tn − λI into two submatrices L,R ∈ Zp
n/2×pn/2
p .

Note that L = Q ⊗ Tn−1, where Q is the matrix considered in Lemma 14 (the
matrix L does not include any diagonal entries of Tn − λI, hence λ does not occur
in L). Lemma 14 and the mixed product identity (2) imply that L is invertible in

Zp
n/2×pn/2
p , namely, L−1 = Q−1 ⊗ T−1n−1 = Q−1 ⊗ Tn−1.

Let us split the column vector x ∈ Zpnp also into two parts: x = (y, z) with

y =
(
x0, . . . , xpn/2−1

)
, z =

(
xpn/2, . . . , xpn−1

)
. Now we can write Û

(n)
λ in the

following form:

Û
(n)
λ = {(y, z) : Ly +Rz = 0} = {(y, z) : Ly = −Rz} =

{
(y, z) : y = −L−1Rz)

}
.

This means that we can treat the variables in z as free variables, and we can express

the variables in y uniquely from these free variables. Therefore, Û
(n)
λ has a basis of

cardinality pn/2 (the basis vectors can be obtained by assigning the value 1 to one of
the free variables and 0 to the others, just as we did in Section 3). Consequently, we

have
∣∣Û (n)
λ

∣∣ = pp
n/2. On the other hand, we know from [14] that

∣∣U (n)
λ

∣∣ = pp
n/2 for

λ = ±1. Taking into account that Û
(n)
λ ⊇ U (n)

λ , we can conclude that Û
(n)
λ = U

(n)
λ ,

thus the basis of Û
(n)
λ is also a basis of U

(n)
λ for λ = ±1. �
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6. C. Moraga, S. Stojković, and R. Stanković, On fixed points and cycles in the Reed Muller

domain, Proc. 38th IEEE International Symposium on Multiple Valued Logic (ISMVL), 2008,

pp. 82–87.
7. D. E. Muller, Application of Boolean algebra to switching circuit design and to error detection,

Transactions of the IRE Professional Group on Electronic Computers EC-3 (1954), no. 3, 6–
12.

8. I. Reed, A class of multiple-error-correcting codes and the decoding scheme, Transactions of

the IRE Professional Group on Information Theory 4 (1954), no. 4, 38–49.
9. T. Sasao and J. T. Butler, The eigenfunction of the Reed-Muller transformation, Proc. Work-

shop on Applications of the Reed Muller Expansion in Circuit Design and Representations

and Methodology of Future Computing Technology, 2007, pp. 31–38.
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6720 Szeged, Hungary

Email address: twaldha@math.u-szeged.hu



BASES FOR THE SPACE OF FIXED POINTS OF THE RMF TRANSFORM 15

Table 1. The matrix (T1 | λI) for p = 8 and for p = 7

−1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
−1 3 −3 1 0 0 0 0
−1 4 −6 4 −1 0 0 0
−1 5 −10 10 −5 1 0 0
−1 6 −15 20 −15 6 −1 0
−1 7 −21 35 −35 21 −7 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 0 0 0 0 0 0
0 λ 0 0 0 0 0 0
0 0 λ 0 0 0 0 0
0 0 0 λ 0 0 0 0
0 0 0 0 λ 0 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 λ 0
0 0 0 0 0 0 0 λ


Table 2. The matrix (T1 | λI) for p = 8 and for p = 7, after the
first elimination step

−1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 1 −3 3 −1 0 0 0
0 1 −4 6 −4 1 0 0
0 1 −5 10 −10 5 −1 0
0 1 −6 15 −20 15 −6 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 0 0 0 0 0 0
0 λ 0 0 0 0 0 0
0 −λ λ 0 0 0 0 0
0 0 −λ λ 0 0 0 0
0 0 0 −λ λ 0 0 0
0 0 0 0 −λ λ 0 0
0 0 0 0 0 −λ λ 0
0 0 0 0 0 0 −λ λ


Table 3. The matrix (T1 | λI) for p = 8 and for p = 7, after the
second elimination step

−1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 −1 3 −3 1 0 0
0 0 −1 4 −6 4 −1 0
0 0 −1 5 −10 10 −5 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 0 0 0 0 0 0
0 λ 0 0 0 0 0 0
0 −λ λ 0 0 0 0 0
0 0 −λ λ 0 0 0 0
0 0 λ −2λ λ 0 0 0
0 0 0 λ −2λ λ 0 0
0 0 0 0 λ −2λ λ 0
0 0 0 0 0 λ −2λ λ


Table 4. The matrix (T1 | λI) for p = 8 and for p = 7, after the
third elimination step

−1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 −1 3 −3 1 0 0
0 0 0 1 −3 3 −1 0
0 0 0 1 −4 6 −4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 0 0 0 0 0 0
0 λ 0 0 0 0 0 0
0 −λ λ 0 0 0 0 0
0 0 −λ λ 0 0 0 0
0 0 λ −2λ λ 0 0 0
0 0 0 λ −2λ λ 0 0
0 0 0 −λ 3λ −3λ λ 0
0 0 0 0 −λ 3λ −3λ λ


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Table 5. The matrix T1 − λI for p = 8 and for p = 7, after the
elimination procedure

−1− λ 0 0 0 0 0 0 0
−1 1− λ 0 0 0 0 0 0
0 1 + λ −1− λ 0 0 0 0 0
0 1 −2 + λ 1− λ 0 0 0 0
0 0 −1− λ 2 + 2λ −1− λ 0 0 0
0 0 −1 3− λ −3 + 2λ 1− λ 0 0
0 0 0 1 + λ −3− 3λ 3 + 3λ −1− λ 0
0 0 0 1 −4 + λ 6− 3λ −4 + 3λ 1− λ


Table 6. Eigenspaces of T1 for p ≤ 8

basis of U
(1)
1 basis of U

(1)
−1 size of U

(1)
λ

p = 2 (0, 1) (0, 1) λ = 1 : 2

p = 3 (0, 1, 1)
(2, 1, 0)

(0, 0, 1)

λ = 1 : 3

λ = 2 : 9

p = 4
(0, 1, 1, 0)

(0, 0, 0, 1)

(2, 3, 1, 0)

(0, 2, 0, 1)

λ = 1 : 16

λ = 2 : 1

λ = 3 : 16

p = 5
(0, 2, 2, 1, 0)

(0, 4, 4, 0, 1)

(1, 3, 1, 0, 0)

(1, 3, 0, 1, 0)

(0, 0, 0, 0, 1)

λ = 1 : 25

λ = 2 : 1

λ = 3 : 1

λ = 4 : 125

p = 6

(0, 2, 2, 1, 0, 0)

(0, 5, 5, 0, 1, 0)

(0, 0, 0, 0, 0, 1)

(2, 4, 4, 1, 0, 0)

(0, 3, 1, 0, 1, 0)

(0, 0, 2, 0, 0, 1)

λ = 1 : 216

λ = 2 : 27

λ = 3 : 8

λ = 4 : 27

λ = 5 : 216

p = 7

(0, 5, 5, 3, 1, 0, 0)

(0, 1, 1, 4, 0, 1, 0)

(0, 2, 2, 1, 0, 0, 1)

(6, 3, 4, 1, 0, 0, 0)

(5, 6, 2, 0, 1, 0, 0)

(5, 6, 2, 0, 0, 1, 0)

(0, 0, 0, 0, 0, 0, 1)

λ = 1 : 343

λ = 2 : 1

λ = 3 : 1

λ = 4 : 1

λ = 5 : 1

λ = 6 : 2401

p = 8

(0, 5, 5, 3, 1, 0, 0, 0)

(0, 2, 2, 5, 0, 1, 0, 0)

(0, 2, 2, 1, 0, 0, 1, 0)

(0, 0, 0, 0, 0, 0, 0, 1)

(6, 3, 7, 5, 1, 0, 0, 0)

(0, 4, 6, 7, 0, 1, 0, 0)

(4, 6, 4, 7, 0, 0, 1, 0)

(0, 4, 0, 6, 0, 0, 0, 1)

λ = 1 : 4096

λ = 2 : 1

λ = 3 : 4096

λ = 4 : 1

λ = 5 : 4096

λ = 6 : 1

λ = 7 : 4096
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