Maximal non-affine reducts of simple affine algebras

AGNES SZENDREI

1. Introduction

In tame congruence theory the strongest result revealing the general structure of finite simple algebras

of type 2 is the following representation theorem (cf. Theorem 6.1): every finite simple algebra S of type 2
can be embedded in a reduct A of a finite simple affine algebra; in more detail,

S~®S'CA=(4;F) with FC POI((EndKX)A)

where (End x ;f);l\ is a finite simple module arising from a vector space KA\ = (4;+, K) by considering it a
module over its own endomorphism ring.

To see how far finite simple algebras S of type 2 are from being affine, under what conditions they are
affine, it is natural to ask the same questions for the algebras A first. The aim of this paper is to answer
this question (Theorem 2.1). Essentially, we determine the maximal possible clones for non-affine algebras
A = (4; F) with F C Pol((EndKX)E).

Selecting appropriate representing algebras A for finite simple algebras S of type 2, one can ensure
that certain properties of S are reflected in A; for example, S and A generate the same variety, or if S has
surjective fundamental operations, then A has the same property. This enables us to give an easy proof for
the facts, known earlier, that every finite simple algebra of type 2 with surjective fundamental operations is
affine [16,17] (Theorem 6.2), and every finite simple algebra of type 2 generating a minimal variety is affine
[3] (Theorem 6.5).

The result in Theorem 2.1 yields also a Rosenberg-type description for the maximal subclones of the

clones P = Pol ( E) (Theorem 6.11). We note that a Stupecki-type theorem for these clones was
proved in [12].

(End x A)

2. Preliminaries and main results

If not stated otherwise, algebras are denoted by boldface capitals and their universes by the correspond-
ing letters in italics. The clone of term operations [the set of n-ary term operations] of an algebra A is
denoted by Clo A [resp., Clo, A]. Similarly, the clone of polynomial operations [the set of n-ary polynomial
operations] of A is denoted by Pol A [resp., Pol,, A].

We will call an algebra A surjective if every fundamental operation of A is surjective. For algebras
A = (A;F)and A’ = (A'; F'), we say that A is a reduct [polynomial reduct] of A’ if A= A" and F C Clo A’
[F C Pol A']. The algebras A = (A; F) and A’ = (A’; F') are called term equivalent [polynomially equivalent]
if A= A" and CloA = CloA' [Pol A = Pol A'].

For a set N, let T, Sy, and C denote the full transformation monoid on NV, the full symmetric group
on N and the set of (unary) constant operations on N, respectively. The identity mapping and the equality
relation on N are denoted by id and A, respectively (N will be clear from the context). For convenience we
identify every natural number n with the set n = {0,1,...,n —1}.

This research is partially supported by the Hungarian National Foundation for Scientific Research, grant
no. 1903.



For a set A and for k > 1, the nonvoid subsets of A* will also be called k-ary relations (on A), and for
an algebra A the universes of subalgebras of A* will be called compatible relations of A. An operation f
on A is said to preserve a relation p if p is a compatible relation of the algebra (A4; f).

We say that an algebra A is semi-affine with respect to an Abelian group A= (4;4) if A and A have
the same universe and

Q4 =1{(a,b,c,d) € AY: a—b+c=d}

is a compatible relation of A (or equlvalently, the operations of A commute with z — y + 2). Furthermore,
A is said to be affine with respect to A if it is semi-affine with respect to A and, in addition, x —y + z is a
term operation of A. It is well known (cf. [14; 2.1, 2.7- 2.8]) that

— an algebra A is semi-affine with respect to an Abelian group A if and only if A is a polynomial
reduct of the module (End A)A (i.e. A considered as a module over its endomorphism ring End A)
and R R

— A is affine with respect to A if and only if A is polynomially equivalent to a module grA for some
subring R of End A; this ring R, which is generated by all coefficients of term (or polynomial)
operations of A, is called the ring of A, and is denoted by Ra .

In the representation theorem for finite simple algebras of type 2 important role is played by the modules

(End A)A where KA is a finite vector space (these modules are essentially all finite simple modules with

trivial annihilator ideals, cf. [2]). In analogy with the concept of semi-affineness and affineness with respect
to an Abelian group we introduce the following notions.

Definition. Let xA = (4; 4+, K) be a vector space over a field K, and A an algebra. We will say that

— A is semi-affine with respect to KkAif Aisa polynomial reduct of the module (End x A)A and

— A is affine with respect to KA if it is semi-affine with respect to KA and, in addition, z —y + 2 is
a term operatlon of A (or, equivalently, if A is polynomially equivalent to a module RA for some subring R
of End KA)

Clearly, if A is semi-affine [resp., afﬁne] with respect to a vector space KA then it is semi-affine [resp.,
affine] with respect to the Abelian group A. Conversely, an elementary Abelian p-group A can naturally be
regarded as a vector space z, A, and it is obvious that semi-affineness [resp. affineness] with respect to A
and ZPA\ are the same.

It is easy to see that if an algebra A is semi-affine with respect to an Abelian group A\, thenz —y + 2
is the only Mal’tsev operation that can be a term operation of A; furthermore, the group Ais uniquely
determined by the operation z —y + 2z, up to_the choice of the element 0. Hence, if an algebra that is
semi-affine with respect to an Abelian group A [or vector space KA] is affine for some Abelian group [or
vector space]), then it is affine with respect to A [resp., kA] as well. We will use this fact without further
reference, and omit to mention A [resp., xA] in such a situation.

For an Abelian group A = (4;+) the group {z + a: a € A} of all translations of A will be denoted by
T(A). For a vector space kA = (4; +, K) we will also need the family

P(xA) ={cz +a: ce K—{0},a€ A}

of nonconstant unary polynomial operations of KA. Clearly, P(K/T) is a permutation group on A and
T(A) C P(xA). For an algebra A = (A;F) that is semi-affine with respect to A, A* will stand for the
algebra (A; F, T(A\)) arising from A by adding all translations of A as unary operations. Analogously, for
an algebra A = (A; F) that is semi-affine with respect to x A, x A* will stand for the algebra (A; F, P(x A))
arising from A by adding all nonconstant unary polynomial operations of K;l\ to A.

Let ¢ > 3. A family T = {O,,...,0,,_1} (m > 1) of equivalence relations on A is called g-regular if
each ©; (0 <4 < m — 1) has exactly g blocks and O = ©gN...N O,, 1 has exactly ¢™ blocks. A relation
on A is called g-regular if it is of the form

Ar = {(ag,...,aq-1) €A% foralli (0 <i<m—1), ag,...,aq—1 are not

pairwise incongruent modulo ©;}

2



for a g-regular family T of equivalence relations on A.
The mth matrix power of any unary algebra U = (U; F) is the algebra Ul whose base set is U™, and
its operations are exactly all operations hf[go, ..., gm 1] defined for arbitrary mappings o:m — m, u:m — n

and go,...,9m_1 € Clo; U as follows: for z; = (a:?,...,:z:;”_l) eUm™(0<i<n-1),
hG90s- > 9m—1)(Z0s -1 Tn1) = (90(28%); - - g1 (2 1)7)).

The mappings o, 4 will be called the component mapping and the variable mapping of hZ[gO, ey 9m—1]s
respectively. For unary operations the subscript indicating the variable mapping m — 1 will be omitted.

An algebra A is called Abelian if A satisfies the so-called term condition (or TC): for all n > k > 1, for
every n-ary term operation f of A and for arbitrary @,v € A*, a,b e A"F,

f(ﬂ,t_l):f(ﬂ,g) < f(’l_J,C_l):f(’l_),b).

Furthermore, A is strongly Abelian if it satisfies the strong term condition (or TC*): for all n > k > 1, for
every n-ary term operation f of A and for arbitrary 4,7 € A*, a,b,c € A" ¥,

f(ﬂ,a)Zf(ﬁ,b) = f(ﬂ,é):f(f),é)_

It is not hard to see that every strongly Abelian algebra is Abelian, and it is obvious from the definitions
that both properties are inherited for subalgebras. Affine algebras are Abelian and not strongly Abelian,
while matrix powers of unary algebras are strongly Abelian.

Our main result is

Theorem 2.1. For arbitrary finite algebra A that is semi-affine with respect to a vector space KA\ =
(4;+, K), one of the following conditions holds:

(2.1.a) A is affine with respect to KA;

(2.1.b) A has a nontrivial congruence which is a congruence of K;l\;

(2.1.c) there is a vector space isomorphism kA - (k K)™ which is simultaneously an isomorphism
between A and a reduct of (K;Pol; (xK))"™;

(2.1.d) A has a compatible relation \r for some g-regular family T of congruences of K A with q> |K|.

Clearly, if for an algebra A as in Theorem 2.1 condition (2.1.c) or (2.1.d) holds, then A cannot be affine.
Thus Theorem 2.1 yields a necessary and sufficient condition for simple semi-affine algebras to be affine.

Corollary 2.2. Let A be a finite simple algebra that is semi-affine with respect to a vector space Kﬁ =
(A;+,K). Then A is affine with respect to x A if and only if both of conditions (2.1.c) and (2.1.d) fail for
A.

The special case and weaker form of Theorem 2.1 and Corollary 2.2 for finite algebras that are semi-affine
with respect to elementary Abelian groups (that is, vector spaces over prime fields) was proved in [18].

The proof of Theorem 2.1 is based on a strong version of Rosenberg’s primal algebra characterization
theorem (see [7]) stated in Theorem 2.3 below. Recall that a finite algebra A is called quasiprimal ([5], [6]) if
every operation on A preserving the internal isomorphisms (i.e. isomorphisms between subalgebras) of A is
a term operation of A. Further, a k-ary relation p on A is said to be central if p # A¥, p is totally reflexive,
totally symmetric, and there exists a ¢ € A such that (¢, a1,...,a5—1) € p for all a1,...,ax_1 € A.

Theorem 2.3. [15] Let A be a finite simple algebra having no proper subalgebra. Then one of the
following conditions holds:

(2.3.a) A is quasiprimal;

(2.3.b) A is affine with respect to an elementary Abelian p-group (p prime);

(2.3.c) A is isomorphic to a reduct of (2;T2)™ for some integer m > 1;

(2.3.d) A has a compatible q-regular relation for some q > 3;

(2.3.€) A has a compatible k-ary central relation for some k > 2;

(2.3.f) A has a compatible bounded partial order.
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Given a finite algebra A that is semi-affine with respect to a vector space K;l\ = (A;+, K), Theorem 2.3
will not be applied directly to A; it will be applied to the extended algebra x A*. Therefore it is a crucial
step to show beforehand that under mild restrictions on A, g A* is affine if and only A has this property.
We have

Theorem 2.4. Let A be a finite algebra such that A is semi-affine with respect to a vector space KA =
(A4;+, K), and A has no nontrivial congruence which is a congruence of k A. Then A is affine if and only
if KA* is affine.

The proof of Theorem 2.4 is presented in Section 3. Interestingly, the argument also requires an appli-
cation of Theorem 2.3.
It will turn out that considering x A* instead of A when applying Theorem 2.3 has the effect that
— the congruences of gk A* are automatically vector space congruences (cf. Lemma 3.4),
— (2.3.e), (2.3.f) cannot hold for g A* ((2.3.a) does not hold either, in view of semi-affineness), and
— even if (2.3.¢) or (2.3.d) holds for xA*, the presence of P(x A) in the set of operations forces that
the matrix power, resp. compatible g-regular relation is nicely related to the vector space KE.
The latter is the difficult part of the proof; it requires some group theoretical results, which are developed
in Section 4. The proof of Theorem 2.1 is finished in Section 5, and finally the applications of Theorem 2.1
mentioned in the Introduction are presented in Section 6.

3. Proof of Theorem 2.4

Let A be an Abelian group. For arbitrary polynomial operation f = Z?;OI riz; +a of (End X)A\ we define

n—1
fV:f_f(Or"JO):ZTixi:
=0

and for a set F' of such operations we put F¥ = {fV: f € F}. If A = (4; F) is an algebra that is semi-affine
with respect to A, then AV will denote the algebra (4; FV). Clearly, AV is also semi-affine with respect
to A (in fact, AV is a reduct of A*) and {0} is a subalgebra of AY. Moreover, if A is an algebra that is
semi-affine with respect to a vector space K;l\, then AV is also semi-affine with respect to KX.

The next lemma clarifies how the clones of the algebras A and A* are related if A is semi-affine with
respect to A.

Lemma 3.1. For arbitrary algebra A that is semi-affine with respect to an Abelian group A= (4;4),

n—1 n—1
CloA* = {Z rix;+a:n>1, a€ A, and Zrixi + ag € Clo A for some ag € A}.
i=0 i=0

The proof if straightforward. Lemma 3.1 has the immediate consequence that the ‘Abelian group
analogue’ of Theorem 2.4 is valid without any restriction on A:

Corollary 3.2. For a finite algebra A that is semi-affine with respect to an Abelian group A= (4;4), the
algebra A* is affine if and only if A is affine.

Proof. If A* is affine, that is, x —y + 2 € CloA*, then z —y + 2 + a9 € Clo A for some ag € A.
By identifying variables we get that z + a9 € CloA. Hence, in view of the finiteness, it follows that
z—y+ 2 € CloA, that is, A is affine. The converse implication is obvious. 3

The claims in the following two lemmas are well-known and easy to check.

Lemma 3.3. For an Abelian group A= (A4;4), if © is an equivalence relation on A such that © is preserved

-~

by all permutations in T(A), then © is a congruence of A.
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Lemma 3.4. For a vector space K;l\ = (A;+,K), if © is an equivalence relation on A such that © is
preserved by all permutations in P(xA), then © is a congruence of xA.

We will need a characterization of strongly Abelian algebras in terms of compatible relations.

Lemma 3.5 An algebra A is strongly Abelian if and only if A has a 4-ary compatible relation p such that
(SA1), (a,b,a,b) € p and (a,b,c,c) € p for all a,b,c € A, and
(SA2), for any elements a,x,y € A, (a,a,z,y) € p implies © = y.

Proof. The subalgebra of A* generated by the quadruples of the form (a,b,a,b) and (a,b,c,c) with
a,b,ce Ais

o ={(f(u,a), f(v,b), f(w,¢), f(v,€)): n>2, 1 <k<n, u,0€A* abece A" feClo,A}.

Clearly, o is the least 4-ary compatible relation of A satisfying condition (SA1),, moreover, A is strongly
Abelian if and only if ¢ has property (SA2),. This implies the claim. o

Proof of Theorem 2.4. Suppose A satisfies the assumptions of the theorem. If A is affine then clearly
Kk A* is also affine. Assume from now on that A is not affine, and hence by Corollary 3.2 A* and its reduct
AV are not affine either. It is clear from Lemma 3.1 that (AV)* is term equivalent to A*, whence also
&k (AV)* is term equivalent to x A*. Therefore, to prove that xA* is not affine, there is no loss of generality
in replacing A with AV, or equivalently, in assuming that {0} is a subalgebra of A.

Because of the translations, A* has neither proper subalgebras, nor compatible central relations, nor
compatible bounded partial orders. Obviously, A* is not quasiprimal. Now it follows from Theorem 2.3 that
either A* is not simple, or one of conditions (2.3.c) or (2.3.d) holds for A* (in place of A). Making use of
Lemma 3.5 we conclude that A* has a compatible relation p where

(I) p satisfies conditions (SA1), and (SA2),, or
(IT) p is an at least ternary totally reflexive, totally symmetric relation distinct from the full relation,
or
(IIT) p is a nontrivial equivalence relation.
The assumption that {0} is a subalgebra of A ensures that multiplication with each element of K — {0} is
an automorphism of Kg as well as of A.
For p as above, say p is g-ary, and for any element ¢ € K — {0}, put

pe ={(ao,-..,a4-1) € A%: (cao,...,ca,_1) € p}.

It is easy to check that each p., and hence their intersection 7 = ] ¢ {0} Pe 85 well, inherits the following
properties of p:
— it is a compatible relation of A; R
— it is closed under the translations in T'(A) (acting componentwise), i.e., it is a compatible relation
of the unary algebra (A4; T(A\)),
— it is of the same kind (TI), (II), resp. (III) as p, allowing the possibility 7 = A in case (III).
In addition, 7 is closed under the componentwise action of each multiplication with an element ¢ € K — {0}.
Thus 7 is a compatible relation of xA*.
In cases (I) and (II) this shows that g A* is not affine, as was to be proved.
In case (III) each p. with ¢ € K — {0} is a nontrivial congruence of A*, and 7 is a congruence of g A*.
By Lemma 3.3 this means that each p. with ¢ € K — {0} is a nontrivial simultaneous congruence of A and
2, while 7 is a simultaneous congruence of A and KA. By the assumptions of the theorem, 7 must be a
trivial congruence, hence 7 = A.
Let B=A/p, B= 2/ p. Tt is straightforward to check that B is semi-affine with respect to B.
For any element ¢ € K — {0}, the mapping

¢c: Alpe > Alp=B, afpc+> calp
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is an isomorphism A/p, — A/p = B as well as an isomorphism 4/p. — A/p = B. Now let d be a generating
element of the cyclic group K — {0}. The family {p.: ¢ € K —{0}} = {pgr: 0 < k < |K|— 2} of congruences
yields a subdirect representation

|K|-2

A— H Alpg, aw— (a/p,alpa,alpaz,...,alpgxi-2),
k=0

and the same mapping embeds also A into |in|0—2 A\/ pgr- Using the isomorphisms pg (0 < k < |K| — 2)
we can replace each component with B (resp. B), to get an embedding

o A= BIKIZ2a s (afp,daf/p,d®afp,...,d"173a/p,d 1 72a/p),

which is simultaneously an embedding of A into B/X/=2. Note that the (| K| — 1)-tuple assigned by ¢ to the
element da is (da/p,d*a/p,d*a/p,...,d '=2a/p,a/p), and this (|K|—1)-tuple arises from the image of a by
a cyclic permutation of the components.

For convenience, we will identify A with its image under ¢.

Suppose now that the previous argument was carried out for a p which is maximal among the nontrivial
congruences of A that are also congruences of A. Hence B has no nontrivial congruence which is a congruence
of B. Since A is a subdirect power of B and is not affine, therefore B cannot be affine. Repeating the first
half of this proof for B in place of A we see that B* has a compatible relation p’ of type (I) or (II). Let ¢
denote the arity of p’ (¢ = 4 in case (I), ¢ > 3 in case (II)), and consider the g-ary relation £ = p/%/=1 N A4
on A (here pKI=! denotes the relation defined componentwise by p on the set BIXI=1). Clearly, in case (I)
& is of type (I), while in case (II) £ is of type (II). The operations of A* act componentwise, therefore £ is a
compatible relation of A*. Since the operation ‘multiplication by d’ on A is reflected as a cyclic permutation
of the components, therefore £ is compatible with this additional operation as well. Thus £ is a compatible
relation of x A*, hence g A* is not affine. o

4. Some subgroups of general wreath products

Let G C S4 be a permutation group acting on a set A. The orbits of G are the minimal nonvoid subsets
of A that are closed under all permutations in G. Clearly, the orbits of G yield a partition of A. We say that
G is transitive on A if A is an orbit of G, and G acts regularly on A if it is transitive and the non-identity
permutation in G have no fixed points.

Let k£ and m be arbitrary positive integers, and let P be a subgroup of S,,. Clearly, the unary term
operations h%[go, ..., gm_1] of (k;Sk)™ with o € P form a permutation group acting on the set k™. In
group theory this group is called the general wreath product of Sy, and P, and is denoted by S Wr P (cf. [11;
p. 272]). In Sy, Wr P the elements h'%[gy, ..., gm—1] form a normal subgroup (isomorphic to the mth direct
power of Sj), which will be denoted by (Sk)™, while the elements h™[id, . .., id] form a subgroup (isomorphic
to P), which will be denoted by P. Obviously, P is a complement of (Sj,)™ in Sy Wr P in the sense that
(Sk)™ N P = {id} and (S;)™P = Sj, Wr P.

If P is a regular permutation group on m, then Sy Wr P essentially coincides with the so-called complete
wreath product of Sy, and P (cf. [11; pp. 270, 272]).

The following proposition was used already in [18], however, for the readers’ convenience the proof is
included here. Reference [11] which makes the proof relatively short was pointed out to me by P. P. Pilfy.

Proposition 4.1. Let H be a subgroup of the permutation group Sy Wr Sy, where q is a power of a prime
number p and m is an arbitrary positive integer. If H is an elementary Abelian p-group which acts regularly
on g™, then H is a subgroup of (S,)™.

Proof. Let H be a subgroup of S; Wr S, satisfying the assumptions of the lemma, and let P denote
the group of component mappings of permutations in H. Thus H is an elementary Abelian p-subgroup of
Sq Wr P acting regularly on ¢™. Let Iy, ..., I;_; denote the orbits of P. Then each member h%[go,. .., gm—1]
of H acts componentwise, via h?u[g;: i € I[] (I = 0,...,t — 1) on the set ¢™ = ¢° x ... x ¢/*~1. For
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0<1I<t—11let H® consist of the restrictions of all members of H to the component ¢* of the base
set. Clearly, H(") is an elementary Abelian p-subgroup of S, Wr St,, which acts transitively on ¢. By the
well-known fact that every commutative, transitive permutation group is regular, it follows that each H®
(1=0,...,t—1) is a regular permutation group. Consequently, for cardinality reasons, H splits into a direct
product of these groups H ) (l=0,...,t —1). Hence it suffices to prove that if P is transitive, then m = 1.

Assume that P is transitive. Since P is a homomorphic image of H, therefore P is an elementary
Abelian p-group. From the transitivity and commutativity of P it follows that P is regular as well.

Consider the subgroup H = H N (S,)™ of H. Since H is finite and Abelian, it has a subgroup P that is
a complement of H in H (that is, H N P = {id} and HP = H). Clearly, for each o € P, P contains exactly
one permutation with component mapping o. Thus P is a complement of (S,)™ in the complete wreath
product S; Wr P. It is known (cf. [11; 10.7 in Chapter 2]) that any two complements of (S;)™ in S, Wr P
— specifically P and P — are conjugate. Since all assumptions on H and the required conclusion as well
are invariant under conjugation, we may assume without loss of generality that P C H. However, as H is
Abelian, H is contained in the centralizer of P in S, Wr P, which is easily seen to be equal to

{r°lg,...,9]: g€ Sy, 0 € P}

(cf. [11; Exercise 2 on p. 277]). Obviously, this group is transitive only if m = 1, completing the proof. o

A permutation group G acting on a set A will be called (for the lack of a better name) a vector space
group if G = P( K]l\) for some vector space kA on A. Clearly, a group of this form is transitive, moreover,
it is non-regular unless | K| = 2, and every nonidentity permutation in G has at most one fixed point. For
a € A the stabilizer of a in G is the subgroup of G consisting of all permutations in G fixing a, and is denoted
by G,. Clearly, in a vector space group G = P(x A)

— the subgroup T(A\) of all translations is the normal subgroup of G consisting exactly of the identity
and all fixed point free permutations, and this subgroup uniquely determines the + of the Abelian group A
once the neutral element 0 is fixed;

— the multiplications by nonzero scalars in K are exactly the members of the stabilizer G of the
element 0. R

Thus, up to the choice of 0, the vector space kA can uniquely be reconstructed from the group G =
P(kA).

Proposition 4.2. Let G be a subgroup of the permutation group Sq; Wr Sy, where q is a power of a prime
number p and m is an arbitrary positive integer. If G is a vector space group on q™, then G is a subgroup

of (Sg)™.
For the proof we need two lemmas.

Lemma 4.3. If the minimal polynomial of an element a of the Galois field GF (p™) is of the form f(z") for
some integer r > 1 and polynomial f € Z,[x], then a does not generate the multiplicative group of GF(p™).

Proof. Suppose the assumption of the claim holds. If the degree of the element a over Z, (i.e. the
degree of its minimal polynomial f(z")) is less than n, then the conclusion is obvious. So assume the degree
of a is n, and hence r|n, say n = rs. Since f(z") is irreducible over Z,, so is f. Thus f is the minimal
polynomial of the element a”. Consequently the degree of a” is s, i.e. the subfield Z,(a") of GF(p"®) has
order p®. Hence for the multiplicative order of a” we have o(a”)|p® — 1. Thus

pS—lzo(ar)zﬁz@,

yielding that
ola) < (P —Dr< (@ — D)@V +p P 4 4p+1)=p—1=p" 1.
This proves that a cannot be a generating element of the multiplicative group of GF(p"). o
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Lemma 4.4 Let (g;+) be an elementary Abelian p-group for some prime p, and let A= (g; +)™ for some
integer m > 1. Consider an automorphism of A of the form h = h%[go, ..., gm—1] for some go,...,gm—1 €
Aut (¢;+), o0 € Sm. If h belongs to a subfield of End A and o # id, then the minimal polynomial of h over

Z, is of the form f(z") for some integer r > 1 and polynomial f € Z,|[x].

Proof. Suppose h belongs to a subfield K of End A (K is of characteristic p), and let, say, (01 ... r—1)
with 7 > 1 be one of the disjoint cycles of . Consider an element of ¢™ of the form & = (0,...,0,u,0,...,0)
with u in the (r — 1)st coordinate, and apply repeatedly h to it. It is straightforward to check by induction
that for t > 0and 0 < ¢ <r —1 we have

(r—1—4)th coordinate
N

.

(T) hrt+’i(§) = (07 ety 07 (grfi .- nglgt)(u), 07 R 0) where g=9091---9r—-1-

Let us denote the minimal polynomial of h over Z, by

fl@)= ) ¢zl € Z,lal,

0<j<n

and for 0 <¢<r—1 put

filz) = Z cjv’ € Zyx).

0<j<n, j=i (mod r)

Clearly, fo(h),... fr—1(h) belong to K, and we have

S ) =fm) =0 (K.

0<i<r—1

Thus

(1) > LWE) =) =0 (eq™).

0<i<r—1

In view of (}), for 0 < ¢ < r — 1, all coordinates of the m-tuple f;(h)(£), except possibly the (r — 1 — i)th
coordinate, equal 0. Hence (I) yields that

(r—1)st

fo(h)(&) =0 forall £=(0,...,0, “u " ,0,...,0) with ue€gq.

Since fo(h) € K and all nonzero members of K are automorphisms of A, we conclude that fo(h) = 0. Here
fo is not the zero polynomial (as ¢y # 0), and its degree does not exceed the degree of f, therefore fo = f,
completing the proof. o

Proof of Proposition 4.2. Let G be a subgroup of S; WrS,,, which is a vector space group, say
G = P(KE) for some vector space KA = (¢™;+,K), and let H = T(A\) Clearly, the assumptions of
Proposition 4.1 hold for H, therefore H is a subgroup of (S,)™. For 0 <1 < m — 1 let H® consist of
the restrictions of all members of H to the Ith component of the base set ¢™. As we have seen in the first
paragraph of the proof of Proposition 4.1, each H® (1 =0,...,m —1) is an elementary Abelian p-group
acting regularly on ¢™, and H splits into a direct product of these groups. R

Let (g;+,0) be a fixed elementary Abelian p-group on ¢, and consider the zero element of A:
0 = (00,---,0m—_1)- For 0 < i < m — 1 there exist elementary Abelian p-groups (q;+;,0;) such that
H® = T((¢g;+i,0;)). Fixing any isomorphisms 7;: (g; +;,0;) — (g;+,0) we get that the permutation
himg,. .., Tm_1] € Sq Wr Sy, conjugates H = T(A) into T((g; +,0)™).

Since the assumptions on G as well as the conclusion of the lemma are invariant under conjugation,
we may assume that the additive group of the vector space kA with G = P(xA) is A = (¢;+)™ for a
fixed elementary Abelian p-group (g;+) on ¢. The multiplications by nonzero scalars in K are exactly the
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members of the stabilizer G of the zero element 0 = (0,...,0) of A= (g; +)™. Thus Go C End A, and Gy
together with the zero endomorphism forms a field isomorphic to K. Consequently Gy is a cyclic group.
On the other hand, Go C S; Wr S,,. Let h = h%[go,-..,9m-1] (0 € Sm, 9o,--.,9m—1 € Sy) be a generating
element in Go. It is straightforward to check that go,...,g9m—1 € Aut (¢g; +). Now Lemmas 4.3 and 4.4 show
that o = id, whence Gy C (S;)™. Since H U Gy generates G, it follows that G C (S;)™. o

5. Proof of Theorem 2.1

Let U be a g-element set (g > 3), and let m > 1. The kernels of the m distinct projections U™ — U form
a g-regular family of equivalences on U™, which will be called the standard q-regular family of equivalences
on U™; the corresponding g-regular relation is called the standard g-regular relation on U™. It is well known
that the mth matrix power Ul™ of any unary algebra U = (U; F) admits the standard ¢-regular relation as
a compatible relation.

In the lemma below we collect some well-known facts on finite algebras admitting g-regular compatible
relations.

Lemma 5.1. Let A = (A; F) be a finite algebra, and let T = {Oy,...,0n_1} be a g-regular family of
equivalence relations on A such that At is a compatible relation of A.

(5.11) T/O1 ={O¢/Or,...,0,m_1/O71} is a g-regular family of equivalences on A/OT, and there exists a
bijection @: A/OT — ¢™ carrying T'/Or into the standard q-regular family of equivalences on ¢™.

(5.1ii) If f € F is an n-ary operation whose range meets each block of some ©;, then there exist j,l
0<ji<m-=-1, 0<1l<n—1) such that for all xo,...,Tn-1,Y0,---,Yn—1 € A we have

(*) f(xOr--:wn—l)@i f(yO:---:yn—l) g T ®jyl'

(5.1.il) If A is a surjective algebra, then
(1) ©r is a congruence of A,
(2) the relation Arje, is a compatible relation of A/Or, and
(3) the bijection  yields an isomorphism between A /Ot and a reduct of the matriz power (g; Sy)™!.

The proof of (5.1.ii) can be found, e.g. in [9; Lemma 7.3]. In fact, what is proved there is the implication
< in (x) for the case when the equivalences in T are assumed to have at least ¢ blocks, rather than exactly
g blocks, each; however, if the equivalences have the same number of blocks, then = cannot fail in (). The
claims in (5.1.iii) are well-known consequences of (5.1.i)) and (5.1.ii); see [10], [8]. We note that Rousseau
[10] (cf. also [8]) proved (5.1.iii)(3) for the case O = A, however, in view of (5.1.iii)(1)—(2) the more general
claim follows immediately from this special case.

Lemma 5.2. Let Kﬁ be a finite vector space, and let T = {Oo,...,Om_1} be a q-regular family of equiv-
alences on A such that Ar is preserved by all permutations in P( Kﬁ) Then

(5.2.1)) ©qg,...,0,,_1, and hence their intersection O as well, are congruences of KA\, and

(5.2.i) for any vector space (¢;+,K), there exists an isomorphism KA\/QT = (g;+,K)™ carrying
T /Ot into the standard q-regular family of equivalences on ™.

-~

Proof. Consider the unary algebra A = (A; P(xA)). By our assumption Ar is a compatible relation of
A. Since A is surjective, we get from Lemma 5.1 (5.1.iii)(1) that ©r is a congruence of A. So by Lemma
3.4 O is a congruence of xA. Applying Lemma 5.1 (5.1.1) and (5.1.iii)(3) we get also that there exists an
isomorphism ¢ between the algebra A/Or = (A/0; P( KA\/ 0)) and a reduct of the matrix power (g; S,)!™
such that ¢ carries T/Or into the standard g-regular family {®g,...,®,, 1} of equivalences on ¢™. Let
G denote the subgroup of Sy= corresponding to the group P( K;l\/ 0©) under . Clearly, G is a subgroup of
Sq Wr S, Furthermore, by construction, G is a vector space group on ¢™. Now Proposition 4.2 states that
G C (Sg)™, whence it follows that ®,...,®,, 1 are congruences of (¢";G). Via the isomorphism ¢ we get
that ©¢/Or,...,0,_1/0O1 are congruences of A/Or, and hence Oy, ..., 0,,_1 are congruences of A. Now
by Lemma 3.4 we conclude that (5.2.i) holds.



Since the family T of congruences of KA is g-regular, the natural embedding
KA/Or = kA/Og X ... x KA/Op_4

is an isomorphism, and all quotient spaces on the right are g-element vector spaces over K. Up to isomor-
phism, we can replace them with the given space (¢; +, K), and the requirements in (5.2.ii) obviously hold.
o

Lemma 5.3. Let A be a finite algebra that is semi-affine with respect to a vector space KA\ = (4;+,K),
and let T be a |K|-regular family of congruences of KA\ such that A1 is a compatible relation of x A*. Then
(5.3.1) O is a congruence of A, and
(5.3.i) if O = A, then there exists a vector space isomorphism kA (g K)™ which is simultaneously
an isomorphism between A and a reduct of (K;Poly (g K))™.

Proof. Let T = {0y, ...,0,_1}. By the previous lemma these equivalences are congruences of KA\, and
S0 is their intersection Or.

To prove (5.3.1) let f be an n-ary operation of A, and let xo,...,Zn—1,Y%0,---,Yn—1 € A be arbitrary
elements of A such that z; Oy, for all 0 <k <n —1. Let 0 <4 <m — 1. Assume first that the range of
f meets at least two blocks of ©;. Since xA/©; is a one-dimensional vector space and A is semi-affine with
respect to Kﬁ, it is clear that the range of f meets each block of ©;. Thus we get from Lemma 5.1 (5.1.ii)
that f(zo,.-.,%n-1)0i f(Yo,---,Yn—1). The same conclusion is obvious, if the range of f meets only one
block of ©;. Since i was arbitrary, we conclude that f(zo,...,Zn_1)O1 f(¥0,.--,Yn—_1), as required.

Now let O = A. By Lemma 5.2 (5.2.ii) there exists an isomorphism KA > (k K)™ carrying T into
the standard |K|-regular family of equivalences on K™. Let B = (K™; F') be the algebra corresponding to
A under this isomorphism. Notice that the standard |K|-regular relation on K™ is a compatible relation
of B, and apply Lemma 5.1 (5.1.ii) to each operation f of B. Let, say, f be n-ary. For b € ¢™ the
components of b will be denoted by b°,...,6™ 1. Let 0 < i < m — 1 be arbitrary. As in the previous
paragraph, we see that the set of ith components of f(by,...,b,—1) as the arguments run over all elements
of K™ is either K or a one-element set. In the first case we get from (5.1.ii) that there exist indices
Jisli (0 < ji <m—1, 0<1; <n-—1)and a permutation g; € Sk such that the ith component of
f(bo,...,bn 1) equals g;(b]}) for all bo,...,b, 1 € K™. In the second case the same holds with g; constant
(and ji,l; arbitrary). Thus f = h{[go,...,gm 1] where o and p are the mappings o:m — m, i — j; and
p:m — n, i+ l;. Hence B is a reduct of (K; Sk U CK)[m]. Taking into consideration that B is semi-affine
with respect to (x K)™, one can easily derive that B is a reduct of (K;Pol; (x K))[™, completing the proof
of (5.3.ii). o

Now we are in a position to prove Theorem 2.1.

__ Proof of Theorem 2.1. Let A be a finite algebra that is semi-affine with respect to a vector space
kA = (A;+, K), and consider the algebra g A*. Because of the translations, x A* has no proper subalgebra,
no compatible bounded partial order and no compatible central relation. If xA* is not simple, then by
Lemma 3.4 (2.1.b) trivially holds, so assume g A* is simple. Now we can apply Theorem 2.3 for g A*. Since
a semi-affine algebra cannot be quasiprimal, condition (2.3.b), (2.3.c) or (2.3.d) in Theorem 2.3 holds for
KA*.

Assume first that (2.3.b) holds for g A*, that is k A* is affine. Since g A* is simple, A has no nontrivial
congruence which is a congruence of KA. Hence, by Theorem 2.4, (2.1.a) holds for A.

Now let us consider the case when (2.3.c) holds for x A*, that is, there exists an isomorphism ¢ between
kA* and a reduct of the matrix power (2;75)"™. Let G denote the subgroup of Sym corresponding to the
group P( KA\) under . Clearly, G is a subgroup of Sy Wr S,,, and G is a vector space group on 2™. By
Proposition 4.1 we have G C (S2)™, so for cardinality reasons G = (S2)™ and |K| = 2. Let w be the image
of 0 € A under ¢, and let 7 be the translation x + w of the Abelian group (2;+)™. It is straightforward
to check that the mapping ¢7 is a vector space isomorphism x A — (2;+, K)™ which is simultaneously an
isomorphism between A and a reduct of (2;7%)™. Identifying the set 2 with K in the natural way we get
kK from (2;+, K), and (K; Pol; (k K)) from (2;T5). Hence (2.1.c) holds with |K| = 2.
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Finally, suppose condition (2.3.d) holds for x A*, and let T be a g-regular family of equivalences on A
such that Ar is a compatible relation of gk A*. Obviously, At is preserved by all permutations in P( KX), SO
by Lemma 5.2 T' consists of congruences of KA. Tt follows now that ¢ is a power of |K|. If ¢ > |K]|, then
(2.1.d) trivially holds, while if ¢ = |K|, then by Lemma 5.3 and by the simplicity of A we have ©7 = A and

condition (2.1.c) holds for A. o

6. Applications of Theorem 2.1

First we discuss two results on finite simple algebras of type 2.

By the basics of tame congruence theory ([1]), a finite simple algebra is of type 2 if and only if it is
Abelian but not strongly Abelian. A remarkable result in tame congruence theory is that every finite simple
algebra of type 2 is representable as a subalgebra of a finite semi-affine algebra:

Theorem 6.1. ([1; Theorem 13.5])  For every finite simple algebra S of type 2 there exists a finite algebra

A such that A is semi-affine with respect to a vector space x A, and S is isomorphic to a subalgebra S' of A
(such that 0 € S' and S’ generates the vector space xA).

Such a triple (A, KA, S") will be called a representation of S.

(A) Surjective finite simple algebras of type 2

The fact that all surjective algebras among the finite simple algebras of type 2 are affine was proved
earlier separately for those algebras which do not have, and for those which have a trivial subalgebra (cf.
[16] and [17]). Now Theorem 2.1, combined with Theorem 6.1 allows a unified treatment.

Theorem 6.2. [16, 17] Ewvery finite, simple, surjective algebra of type 2 is affine.

Let S be a finite simple algebra of type 2. We want to show that if S is surjective, then it has a
representation where the semi-affine algebra A is also surjective. To this end we need a slightly stronger
condition than the one in the parentheses in Theorem 6.1. Moreover, when applying Theorem 2.1 for A it
will be useful if (2.1.b) fails for A. Therefore we start with a modification of Theorem 6.1.

Theorem 6.3. Every finite simple algebra S of type 2 has a representation (A, KA\, S") such that
(6.3.1) for every element a € S' the set S' — a generates the vector space kA, and
(6.3.ii)) A has no nontrivial congruence which is a congruence of xA.

Proof. In the proof of [1; Theorem 13.5] the construction yields a representation (A, KA, S ) where
kA= (kV)k, kV is a 1-dimensional vector space, k > 1, and S’ is a subset of V¥ containing (0, ...,0) such
that the projection mappings

6: 8" =V, (°,... 0" )=t (i=0,...,k=1)

are linearly independent, as members of the vector space ( KIA/)S'.

(6.3.1) can be verified in the same way as its special case a = (0,...,0) in [1]. Indeed, let
a = (a°...,aF"1). Suppose S’ — a is contained in a proper subspace of (xV)¥. Then there exist ele-
ments co, ..., c,_1 € K, not all 0, such that for all s = (s%,...,s¥"!) € S’ we have Zf;ol ci(st—a') = 0. For

s = (0,...,0) this implies """ ¢;a? = 0. Hence

k-1
Zcisi =0 forall s=(s...,s¢1)es"
=0

This means that in the vector space ( KXA/)S' the equality Ef;ol ¢;0; = 0 holds, contradicting the construction
of S'. This proves (6.3.i).

Consider now arbitrary representation (A, Kﬁ, S’) of S, and assume A has a nontrivial congruence ©
which is a congruence of KA. Tt is straightforward to check that in this case the algebra A /O is semi-affine
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with respect to the vector space KX/ ©. Obviously, the restriction ©|g of © to S’ is a congruence of S'.
Since 0 € S’ and S’ generates kA, therefore S' is not contained in a single block of ©; i.e. , ©|g is not the
full relation. As S’ is simple, ©|s» = A. Hence (A/O, kA/0,8'/0|s) is again a representation of S.
Clearly, whenever the representation (A, xA,S') of S satisfies (6.3.i), so does (A/O, KA/ 0,8'/0|s).
Consequently, among all representations (A, KA, S ) of S satisfying (6.3.1), every representation for which
|A| is minimal possesses property (6.3.ii) as well. o

Lemma 6.4 Let S be a finite simple algebra of type 2, and let (A, Kﬁ, S') be a representation of S satisfying
condition (6.3.1). If S is surjective, then so is A.

Proof. Let f be a fundamental operation of S, say f is n ary. The operation of A correspondmg
to f, denoted fA, is an n-ary polynomial operation of (End A) , say fA(zo,.. . Tpo1) = Zz o TiTi +a

(ro,...,mn_1 € Endx A, a € A). Since 0 € S', we have a = fA(0,...,0) = f(0,...,0) € S'. Let Imr; denote
the range of r;; it is a subspace of g A.
Suppose now that f is surjective. Then

n—1
S'=fA(8,...,8) => riS' +a,

implying that S’ — a is contained in the subspace EZ-”:_OI Imr; of KA. By assumption S’ — a generates K]l\,
therefore Z?:_()l Imr; equals gk A. Hence fA is surjective. o
Now we are in a position to prove Theorem 6.2.

Proof of Theorem 6.2. Let S be a finite, simple, surjective algebra of type 2, and consider a represen-
tation (A, xA,S') of S satisfying both conditions in Theorem 6.3.

We show that conditions (2.1.b)—(2.1.d) in Theorem 2.1 fail for A. (2.1.b) fails in view of (6.3.ii), and
(2.1.¢) fails because otherwise A, and hence S, too, would be strongly Abelian. Finally, assume (2.1.d) holds
for A. Clearly, the equivalence relation O is a congruence of kA. Now we make use of the fact that by
Lemma 6.4 A is a surjective algebra. It follows from Lemma 5.1 (5.1.iii) (1) that O is a congruence of A as
well, hence by the assumption (6.3.ii) we conclude that ©7 = A. Thus (5.1.iii) (3) yields that A, and hence
also S, is strongly Abelian, which is impossible.

Consequently, by Theorem 2.1, A is affine with respect to KA Therefore the subalgebra S’ of A is an
affine algebra, and hence S is also aﬁine. 3

(B) Finite simple algebras of type 2 generating minimal varieties

A variety V is called minimal if it has exactly two subvarieties: V itself and the trivial variety. Ob-
viously, every locally finite minimal variety is generated by a finite simple algebra having no nontrivial
proper subalgebra. Recently, while investigating the problem which finite simple algebras of type 2 generate
residually small varieties, K. Kearnes, E. W. Kiss, and M. Valeriote noticed the following interesting fact:

Theorem 6.5. [3] Ewvery finite simple algebra of type 2 that generates a minimal variety is affine.

Here we derive this result from Theorems 2.1 and 6.1. For an algebra A the variety generated by A is
denoted by V(A).

Lemma 6.6. Let S be a finite simple algebra of type 2, and let (A, K;l\, S') be a representation of S. The
algebra A generates the same variety as S.

Proof. Since S is isomorphic to the subalgebra S’ of A, it suffices to prove that every identity that
holds in S', holds in A. Let ¢ and ¢ be arbitrary n-ary terms in the language of A (n > 1); the corresponding
term operations are denoted as ¢4, resp. T. Let, say, t* = 3.7 " riz; + a and 74 = 7 7z + .

Looking at the n-tuples (0,...,0) and (0,...,0,s,0,...,0) from (S")" we see that if the identity t = ¢
holds in S’ then a = a@ and the endomorphisms r;,7; (i = 0,...,n — 1) of KA coincide on S'. Since S’

generates Kﬁ, we get that r; = 7; for alli = 0,...,n — 1, and hence the identity ¢ = # holds in A. o
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It is well known that for an algebra A the subvarieties of V/(A) are in one-to-one correspondence with
the congruences of the clone CloA of A. Therefore A generates a minimal variety if and only if every
homomorphism of Clo A into the clone of a nontrivial algebra is one-to-one.

We will need a clone homomorphism which is implicit in [4].

Let A be a finite set, and let T = {Oq,...,0,,,—1} be a g-regular family of equivalence relations on
A. The clone consisting of all operations on A preserving Ar will be denoted by Cy. The other clone
playing a role is the clone of the mth matrix power of the two-element unary algebra U = (2;0) whose only
fundamental operation is the constant with value 0.

In [4] it is shown that U™, made into an indexed algebra in an appropriate way, generates one of
the proper subvarieties of the variety generated by the algebra (A;Cr). Our aim is to describe the clone
homomorphism witnessing this fact.

Let f be any operation in Cr, say f is n-ary. We put

It = {i: 0 <i<m—1, the range of f meets each block of ©;}.

By Lemma 5.1 (5.1.ii), to each i € Iy there correspond indices j = j;, I =0, (0<j<m—1,0<I<n-1)
with property (). It is easy the see that these indices are uniquely determined. This yields two mappings

of: If—>m, 1= Ji, and Py If—)n, i
with the following property: for every ¢ € Iy,

f('Z'O;---;xn—l)(-)if(yoa---;yn—l) < Lipy @’io'f Yipg -

Lemma 6.7. The mapping

id ifielf

x: Cr = CloUM™, £ hilgos - s gm-1] with ol|r, = oy, pli, = pg, and g; = {0 otherwise

is a clone homomorphism.

Proof. Notice first that x is well-defined, since for each i € m outside Iy where the values of o and
are arbitrary, g; is constant, and hence the operation hj [g0,-- -5 gm—1] is independent on these values.

It is straightforward to check that for each n» > 1 and 0 < ¢ < n — 1 the mapping x sends the ith
n-ary projection from Cz into the ith n-ary projection from CloUl™l. We verify that for each k,n > 1, x
commutes with the clone operation ‘substituting k-ary operations into an n-ary operation’.

Let f be an n-ary, and f; (0 < j < n—1) be k-ary operations from Cr, and consider the k-ary operation
f=f(fo,..., fa1). Furthermore, let

fX:hZ[QO;---;gmfl]; ij:h;é[go,ja"'aQM*l,j]a fX:h‘g[gOV"agmfl]'

For 0<i<k—1, f=f(fo,...,fn_1) meets each block of ©; if and only if
(1) f meets each block of 0,
whence for all elements zg,...,Zx_1,%0,---,Yr—1 € A we have

F(@os- - 2k-1) i f(Yo, - - Yk—1)
& f(folmoy. s 2k—1)y--- )Oi f(folyoy--- Uk—1),--- )
< fip(xo,- -, Tk-1) Oio fin(Yos- -5 Yk—1), (o)
and

(2)  fi, meets each block of ©;,,
whence (o) can be continued with

A4 Tiov;, (")io'r,-,u Yiov;, -
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Thus
If: {Z € Iy: iUGIfm}, 5|1f=(7f: If—>m, 1 10Ty, ﬂ'lf:l‘l’f: If—)k, 1 10V,

These data uniquely determine the operation fx.
Now let us compute the operation (fx)(fox,-- -, fa—1X):

(fX)(fOXa LR fn—lX)($07 ) wk—l)
= h;[go, .e 7gm—1](h;g [g()()7 ee ,gm_lﬁo](.’ll'(), e ,.’L'k_l), ey h:;::i[go,n_l, e ;gm—l,n—l](woa ce ,.’L'k_l))
(m—l)Tn_l )))

(m—l)To OTn_l
)7 .- agmfl,nfl(x(mfl),,n_l

= h;[.QO: .- 7gm71]((900 (mgzg)7 s 7gm*170(m(m71)uo))7 RN (go,nfl(xo,/n_l

OoTopu )
7

(m—=1)07(m—
=(9090a,0u($0m,0” Lo o).

R 7gmflg(m—1)0',(m—1)u('77(7”_1)0,,(7”_1)‘u

Clearly, for 0 < ¢ < m — 1 the mapping gigis,i, is the identity if and only if ¢ € Iy and ioc € If,,, or
equivalently, if 7 € If. Therefore g;gis,ip = gi for all 0 <7 <m — 1, implying that

(fX)(fOX; .- 'an71X) = hg[goi cee ngfl] = fX = (f(f07 .. 'anfl))XJ

as required. o

It is worth noting, though we will not need this fact later on, that the homomorphism x in Lemma 6.7
is surjective.

After these preparations we prove Theorem 6.5.

Proof of Theorem 6.5. Let S be a finite simple algebra of type 2, and consider a representation
(A, kA,S') of S satisfying both conditions in Theorem 6.3. By Lemma 6.6 V(S) = V(A). Let us apply
Theorem 2.1 for A. In the same manner as in the proof of Theorem 6.2 we see that conditions (2.1.b) and
(2.1.¢) fail. Therefore it suffices to show that if (2.1.d) holds, then the variety V(A) is not minimal.

Assume A has a compatible relation Ar for some g-regular family T' = {0y, ..., 0,,_1} of congruences
of KA\ with ¢ > | K]|. Clearly, Clo A is a subclone of Cr, so the homomorphism x in Lemma 6.7 restricts to a
clone homomorphism Clo A — Clo U™, Thus, if the fundamental operations of A are f, (k < @), then the
reduct B = (2 {fe.x: & < a} of U™ is contained in the variety V(A). To show that V(B) is a proper
subvariety of V' (A), we have to verify that x is not one-to-one on Clo A.

Since A is a finite simple algebra of type 2, its induced minimal algebras are polynomially equivalent to
one-dimensional vector spaces. Therefore A has a non-constant ternary polynomial operation dy such that
for arbitrary elements u,v in the range U of dy we have do(v,v,u) = u = do(u,v,v). Let us construct the
following polynomial operations of A: do(z) = do(x,z, ) and d(z,vy, 2) = do(do(z),do(y),do(z)). Obviously,
do(u) = u for all u € U, hence d and dy coincide on U, moreover,

d(a,a,u) =u =d(u,a,a) forall ueU, a€A.
For some n > 3, A has an n-ary term operation f and elements as,...,a,—1 such that
f(zo,m1,T2,0a3,...,a,_1) = d(xo,x1,22) for all mg, 1,15 € A.

The properties of d ensure that d(z,y, z) = ex — ey + ez + a for some e € End kA and a € A with €2 = e,
ea = 0, and hence

f(xo,21,%2,23,...,Zn_1) = eXg — €Ty + €Ty + 7323 + ...+ rp_1Tp_1 +

for some r3,...,7n_1 € End x A and b € A. Making use of Lemma 5.1 (5.1.ii) one can easily see that for each
i € Iy (if any) we must have ex ©; ey for all z,y € A, and iuy € {3,...,n — 1}. Hence fx does not depend
on its variables xg,z1,z>. Now it is clear that for the n-ary term operation f'(zg,z1,%2,%3,.--,Zn_1) =
exg — exg +exs +7r3x3 + ...+ rp_1T,_1 + b of A arising from f by identifying its variables xg,x1, we have
f'# fand f'x = fx, completing the proof. o
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(C) Maximal subclones of Pol ( (Bnd x ) A\)

Let K be a finite field, and KK = (A;+, K) an m-dimensional vector space over K. Our aim is to

determine the maximal subclones of the clone P( KA\) = Pol ( A\) For any coset S of a subspace of

(End g A)
kA, Rs(kA) will denote the clone consisting of all operations f € P(xA) such that f(s,...,s) = s for all
s € S, and for any subspace U of x A, Ty(xA) will denote the clone consisting of all operations f € P(xA)
which admit every translation  + u with u € U as an automorphism. Clearly, P(xA) = T{o}(x 4).

We shall need a description of the clones of simple affine algebras. Note that if A is a finite simple
algebra which is affine with respect to an Abelian group A, then A is an elementary Abelian p-group for
some prime p.

Theorem 6.8. [14] For every finite simple algebra A = (A; F) which is affine with respect to an elementary
Abelian p-group A = (A;+) (p prime), there exist a finite field K and o vector space kA = (A;+,K) such
that

CloA =Rs(kA) for a coset S of a subspace of kA,

or
CloA = TU(KA\) for a subspace U of xA.

K and K;l\ are uniquely determined by the fact that the ring of A is End K;l\.

From now on, we keep K and g A fixed, and for brevity we write P, R, Ty instead of P( Kﬁ), Rs( Kﬁ),
Tu( K;l\), respectively. First we will look at the isomorphic copies of the clone D = Clo (K;Pol; (x K))™, as
suggested by (2.1.c) in Theorem 2.1. Let ¢: (xK)™ — kA be an arbitrary vector space isomorphism. The
clone on A corresponding to D under this mapping is

(PiltD(p = {(f(fUO‘Pila te 7$n—1¢71)¢: f(:UOa teey xn—l) € D}

Consider the unit base eg = (1,0,...,0),...,em—1 = (0,...,0,1) in (xk K)™. Clearly, (xK)™ is a direct
sum of its one-dimensional subspaces Ke; (0 < i < m — 1), and Kﬁ is a direct sum of the image spaces
(Ke;)p (0<i<m—1). The family {(Ke;)p: 0 <i < m—1} will be called the direct decomposition of KA
determined by .

Lemma 6.9. Let szl\ be an m-dimensional vector space over a finite field K, and let @1, p2: (k K)™ — K;l\
be arbitrary vector space isomorphisms. The clones i YDy, and Py YDy, coincide if and only if o1 and @2
determine the same direct decomposition of KA.

Proof. Tt suffices to show that for arbitrary automorphism 4 of (x K)™ the equality ¢~'Dy = D holds
if and only if ¢ determines the direct decomposition {Ke;: 0 < i < m — 1}, that is, if and only if there exist
scalars ¢; € K (0 <i <m —1) and a permutation 7 € S, such that e;i) = ¢;e;r for all0 < i <m —1.

Suppose 1 has this property, and let 1) = h”_l[go, ..y 9m-1] where g;(z) = ¢;z (0 < i <m —1). Then
Y = 1, because the two mappings agree on the vectors eg,...,en_1, and ¢, too, is an automorphism of
(xkK)™. Thus 1 € D, and the equality ¢ ~*Dy = D is obvious.

Conversely, assume 1) ~'Dy) = D holds. Since the mapping

D— ¢_1D¢ = Da f(mOa s axn—l) — (f(xow_la ) wn—1¢_1))¢

is a clone isomorphism, it sends the m-ary diagonal operation h;g[id, ...,id], which depends on all of its
variables, into an m-ary idempotent operation depending on all of its variables. Hence (replacing z;¢~!
with y;) we get that for some pu € S,,,

(hidlid, . .., 1d)(yo, - - -, ym— 1)) = By [id, ..., id)(yo®, - - -, Ym-19)

for all yo,--.,ym_1 € (k K)™. It follows now that for any 0 <i<m —1

ith ith
; N . =
eip = (Mglid, . ..,id](0,...,0,7€; ,0,...,0))y = hid[id,...,id](0,...,0, e}, 0,...,0) € Ke;,-1.
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This completes the proof. o

By Lemma 6.9 the clone ¢~'Dy, where ¢: (xK)™ — kA is a vector space isomorphism, depends
only on the corresponding direct decomposition {(Ke;)¢: 0 < i < m — 1} of kA, or equivalently, on the
corresponding g-regular family T = {@q,...,0,, 1} of congruences of xA with ¢ = |K| and O = A.
(Notice that here the case |K| = 2 is also allowed.) Therefore we will use the notation Dr for ¢ ~1Dep.

For arbitrary g-regular family T" of congruences of Kk A with q > 3, &p will denote the clone consisting
of all operations of P preserving Ar (i.e., & = PN Cr). We note that in view of Lemma 5.3, for the case
g = |K| > 2 we have Dr = &r.

To investigate inclusions among the clones £r for various T”s we need some facts on these clones. We
will use the notation E+ for the set of all surJectlve operations in &r. If » € End KA then Imr will stand
for the range of r, while if © is a congruence of KA then Ker © will stand for the block of © contalmng 0
(both are subspaces of KA) If for some elements eq,...,ex_1 € End KA we have ZZ o € =1and e? = e;,
eie;j =0forall 0 <i,j <k—1,14#j, then they will be called pairwise orthogonal idempotents summing up
to 1.

Lemma 6.10. Let Kﬁ be a finite dimensional vector space over a finite field K, and let T = {Oq,...,04-1}
be a g-regular family of congruences ofKﬁ (g>3). For0<i<d-1letU;=KerN{0;: 0<j<d-1, j#
i}, and put Ur = Ker Or.

(6.101) &r contains all operations from P whose range has dimension less than dimUy = ... =
dim Uy_1; however, for any element r € End Kﬁ with Imr = Uy we have rz +ry ¢ Er.

(6.10.ii)) For arbitrary elements r € End KA\, z—ry+rz €&r if and only if Imr C Ur.

(6.10.iii) O is a mazimal congruence of the algebra (A;ELF).

(6.10.iv) &r contains an operation Z?:(] e;x; such that eg, . ..,eq are pairwise orthogonal idempotents
in End g A summing up to 1, and Imeg = Ur, Ime; + Ur =U; for all0 <i<d-—1.
(6.10.v) For every operation Y . ,eix; € Er such that e, ..., el, are pairwise orthogonal nonzero

idempotents in End g A summing up to 1, and Ime!, = Ur, we have n < d; furthermore, if n = d, then there
exists a permutation w € Sq with Ime}, + Ur = Uy for all0 <i<d-1.

Proof. (6.10.i)) Both parts of the claim are easy to check by the definition of .

(6.10.ii)) The operations of the form x — ry + rz are clearly surjective (in fact, idempotent), so the
claim follows by a straightforward application of Lemma 5.1 (5.1.ii).

(6.10.iii)) Clearly, T yields a direct decomposition

KA\/QT = KA\/UT = U()/UTEB @Ud,l/UT.

Fixing a vector space K‘/} (¢; +, K) we get an isomorphism ¢: KA/UT = KA/®T — KVd (g;+,K)¢
carrying T into the standard g-regular family of congruences on Vi By Lemma 5.1 (5.1.ii)(a) Or is
a congruence of the surjective algebra A = (4;&F). Since the operations of A are exactly the surjective

polynomial operations of ~A preserving Ar, and since O is a congruence of KA it is not hard

(End g A)
to see that the operations of the quotient algebra A/Or are exactly the surjective polynomial operations

of (Fnd (KX/eT))(‘Z/QT) preserving Ar/e,. Making use of Lemma 5.1 (5.1.iii)(c) for the vector space iso-

morphism ¢ we conclude that A/Or is isomorphic, under ¢, to the reduct of (g; Sq)[d] whose operations
are exactly all surjective term operations of (q;Sq)[d] which are simultaneously polynomial operations of

(End x T4) (I7d). Hence the operations of this algebra are exactly all surjective term operations of the algebra

(¢; ) where G consists of all surjective unary polynomial operations of (E dx v)V It is well known that

the d-ary operation hid[id, .. .,id] together with the unary operations h(® 1 - 4~ 0 [id,...,id] and hid[g,...,d]
(g € G) — all of them surjective term operations of (¢; G)l% — generate the clone of (¢; G)l9. Hence A/O
is isomorphic to an algebra term equivalent to (¢; G)!%. Since the unary algebra (g; G) is simple, its matrix
power (g;G)[¥ is also simple, implying that A /Or is simple. Thus Or is a maximal congruence of A, as
was to be proved.
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(6.10.iv) Selecting subspaces V; of U; with U; = V; @ Ur we get a direct decomposition KA = Vo @
.® V4.1 ® Ur. For the endomorphisms ey, ...,eq_1,e4 projecting onto the subspaces Vp,...,Vg_1,Ur
respectively, all requirements are satisfied.
(6.10.v) Let f be the (d + 1)-ary operation constructed in (6.10.iv), and f' an (n + 1)-ary operation
Yoo eix; satisfying the requirements described in (6.10.v). Clearly, f, f' are operations of the algebra A
considered in the proof of (6.10.iii). The corresponding operations of A/©r are

d n
f(yo+UT,...,yd+UT Zez yz+UT and f’(y0+UT,...,yn+UT):Zeg(yi+UT).
i=0 =0

Obviously, f and f’ are idempotent operation depending exactly on their first d, resp. n variables. In the
isomorphic copy of A/O7 under ¢ they are assigned to some term operations of (¢; G)!% with the same
properties. Since every term operation of (g;G)!” depends on at most d variables, we get that n < d.
Suppose n = d, and omit the fictitious variable x4 from f, f’ and from the corresponding term operations
of (¢; @), Since any two d-ary idempotent term operations of (¢; G)!¥ depending on all of their variables
arise from each other by permuting variables, we get the same for f and f’. This concludes the proof of the
lemma. o

Now we are in a position to describe the maximal subclones of P. Since P is finitely generated, every
proper subclone of P is contained in a maximal one. This fact will follow also from the proof of the theorem
below.

Theorem 6.11. The mazimal subclones of P are the following:
(a) Rysy for an element s € A, or

Tu for a one-dimensional subspace U of KA
(b) Pol (RA) for a mazimal subring R of End g A;
(¢) Dr for a g-regular family T of congruences of KA with ¢ = |K| and O = A
(d) &r for a g-regular family T of congruences of kA with ¢ > |K]|.
The clones listed above are pairwise distinct.

Proof. For a subclone F of P the ring of the algebra (A4; F) will also be denoted by R.

First we prove that every proper subclone F of P is contained in one of the clones (a)—(d). Let us
consider the algebra A = (A;F), which is obviously semi-affine with respect to Kﬁ, and apply Theorem
2.1. Assume that (2.1.a) holds for A, that is, z —y + 2z € F. It is not hard to see (cf. [13], [14]) that
in this case all operations Z?:_ol rix; with ro,...,r,_1 € R and Z?:_()l r; = 1 belong to F. Therefore, if
Rr = End KA\, then A is simple, so F = Clo A is one of the clones occurring in Theorem 6.8. Looking at
the inclusion relations among these clones we see that F is included in one of the clones in (a). If Rz is
a proper subring of End KA then Rr C R for some maximal unitary subring R of End KA whence it is
obvious that F C Pol ( RA) Suppose that (2.1.b) holds for A, say © is a nontrivial congruence of A which
is a congruence of KA. Clearly, O is a congruence of the algebra (A; F,z — y + z) as well. Hence the clone
F' of this algebra is a proper subclone of P containing F, and the same argument as before applies for F’.
Finally, if (2.1.c) or (2.1.d) holds for A, then by Lemma 6.9 it is clear that F is contained in one of the
clones in (c) or (d).

To prove the maximality and the distinctness of the clones listed in the theorem it suffices to verify that
none of the clones are contained in any other one. It is straightforward to check that there is no inclusion
among two clones if both are of type (a) or (b). By Lemma 6.9 the same holds if both clones are of type (c).
Indeed, any two clones of type (c) are isomorphic, and hence contain for each n the same (finite!) number
of n-ary operations; therefore an inclusion implies equality.

Let us consider now two clones of type (d), say &r and &7+, and assume that & C 7. Here T =
{O©o,...,04_1} is a g-regular, while 7" = {0g,...,0, } is a ¢'-regular family of congruences of KA.
As in Lemma 6.10, the corresponding subspaces are Uy, ...,Uq—1,Ur and Uj,..., U}, _,, Uy, respectively.
Applying Lemma 6.10 we verify that T = T'. Firstly, from (6.10.ii) we get that Ur C Urr, and then from
(6.10.iii) that Uz = Ug». Now, by (6.10.1), dim Uy < dim Uy, which implies that ¢ = |Uo/Ur| < |Uy/Ur| = ¢'.
Furthermore, in view of (6.10.iv) and (6.10.v), we have d < d'. Since ¢?|Ur| = p™ = (¢')* |Ur+|, we conclude
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that ¢ = ¢’ and d = d'. Thus, again making use of (6.10.iv) and (6.10.v) we see that {Up,...,Ug_1} =
{U, ..., Uy _1}, or equivalently, T =T".

It remains to consider inclusions where the two clones are of different types. The clones in (b)—(d)
contain all constants and all translations, therefore a clone of type (a) never contains a clone of different
type. Since the ring of each clone in (b) is R and the ring of every other clone in the list is End x A, a clone
of type (b) never contains a clone of different type. For a clone F of type (c) the algebra (A; F) is strongly
Abelian, while for other clones the corresponding algebras are not strongly Abelian (cf. (6.10.i)); therefore
a clone of type (c) never contains a clone of different type. Finally, a clone of type (d) does not contain
the operation  — y + 2, and hence any clone of type (a) or (b). Observing that the analogue of (6.10.iii)
and (6.10.iv) holds for the clone Dy for every g-regular family T' of congruences of kA with ¢ = | K| and
Or = A, a similar argument as in the previous paragraph shows that Dr &+ for any ¢'-regular family T"
of congruences of g A with ¢' > |K|. o

One might pose the problem of determining all maximal subclones of each clone A which is the clone
of a simple affine algebra, see the description in Theorem 6.8 (not just the maximal subclones of P, which
are in some sense the ‘largest’ clones of these kinds). As at the beginning of the proof of Theorem 6.11, one
can eagsily derive from Theorem 2.1 and Theorem 6.8 that every proper subclone of A where

(1) A=TRg for acoset S of a subspace of kA, or
(2) A=7Ty for asubspace U of A

is contained in one of the following clones:

(al) Rg for a coset S’ of a subspace of xA with dim (S’ — §') = 1+ dim (S — S) in case (1);

(a2) R for a coset S of a subspace of g A with § — S =U, or

T for a subspace U’ of g A with dimU’ = 1+ dim U in case (2);

(b) ANPol (RA\) for a maximal subring R of End K A;

(¢) ANDr for a g-regular family T of congruences of KA with g = |K| and O = A;

(d) ANEr for a g-regular family T of congruences of kA with ¢ > |K]|.
However, the clones listed here are not necessarily pairwise incomparable. An analysis of inclusions among
these clones my lead to an explicit description of the maximal subclones of A.
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