
Chapter 8 
Queueing Theory 

8.1. Introduction 

In this chapter we will study a class of models in which customers arrive in 
some random manner at a service facility. Upon arrival they are made to 
wait in queue until it is their turn to be served. Once served they are 
generally assumed to leave the system. For such models we will be interested 
in determining, among other things, such quantities as the average number 
of customers in the system (or in the queue) and the average time a customer 
spends in the system (or spends waiting in the queue). 

In Section 8.2 we derive a series of basic queueing identities which are of 
great use in analyzing queueing models. We also introduce three different 
sets of limiting probabilities which correspond to what an arrival sees, what 
a departure sees, and what an outside observer would see. 

In Section 8.3 we deal with queueing systems in which all of the defining 
probability distributions are assumed to be exponential. For instance, 
the simplest such model is to assume that customers arrive in accordance 
with a Poisson process (and thus the interarrival times are exponentially 
distributed) and are served one at a time by a single server who takes an 
exponentially distributed length of time for each service. These exponential 
queueing models are special examples of continuous-time Markov chains 
and so can be analyzed as in Chapter 6. However, at the cost of a (very) 
slight amount of repetition we shall not assume the reader to be familiar 
with the material of Chapter 6, but rather we shall redevelop any needed 
material. Specifically we shall derive anew (by a heuristic argument) the 
formula for the limiting probabilities. 
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In Section 8.4 we consider models in which customers move randomly 
among a network of servers. The model of Section 8.4.1 is an open system 
in which customers are allowed to enter and depart the system, whereas the 
one studied in Section 8.4.2 is closed in the sense that the set of customers 
in the system is constant over time. 

In Section 8.5 we study the model M/G/l, which while assuming Poisson 
arrivals, allows the service distribution to be arbitrary. To analyze this 
model we first introduce in Section 8.5.1 the concept of work, and then use 
this concept in Section 8.5.2 to help analyze this system. In Section 8.5.3 we 
derive the average amount of time that a server remains busy between idle 
periods. 

In Section 8.6 we consider some variations of the model M/G/l. In 
particular in Section 8.6.1 we suppose that bus loads of customers arrive 
according to a Poisson process and that each bus contains a random 
number of customers. In Section 8.6.2 we suppose that there are two 
different classes of customers-with type 1 customers receiving service 
priority over type 2. 

In Section 8.7 we consider a model with exponential service times but 
where the interarrival times between customers is allowed to have an 
arbitrary distribution. We analyze this model by use of an appropriately 
defined Markov chain. We also derive the mean length of a busy period and 
of an idle period for this model. 

In the final section of the chapter we talk about multiservers systems. We 
start with loss systems, in which arrivals, finding all servers busy, are 
assumed to depart and as such are lost to the system. This leads to the 
famous result known as Erlang's loss formula, which presents a simple 
formula for the number of busy servers in such a model when the arrival 
process in Poisson and the service distribution is general. We then discuss 
multiserver systems in which queues are allowed. However, except in the 
case where exponential service times are assumed, there are very few explicit 
formulas for these models. We end by presenting an approximation for the 
average time a customer waits in queue in a k-server model which assumes 
Poisson arrivals but allows for a general service distribution. 

8.2. Preliminaries 

In this section we will derive certain identities which are valid in the great 
majority of queueing models. 

8.2.1. Cost Equations 

Some fundamental quantities of interest for queueing models are 
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L,  the average number of customers in the system; 

LQ,  the average number of customers waiting in queue; 

W, the average amount of time a customer spends in the system; 

WQ, the average amount of time a customer spends waiting in queue. 

A large number of interesting and useful relationships between the 
proceding and other quantities of interest can be obtained by making use of 
the following idea: Imagine that entering customers are forced to pay 
money (according to some rule) to the system. We would then have the 
following basic cost identity 

average rate at which the system earns 

= A, x average amount an entering customer pays (8.1) 

where A, is defined to be average arrival rate of entering customers. That is, 
if N(t) denotes the number of customer arrivals by time t, then 

N(t) Aa = lim - 
t+m t 

We now present an heuristic proof of Equation (8.1). 

Heuristic Proof of Equation (8.1) Let T be a fixed large number. In 
two different ways, we will compute the average amount of money the 
system has earned by time T. One one hand, this quantity approximately 
can be obtained by multiplying the average rate at which the system earns 
by the length of time T. On the other hand, we can approximately compute 
it by multiplying the average amount paid by an entering customer by the 
average number of customers entering by time T (and this latter factor is 
approximately 1,T) .  Hence, both sides of Equation (8.1) when multiplied 
by T are approximately equal to the average amount earned by T. The 
result then follows by letting T -, m.* 

By choosing appropriate cost rules, many useful formulas can be 
obtained as special cases of Equation (8.1). For instance, by supposing that 
each customer pays $1 per unit time while in the system, Equation (8.1) 
yields the so-called Little's formula, 

* This can be made into a rigorous proof provided we assume that the queueing process is 
regenerative in the sense of Section 7.5. Most models, including all the ones in this chapter, 
satisfy this condition. 
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This follows since, under this cost rule, the rate at which the system earns 
is just the number in the system, and the amount a customer pays is just 
equal to its time in the system. 

Similarly if we suppose that each customer pays $1 per unit time while in 
queue, then Equation (8.1) yields 

By supposing the cost rule that each customer pays $1 per unit time while in 
service we obtain from Equation (8.1) that the 

average number of customers in service = I ,E[S ]  (8.4) 

where E [S] is defined as the average amount of time a customer spends in 
service. 

It should be emphasized that Equations (8.1) through (8.4) are valid for 
almost all queueing models regardless of the arrival process, the number of 
servers, or queue discipline. 

8.2.2. Steady-State Probabilities 

Let X(t) denote the number of customers in the system at time t and define 
P,, n 1 0, by 

P, = lim 
t - f m  

where we assume the above limit exists. In other words, P, is the limiting 
or long-run probability that there will be exactly n customers in the system. 
It is sometimes referred to as the steady-state probability of exactly n 
customers in the system. It also usually turns out that P, equals the (long- 
run) proportion of time that the system contains exactly n customers. For 
example, if Po = 0.3, then in the long-run, the system will be empty of 
customers for 30 percent of the time. Similarly, PI = 0.2 would imply that 
for 20 percent of the time the system would contain exactly one customer.* 

Two other sets of limiting probabilities are (a,, n 1 0) and (d,, n r 0), 
where 

a, = proportion of customers that find n 

in the system when they arrive, and 

d, = proportion of customers leaving behind n 

in the system when the depart 

* A sufficient condition for the validity of the dual interpretation of P,, is that the queueing 
process be regenerative. 



8.2. Preliminaries 415 

That is, P, is the proportion of time during which there are n in the system; 
a, is the proportion of arrivals that find n; and d, is the proportion of 
departures that leave behind n. That these quantities need not always be 
equal is illustrated by the following example. 

Example 8.1 Consider a queueing model in which all customers have 
service times equal to 1, and where the times between successive customers 
are always greater than 1 [for instance, the interarrival times could be 
uniformly distributed over (1,2)]. Hence, as every arrival finds the system 
empty and every departure leaves it empty, we have 

However, 

as the system is not always empty of customers. + 

It was, however, no accident that a, equaled d, in the previous example. 
That arrivals and departures always see the same number of customers is 
always true as is shown in the next proposition. 

Proposition 8.1 In any system in which customers arrive one at a time 
and are served one at a time 

a ,=d , ,  n z 0  

Proof An arrival will see n in the system whenever the number in the 
system goes from n to n + 1; similarly, a departure will leave behind n 
whenever the number in the system goes from n + 1 to n. Now in any 
interval of time T the number of transitions from n to n + 1 must equal to 
within 1 the number from n + 1 to n. [For instance, if transitions from 2 to 
3 occur 10 times, then 10 times there must have been a transition back to 2 
from a higher state (namely, 3).] Hence, the rate of transitions from n to 
n + 1 equals the rate from n + 1 to n; or, equivalently, the rate at which 
arrivals find n equals the rate at which departures leave n. The result now 
follows since the overall arrival rate must equal the overall departure rate 
(what goes in eventually goes out.) + 

Hence, on the average, arrivals and departures always see the same 
number of customers. However, as Example 8.1 illustrates, they do not, in 
general, see the time averages. One important exception where they do is in 
the case of Poisson arrivals. 
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Proposition 8.2 Poisson arrivals always see time averages. In 
particular, for Poisson arrivals, 

Pn = an 

To understand why Poisson arrivals always see time averages, consider an 
arbitrary Poisson arrival. If we knew that it arrived at time t ,  then the 
conditional distribution of what it sees upon arrival is the same as the 
unconditional distribution of the system state at time t. For knowing that an 
arrival occurs at time t gives us no information about what occurred prior 
to t. (Since the Poisson process has independent increments, knowing that 
an event occurred at time t does not affect the distribution of what occurred 
prior to t.) Hence, an arrival would just see the system according to the 
limiting probabilities. 

Contrast the foregoing with the situation of Example 8.1 where knowing 
that an arrival occurred at time t tells us a great deal about the past; in 
particular it tells us that there have been no arrivals in (t - 1 ,  t). Thus, in 
this case, we cannot conclude that the distribution of what an arrival at time 
t observes is the same as the distribution of the system state at time t .  

For a second argument as to why Poisson arrivals see time averages, note 
that the total time the system is in state n by time T is (roughly) Pn T .  Hence, 
as Poisson arrivals always arrive at rate 1 no matter what the system state, 
it follows that the number of arrivals in [0, TI that find the system in state 
n is (roughly) 12PnT. In the long run, therefore, the rate at which arrivals 
find the system in state n is 12Pn and, as 12 is the overall arrival rate, it follows 
that 12Pn /12 = Pn is the proportion of arrivals that find the system in state n. 

8.3. Exponential Models 

8.3.1. A Single-Server Exponential Queueing System 

Suppose that customers arrive at a single-server service station in accord- 
ance with a Poisson process having rate 1. That is, the times between 
successive arrivals are independent exponential random variables having 
mean 1/12. Each customer, upon arrival, goes directly into service if the 
server is free and, if not, the customer joins the queue. When the server 
finishes serving a customer, the customer leaves the system, and the next 
customer in line, if there is any, enters service. The successive service 
times are assumed to be independent exponential random variables having 
mean 1/p. 

The above is called the M / M / l  queue. The two M's refer to the fact that 
both the interarrival and service distributions are exponential (and thus 
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memoryless, or Markovian), and the 1 to the fact that there is a single 
server. To analyze it, we shall begin by determining the limiting prob- 
abilities P,,, for n = 0, 1, ... . To do so, think along the following lines. 
Suppose that we have an infinite number of rooms numbered 0, 1,2, . . . , 
and suppose that we instruct an individual to enter room n whenever there 
are n customers in the system. That is, he would be in room 2 whenever 
there are two customers in the system; and if another were to arrive, then he 
would leave room 2 and enter room 3. Similarly, if a service would take 
place he would leave room 2 and enter room 1 (as there would now be only 
one customer in the system). 

Now suppose that in the long-run our individual is seen to have entered 
room 1 at the rate of ten times an hour. Then at what rate must he have left 
room l? Clearly, at this same rate of ten times an hour. For the total 
number of times that he enters room 1 must be equal to (or one greater 
than) the total number of times he leaves room 1. This sort of argument 
thus yields the general principle which will enable us to determine the state 
probabilities. Namely, for each n 2 0, the rate at which the process enters 
state n equals the rate at which it leaves state n. Let us now determine these 
rates. Consider first state 0. When in state 0 the process can leave only by 
an arrival as clearly there cannot be a departure when the system is empty. 
Since the arrival rate is I and the proportion of time that the process is in 
state 0 is Po,  it follows that the rate at which the process leaves state 0 is 
IPo. On the other hand, state 0 can only be reached from state 1 via a 
departure. That is, if there is a single customer in the system and he 
completes service, then the system becomes empty. Since the service rate is 
p and the proportion of time that the system has exactly one customer is P I ,  
it follows that the rate at which the process enters state 0 is pPl. 

Hence, from our rate-equality principle we get our first equation, 

Now consider state 1. The process can leave this state either by an arrival 
(which occurs at rate I )  or a departure (which occurs at rate p). Hence, 
when in state 1, the process will leave this state at a rate of I + p.* Since the 
proportion of time the process is in state 1 is P I ,  the rate at which the 
process leaves state 1 is ( I  + p)Pl. On the other hand, state 1 can be entered 
either from state 0 via an arrival or from state 2 via a departure. Hence, the 
rate at which the process enters state 1 is IPo + &. Because the reasoning 

* If one event occurs at rate 1 and another occurs at ratep, then the total rate at which either 
event occurs is 1 + p. Suppose one man earns $2 per hour and another earns $3 per hour; then 
together they clearly earn $5 per hour. 
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for other states is similar, we obtain the following set of equations: 

State Rate at which the process leaves = rate at which it enters 

0 1p0 = ppl 

n , n r  1 (1  + p)Pn = APn-1 + P P ~ + I  (8-5) 

The set of Equations (8.5) which balances the rate at which the process 
enters each state with the rate at which it leaves that state is known as 
balance equations. 

In order to solve Equations (8.5), we rewrite them to obtain 

Solving in terms of Po yields 

Po = Po, 

To determine Po we use the fact that the Pn must sum to 1, and thus 
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Notice that for the preceding equations to make sense, it is necessary for 
A/p to be less than 1. For otherwise Cz=,  (Up)"  would be infinite and all 
the Pn would be 0. Hence, we shall assume that A/p < 1. Note that it is quite 
intuitive that there would be no limiting probabilities if A > p .  For suppose 
that I > p.  Since customers arrive at a Poisson rate A, it follows that the 
expected total number of arrivals by time t  is I t .  On the other hand, what 
is the expected number of customers served by time t?  If there were always 
customers present, then the number of customers served would be a Poisson 
process having rate p since the time between successive services would be 
independent exponentials having mean 1 / p .  Hence, the expected number of 
customers served by time t  is no greater than p t ;  and, therefore, the 
expected number in the system at time t  is at least 

Now if A > p ,  then the above number goes to infinity at t  becomes large. 
That is, A/p > 1 ,  the queue size increases without limit and there will be no 
limiting probabilities. Note also that the condition A/p < 1 is equivalent to 
the condition that the mean service time be less than the mean time between 
successive arrivals. This is the general condition that must be satisfied for 
limited probabilities to exist in most single-server queueing systems. 

Now let us attempt to express the quantities L,  LQ, W, and WQ in terms 
of the limiting probabilities Pn.  Since Pn is the long-run probability that the 
system contains exactly n customers, the average number of customers in 
the system clearly is given by 

where the last equation followed upon application of the algebraic identity 

The quantities W, WQ, and LQ now can be obtained with the help of 
Equations (8.2) and (8 .3) .  That is, since A,  = A, we have from Equation (8.7) 
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that 

Example 8.2 Suppose that customers arrive at a Poisson rate of one per 
every 12 minutes, and that the service time is exponential at a rate of one 
service per 8 minutes. What are L and W? 

Solution: Since I = &, p = Q, we have 

Hence, the average number of customers in the system is two, and the 
average time a customer spends in the system is 24 minutes. 

Now suppose that the arrival rate increases 20 percent to A = &. What 
is the corresponding change in L and W? Again using Equations (8.7), 
we get 

L = 4 ,  W = 4 0  

Hence, an increase of 20 percent in the arrival rate doubled the average 
number of customers in the system. 

To understand this better, write Equations (8.7) as 

From these equations we can see that when I / p  is near 1, a slight increase 
in A/p will lead to a large increase in L and W. + 



8.3. Exponential Models 423 

In words, the number of services that have to be completed before our 
arrival departs is a geometric random variable with parameter 1 - I /p.  
Therefore, after each service completion our customer will be the one 
departing with probability 1 - Up. Thus, no matter how long the customer 
has already spent in the system, the probability he will depart in the next 
h time units is ph + o(h), the probability that a service ends in that time, 
multiplied by 1 - I /p.  That is, the customer will depart in the next h time 
units with probability (p  - I)h + o(h); which says that the hazard rate 
function of W* is the constant p - I. But only the exponential has a 
constant hazard rate, and so we can conclude that W* is exponential with 
rate p - A. 

8.3.2. A Single-Server Exponential Queueing System 

Having Finite Capacity 

In the previous model, we assumed that there was no limit on the number 
of customers that could be in the system at the same time. However, in 
reality there is always a finite system capacity N, in the sense that there can 
be no more than N customers in the system at any time. By this, we mean 
that if an arriving customers finds that there are already N customers 
present, then he does not enter the system. 

As before, we let Pn,  0 I n I N, denote the limiting probability that 
there are n customers in the system. The rate-equality principle yields the 
following set of balance equations: 

State Rate at which the process leaves = rate at which it enters 

0 IPo = pP1 

1 s n s N - 1  (12 + p)Pn = w n -  1 + i u p n +  1 

N pPN = 

The argument for state 0 is exactly as before. Namely, when in state 0, 
the process will leave only via an arrival (which occurs at rate I )  and hence 
the rate at which the process leaves state 0 is IPo. On the other hand, the 
process can enter state 0 only from state 1 via a departure; hence, the rate 
at which the process enters state 0 is pP,. The equation for states n, where 
1 s n c N, is the same as before. The equation for state N is different 
because now state N can only be left via a departure since an arriving 
customer will not enter the system when it is in state N ;  also, state N can 
now only be entered from state N - 1 (as there is no longer a state N + 1) 
via an arrival. 
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To solve, we again rewrite the preceding system of equations: 

which, solving in terms of Po,  yields 

By using the fact that c:= Pn = 1, we obtain 

and hence from Equation (8.10) we obtain 

Note that in this case, there is no need to impose the condition that L/b < 1. 
The queue size is, by definition, bounded so there is no possibility of its 
increasing indefinitely. 
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As before, L may be expressed in terms of Pn to yield 

which after some algebra yields 

In deriving W, the expected amount of time a customer spends in the 
system, we must be a little careful about what we mean by a customer. 
Specifically, are we including those "customers" who arrive to find the 
system full and thus do not spend any time in the system? Or, do we just 
want the expected time spent in the system by a customer that actually 
entered the system? The two questions lead, of course, to different answers. 
In the first case, we have La = A; whereas in the second case, since the 
fraction of arrivals that actually enter the system is 1 - PN, it follows that 
A, = k(l  - PN). Once it is clear what we mean by a customer, W can be 
obtained from 

Example 8.3 Suppose that it costs cp dollars per hour to provide service 
at a rate p. Suppose also that we incur a gross profit of A dollars for each 
customer served. If the system has a capacity N, what service rate p 
maximizes our total profit? 

Solution:. To solve this, suppose that we use rate p. Let us determine 
the amount of money coming in per hour and subtract from this the 
amount going out each hour. This will give us our profit per hour, and we 
can choose p so as to maximize this. 

Now, potential customers arrive at a rate A. However, a certain 
proportion of them do not join the system; namely, those who arrive 
when there are N customers already in the system. Hence, since P, is the 
proportion of time that the system is full, it follows that entering 
customers arrive at a rate of A ( l  - PN). Since each customer pays $A, it 
follows that money comes in at an hourly rate of A ( l  - PN)A and since 
it goes out at an hourly rate of cp, it follows that our total profit per 
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hour is given by 

Profit per hour = A(l - PN)A - cp 

For instance if N = 2, A = 1, A = 10, c = 1, then 

10[1 - ( 1 / ~ ) ~ ]  
Profit per hour = 

i - ( 1 1 ~ ) ~  
- P 

in order to maximize profit we differentiate to obtain 

d (2p3 - 3~~ + 1) 
- [Profit per hour] = 10 - 1 
d~ (p3 - 11, 

The value of p that maximizes our profit now can be obtained by 
equating to zero and solving numerically. + 
In the previous two models, it has been quite easy to define the state of 

the system. Namely, it was defined as the number of people in the system. 
Now we shall consider some examples where a more detailed state space is 
necessary. 

8.3.3. A Shoeshine Shop 

Consider a shoeshine shop consisting of two chairs. Suppose that an 
entering customer first will go to chair 1. When his work is completed in 
chair 1, he will go either to chair 2 if that chair is empty or else wait in 
chair 1 until chair 2 becomes empty. Suppose that a potential customer will 
enter this shop as long as chair 1 is empty. (Thus, for instance, a potential 
customer might enter even if there is a customer in chair 2). 

If we suppose that potential customers arrive in accordance with a 
Poisson process at rate I, and that the service times for the two chairs are 
independent and have respective exponential rates of p, and p,, then 

(a) what proportion of potential customers enters the system? 
(b) what is the mean number of customers in the system? 
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(c) what is the average amount of time that an entering customer spends 
in the system? 

To begin we must first decide upon an appropriate state space. It is clear 
that the state of the system must include more information than merely the 
number of customers in the system. For instance, it would not be enough to 
specify that there is one customer in the system as we would also have to 
know which chair he was in. Further, if we only know that there are two 
customers in the system, then we would not know if the man in chair 1 is 
still being served or if he is just waiting for the person in chair 2 to finish. 
To account for these points, the following state space, consisting of the five 
states, (0, O), (1, O), (0, I), (1, I), and (b, I), will be used. The states have the 
following interpretation: 

State Interpretation 

(0,O) There are no customers in the system. 

(1,O) There is one customer in the system, and he is in chair 1. 

(0, 1) There is one customer in the system, and he is in chair 2. 

(1, 1) There are two customers in the system, and both are 
presently being served. 

(b, 1) There are two customers in the system, but the customer in 
the first chair has completed his work in that chair and is 
waiting. for the second chair to become free. 

It should be noted that when the system is in state (b,  I), the person in 
chair 1, though not being served, is nevertheless "blocking" potential 
arrivals from entering the system. 

As a prelude to writing down the balance equations, it is usually worth- 
while to make a transition diagram. This is done by first drawing a circle for 
each state and then drawing an arrow labeled by the rate at which the 
process goes from one state to another. The transition diagram for this 
model is shown in Figure 8.1. The explanation for the diagram is as follows: 

The arrow from state (0,O) to state (1,O) which is labeled 1 means that 
when the process is in state (0, 0), that is, when the system is empty, then it 
goes to state (1,O) at a rate 1, that is via an arrival. The arrow from (0, 1) 
to (1, 1) is similarly explained. 

When the process is in state (1, 0), it will go to state (0, 1) when the 
customer in chair 1 is finished and this occurs at a rate p, ; hence the arrow 
from (1,O) to (0, 1) labeled p, . The arrow from (1, 1) to (b, 1) is similarly 
explained. 

When in state (b, 1) the process will go to state (0, 1) when the customer 
in chair 2 completes his service (which occurs at rate p,); hence the arrow 
from (b, 1) to (0, 1) labeled p,. Also when in state (1, 1) the process will 
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Figure 8.1. A transition diagram. 

go to state (1,O) when the man in chair 2 finishes and hence the arrow from 
(1,l) to (1,O) labeled p2. Finally, if the process is in state (0, I), then it will 
go to state (0,O) when the man in chair 2 completes his service, hence the 
arrow from (0, 1) to (0,O) labeled p2. 

Because there are no other possible transitions, this completes the 
transition diagram. 

To write the balance equations we equate the sum of the arrows 
(multiplied by the probability of the states where they originate) coming 
into a state with the sum of the arrows (multiplied by the probability of the 
state) going out of that state. This gives 

State Rate that the process leaves = rate that it enters 

(0, 0) LPoo = ~ z P o 1  

(1,O) ~ l P 1 0  = APoo + cc2Pll 

(0, I1 ( A  + P Z ) ~ O I  = ~ 1 ~ 1 0  + flzPbl 

(1,l) (PI + 112)Pll = AP0l 

(b, 1) ~ 2 p b l  = plp1l 

These along with the equation 

may be solved to determine the limiting probabilities. Though it is easy to 
solve the preceding equations, the resulting solutions are quite involved and 
hence will not be explicitly presented. However, it is easy to answer our 
questions in terms of these limiting probabilities. First, since a potential 
customer will enter the system when the state is either (0,O) or (0, I), it 
follows that the proportion of customers entering the system is Po, + Pol. 
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Secondly, since there is one customer in the system whenever the state is 
(0, 1) or (1,O) and two customers in the system whenever the state is (1, 1) 
or (b, I), it follows that L,  the average number in the system, is given by 

To derive the average amount of time that an entering customer spends in 
the system, we use the relationship W = L/Aa. Since a potential customer 
will enter the system when in state (0,O) or (0, l), it follows that 
La = A(Poo + Pol) and hence 

Example 8.4 (a) If A = 1, p, = 1, p, = 2, then calculate the preceding 
quantities of interest. 

(b) If A = 1, pl = 2,  p2 = 1, then calculate the preceding. 

Solution: (a) Solving the balance equations yields 

Hence, 
L = % ,  w = + +  

(b) Solving the balance equations yields 

Hence, 
L = 1 ,  w = +  + 

8.3.4. A Queueing System with Bulk Service 

In this model, we consider a single-server exponential queueing system in 
which the server is able to serve two customers at the same time. Whenever 
the server completes a service, he then serves the next two customers at 
the same time. However, if there is only one customer in line, then he 
serves that customer by himself. We shall assume that his service time is 
exponential at rate p whether he is serving one or two customers. As usual, 
we suppose that customers arrive at an exponential rate A. One example of 
such a system might be an elevator or a cable car which can take at most two 
passengers at any time. 

It would seem that the state of the system would have to tell us not only 
how many customers there are in the system, but also whether one or two 



462 8 Queueing Theory 

Exercises 

1. For the M/M/l queue, compute 

(a) the expected number of arrivals during a service period and 
@) the probability that no customers arrive during a service period. 

Hint: "Condition." 

*2. Machines in a factory break down at an exponential rate of six per 
hour. There is a single repairman who fixes machines at an exponential rate 
of eight per hour. The cost incurred in lost production when machines are 
out of service is $10 per hour per machine. What is the average cost rate 
incurred due to failed machines? 

3. The manager of a market can hire either Mary or Alice. Mary, who 
gives service at an exponential rate of 20 customers per hour, can be hired 
at a rate of $3 per hour. Alice, who gives service at an exponential rate of 
30 customers per hour, can be hired at a rate of $C per hour. The manager 
estimates that, on the average, each customer's time is worth $1 per hour 
and should be accounted for in the model. If customers arrive at a Poisson 
rate of 10 per hour, then 

(a) what is the average cost per hour if Mary is hired? if Alice is hired? 
(b) find C if the average cost per hour is the same for Mary and Alice. 

4. For the M/M/l queue, show that the probability that a customer 
spends an amount of time x or less in queue is given by 

5. Two customers move about among three servers. Upon completion 
of service at server i, the customer leaves that server and enters service at 
whichever of the other two servers is free. (Therefore, there are always two 
busy servers.) If the service times at server i are exponential with rate pi, 
i = 1,2,3,  what proportion of time is server i idle? 

' 6 .  Show that W is smaller in an M/M/l model having arrivals at 
rate I and service at rate 2p than it is in a two-server M/M/2 model with 
arrivals at rate A and with each server at rate p. Can you give an intuitive 
explanation for this result? Would it also be true for WQ? 


