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Abstract. We describe an easy way to determine whether the realization of a
set of idempotent identities guarantees congruence modularity or the satisfaction
of a nontrivial congruence identity. Our results yield slight strengthenings of Day’s
Theorem and Gumm’s Theorem, which each characterize congruence modularity.

1. Introduction

Given a set Σ of identities, how does one determine whether the variety axiomatized
by Σ is congruence modular? One natural approach is to look for Day terms (see [4]
or Theorem 3.1 below). In this paper we will exhibit an easier method, which works
when Σ is a set of idempotent identities. By this, we mean that for every function
symbol F appearing in Σ, it is the case that Σ |= F (x, . . . , x) ≈ x.

For a set Σ of idempotent identities we shall define the notion of a derivative, Σ′,
which is a superset of idempotent identities in the same language. One of our main
theorems is that Σ axiomatizes a congruence modular variety if the derivative of Σ
is inconsistent. Another main theorem is that Σ axiomatizes a variety that satisfies
some nontrivial congruence identity if its n-th derivative is inconsistent for some n.
(In fact, we prove our results not only for the variety V axiomatized by Σ, but also
any variety that “interprets V”.) Our final two theorems show that for a set Σ of
idempotent linear identities, the derivative test is a necessary and sufficient condition
to determine if Σ defines a variety that is congruence modular or satisfies a nontrivial
congruence identity.

2. Definitions

Let Σ be a set of identities. Σ is inconsistent if Σ |= x ≈ y, otherwise Σ is
consistent. Σ is idempotent if for every function symbol F appearing in Σ it is
the case that Σ |= F (x, x, . . . , x) ≈ x. F is weakly independent of its first place if
Σ |= F (y,w) ≈ x for variables x 6= y and some sequence of not necessarily distinct
variables w. F is independent of its first place if Σ |= F (x, z) ≈ F (y, z), where x,
y, and all variables in the sequence z are distinct. Define independence and weak
independence of each of the other places in the same way. (If Σ is idempotent and
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F is independent of its first place, then F is weakly independent of its first place.
This is because the assumptions that Σ is idempotent and F is independent of its
first place yield Σ |= F (y, x, x, . . . , x) ≈ F (x, x, x, . . . , x) ≈ x, which suffices to show
that F is weakly independent of its first place.) The concepts of weak independence
and ordinary independence are defined relative to Σ, so when it is not obvious we
will specify explicitly which set Σ is involved.

Σ is realized by an algebra A (or variety V) if it is possible to interpret each function
symbol appearing in Σ as a term of A (respectively V) such that all identities in Σ
are satisfied by A (respectively V).

Let Σ be a set of idempotent identities, and let P be the set of pairs (F, i) where
F is a function symbol appearing in Σ that is weakly independent of its i-th place.
The derivative Σ′ of Σ is the set of identities obtained by adding to Σ all identities
asserting that F is independent of its i-th place for all pairs (F, i) ∈ P . (I.e., Σ′

strengthens each instance of weak independence to an instance of independence.)
The n-th derivative of Σ is denoted Σ(n).

For example, if Σ is the set consisting of the two identities (i) F (y, y, x) ≈ x and
(ii) F (x, y, y) ≈ x, then from (i) we derive that F is weakly independent of its first
and second place, while from (ii) we derive that F is weakly independent of its second
and third place. Hence Σ′ will contain identities (iii) F (x, z2, z3) ≈ F (y, z2, z3), (iv)
F (z1, x, z3) ≈ F (z1, y, z3) and (v) F (z1, z2, x) ≈ F (z1, z2, y), which assert that F
is independent of all of its places. In this example, Σ′ is inconsistent, since Σ′ |=
x ≈ F (x, y, y) ≈ F (y, y, y) ≈ y, where the first instance of ≈ is from Σ, the second
follows from (iii) by variable replacement, and the third follows from (i) by variable
replacement.

3. Testing for congruence modularity

In the introduction we raised the question of how to determine whether the variety
axiomatized by a set of identities Σ is congruence modular. Rather than consider the
variety axiomatized by Σ we shall consider varieties that realize Σ, since this is more
general. (The variety axiomatized by Σ also realizes Σ, since we may interpret each
function symbol appearing in Σ as itself.)

We start with Alan Day’s characterization of congruence modularity.

Theorem 3.1. [4] The following are equivalent for a variety V.

(1) V is congruence modular.
(2) There exist 4-variable terms m0, . . . ,mn such that the following identities hold

in V:
(a) m0(x, u, v, y) ≈ x and mn(x, u, v, y) ≈ y,
(b) mi(x, y, y, x) ≈ x,
(c) mi(x, u, u, y) ≈ mi+1(x, u, u, y) for i odd, and
(d) mi(x, x, y, y) ≈ mi+1(x, x, y, y) for i even.
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From this we derive our first main result.

Theorem 3.2. V is congruence modular if and only if V realizes some set Σ of
idempotent identities whose derivative is inconsistent.

Proof. [⇒] Assume that V is congruence modular, and that Σ is the set of identities
guaranteed by Theorem 3.1. The identities in part (2)(b) suffice to guarantee that
this is a set of idempotent identities. Moreover, the identities of type (2)(b) suffice
to guarantee that Σ′ will contain identities expressing that each mi(x, u, v, y) is in-
dependent of its middle two places. In light of this, the identities of type (2)(c) and
(2)(d) together assert that Σ′ |= mi(x, ∗, ∗, y) ≈ mi+1(x, ∗, ∗, y) for all i, where the
asterisks indicate that the identity holds for any middle values. This and (2)(a) yield

Σ′ |= x ≈ m0(x, ∗, ∗, y) ≈ m1(x, ∗, ∗, y) ≈ · · · ≈ mn(x, ∗, ∗, y) ≈ y,

so Σ′ is inconsistent.
[⇐] Conversely, assume that V is a variety realizing Σ that is not congruence

modular. We need to prove that Σ′ is consistent. Without loss of generality we may
assume that V is the variety axiomatized by Σ. For, if V contains an algebra A whose
congruence lattice is nonmodular, then the reduct of A to the symbols in Σ is an
algebra in the variety axiomatized by Σ whose congruence lattice is nonmodular.

Now we follow Day’s proof of Theorem 3.1, and show how to extract a nontrivial
model of Σ′ from a failure of congruence modularity. Let F = FV(a, b, c, d) be a
4-generated V-free algebra. Define congruences

α = θ((a, b), (c, d)), β = θ((a, d), (b, c)), and γ = θ(b, c).

Day’s theorem proves that V is congruence modular if and only if

(3.1) β = (α ∧ β) ∨ γ.
Since V is idempotent, we can simplify the situation. Let T = FV(r, s) be a

2-generated V-free algebra. The congruences α and β are the kernels of the homo-
morphisms A,B : F → T defined by A : a, b 7→ r; c, d 7→ s and B : a, d 7→ r; b, c 7→ s.
Hence α ∧ β is the kernel of the homomorphism

A×B : F→ T2 : a 7→ (r, r); b 7→ (r, s); c 7→ (s, s); d 7→ (s, r).

A × B is surjective, since if p = p(r, s) and q = q(r, s) ∈ T are arbitrarily chosen,
then m = p(q(a, b), q(d, c)) ∈ F is an element such that (A × B)(m) = (p, q). The
kernel of A×B is α ∧ β, so

(3.2) F/(α ∧ β) ∼= T2.

Since both sides of (3.1) contain α ∧ β, we can express Day’s conclusion in terms
of the algebra T2. If η1 and η2 are the coordinate projection kernels of T2, then η1

corresponds to α/(α ∧ β) and η2 corresponds to β/(α ∧ β) under the isomorphism
(3.2), and δ = θ((r, s), (s, s)) corresponds to γ/(α ∧ β) = ((α ∧ β) ∨ γ)/(α ∧ β).
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Day’s conclusion is that V is congruence modular if and only if η2 = δ. Since we are
assuming that V is not congruence modular, and since

η2 = θ
(
((r, r), (s, r)), ((r, s), (s, s))

)
⊇ θ((r, s), (s, s)) = δ,

it follows that ((r, r), (s, r)) ∈ η2 \ δ.
Since V is idempotent, each congruence class is a subuniverse of T2. Let G ≤ T2 be

the subalgebra whose universe is the η2-class of (r, r). We argue that the nontrivial
quotient algebra G = G/δ|G is a model of Σ′. G is a model of Σ because it is a
section of T2 ∈ V and V is the class of all models of Σ.

Let F be an n-place function symbol appearing in Σ, and suppose that

(3.3) Σ |= F (y,w) ≈ x

where x 6= y and w is a sequence of not necessarily distinct variables. Let U ⊆
{1, . . . , n} be the set of places of F where x occurs in this identity.

Claim 3.3. Choose any (g1, r), . . . , (gn, r) ∈ G. Define

ri =

{
r if i ∈ U ;

s else.

Then

(3.4) FT2

((g1, r), . . . , (gn, r)) = FT2

((g1, r1), . . . , (gn, rn)).

That both sides of (3.4) are equal in the first coordinate is trivial. In the sec-
ond coordinate we must establish that the value on the left-hand side, which is
FT(r, . . . , r) = r, is the same as the value FT(r1, . . . , rn) on the right-hand side,
which is obtained by evaluating FT on an {r, s}-tuple with r’s substituted in posi-
tion i for each i ∈ U and s’s substituted in all other positions. This follows from
(3.3).

Claim 3.4. For any w ∈ T , ((w, s), (s, s)) ∈ δ.

If w(x, y) is a binary term such that w = w(r, s), then

(w, s) = (w(r, s), w(s, s)) = w((r, s), (s, s)) ≡δ w((s, s), (s, s)) = (s, s).

Now we prove that F is independent of its first place modulo δ on G. Choose
(g1, r), . . . , (gn, r), (h, r) ∈ G arbitrarily. By Claim 3.3,

FT2

((g1, r), (g2, r), . . . , (gn, r)) = FT2

((g1, r1), (g2, r2), . . . , (gn, rn)),

and similarly

FT2

((h, r), (g2, r), . . . , (gn, r)) = FT2

((h, r1), (g2, r2), . . . , (gn, rn)).
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Now r1 = s, since 1 /∈ U according to (3.3), and by Claim 3.4 we have (g1, s) ≡δ (h, s),
therefore

FT2
((g1, r), (g2, r), . . . , (gn, r)) = FT2

((g1, s), (g2, r2), . . . , (gn, rn))

≡δ FT2
((h, s), (g2, r2), . . . , (gn, r2))

= FT2
((h, r), (g2, r), . . . , (gn, r)).

This proves that F is independent of its first place modulo δ on G, so

G/δ|G |= F (x, z) ≈ F (y, z)

where x, y, and all variables in the sequence z are distinct. �

Corollary 3.5. Day’s Theorem (Theorem 3.1) remains true if one weakens

(c) mi(x, u, u, y) ≈ mi+1(x, u, u, y) for i odd,

to either

(c)′ mi(x, x, x, y) ≈ mi+1(x, x, x, y) for i odd, or
(c)′′ mi(x, y, y, y) ≈ mi+1(x, y, y, y) for i odd.

In particular, congruence modularity can be characterized by identities involving only
the variables x and y.

Proof. We can obtain (c)′ and (c)′′ from (c) by replacing the variable u by either x
or y, so (c)′ and (c)′′ are formally weaker than (c). If you take Σ to be the set of
identities of Theorem 3.1 with (c) replaced by either (c)′ or (c)′′, then Σ′ is inconsistent
by the same argument used in the proof of direction [⇒] of Theorem 3.2. Thus, the
weakened identities still imply congruence modularity.

For the last statement of the corollary, we can delete the terms m0 and mn from
the list of Day terms and just use x and y in their place. Then, with (c) replaced by
either (c)′ or (c)′′, the identities involve only x and y. �

We believe that the first published proof that congruence modularity can be char-
acterized by 2-variable identities appears in [24] by J. B. Nation (see the corollary on
page 85 of that paper). Nation’s 2-variable identities use 5-variable terms.

Example 3.6. A lattice is p-modular if it satisfies the identity

(3.5) (x ∨ (y ∧ z)) ∧ (z ∨ (y ∧ x)) = (z ∧ (x ∨ (y ∧ z))) ∨ (x ∧ (z ∨ (y ∧ x))).

This identity is satisfied by all modular lattices and some nonmodular lattices. (It is
the conjugate identity for a 10-element splitting lattice.)

Eva Gedeonová characterized the satisfaction of (3.5) as a congruence identity with
the following theorem.

Theorem 3.7. [7] The following are equivalent for a variety V.

(1) V satisfies (3.5) as a congruence identity.
(2) There exist 6-variable terms g0, . . . , gn such that the following identities hold

in V:
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(a) g0(x, s, t, u, v, y) ≈ x and gn(x, s, t, u, v, y) ≈ y,
(b) gi(x, x, y, y, x, x) ≈ gi(x, y, x, x, y, x) ≈ x for all i,
(c) gi(x, s, x, y, s, y) ≈ gi+1(x, s, x, y, s, y) for i odd, and
(d) gi(x, x, s, s, y, y) ≈ gi+1(x, x, s, s, y, y) for i even.

Although the p-modular law is strictly weaker than the modular law as a lattice
identity, Day was able to show in [5] that any variety realizing the set Σ of identities
of Theorem 3.7 (2) is congruence modular. His argument involved nonobvious cal-
culations with the congruences of the 4-generated free algebra in a variety realizing
these identities.

We will derive Day’s result from our Theorem 3.2. Gedeonová’s identity (b) implies
that Σ is idempotent, hence our theorem applies. Identity (b) also implies that each
gi is weakly independent of its middle four places relative to Σ. Hence

Σ′ |= x
(a)
≈ g0(x, ∗, ∗, ∗, ∗, y)

(d)
≈ g1(x, ∗, ∗, ∗, ∗, y)

(c)
≈ · · · ≈ gn(x, ∗, ∗, ∗, ∗, y)

(a)
≈ y.

Σ′ is inconsistent, so any congruence p-modular variety is congruence modular.

Example 3.8. The paper [2] introduces the concept of a “cube term”, which is a
common generalization of a Maltsev term and a near unanimity term. A cube term
is a term F (x1, . . . , xn), for some n ≥ 3, satisfying an idempotent set of identities Σ
which expresses exactly that F is weakly independent of each of its places.

It is proved in [2] that a variety with a cube term (i.e., a variety realizing Σ) is
congruence modular. The method of proof is to show first that a variety with a cube
term has an “edge term”, and then that a variety with an edge term has Day terms.
The first step of the proof is long (≈ 5 journal pages) and highly nontrivial. The
second step is short and easy to verify, but it is easy to imagine that it required
ingenuity to discover.

We can prove the combination of both steps with no ingenuity. Since Σ asserts
that F is weakly independent of all places, Σ′ expresses that F is constant. At the
same time, Σ′ expresses that F is idempotent (since Σ′ ⊇ Σ). Thus Σ′ proves that
F (x, x, . . . , x) interprets simultaneously as a constant function and as the identity
function on any algebra realizing Σ. It follows that Σ′ has no models of size greater
than one. Hence Theorem 3.2 applies, showing that any variety realizing Σ is con-
gruence modular.

Example 3.9. A variety is congruence n-permutable if, for any two congruences
α and β on any algebra A ∈ V , it is the case that the n-fold relational product
α ◦n β = α ◦β ◦α ◦β ◦ · · · equals β ◦n α. This property was characterized by Joachim
Hagemann and Aleit Mitschke in the following way.

Theorem 3.10. [9] The following are equivalent for a variety V.

(1) V is congruence n-permutable.
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(2) There exist 3-variable terms p0, . . . , pn such that the following identities hold
in V:
(a) p0(x, u, y) ≈ x and pn(x, u, y) ≈ y,
(b) pi(x, x, y) ≈ pi+1(x, y, y) for all i.

Bjarni Jónsson proved in [11] that any congruence 3-permutable variety is con-
gruence modular. On the other hand, there exist congruence 4-permutable varieties
that are not congruence modular. The first of these statements can be proved by a
computation, but we derive it from Theorem 3.2.

A congruence 3-permutable variety realizes

Σ = {x ≈ p1(x, y, y), p1(x, x, y) ≈ p2(x, y, y), p2(x, x, y) ≈ y}.

Σ′ contains Σ along with (i) identities asserting that p1 is independent of its second
and third places (from the first identity of Σ) and (ii) identities asserting that p2 is
independent of its first and second places (from the third identity of Σ). Hence

Σ′ |= x
Σ
≈ p1(x, y, y)

(i)
≈ p1(x, x, y)

Σ
≈ p2(x, y, y)

(ii)
≈ p2(x, x, y)

Σ
≈ y,

showing that Σ′ is inconsistent.
The derivative test can also be used to prove that congruence 4-permutability

does not imply congruence modularity. The method for proving this is explained in
Section 5.

Example 3.11. In [1], Wolfram Bentz investigated varieties V whose T0 topolog-
ical algebras are Hausdorff. It is conjectured that these varieties are exactly the
congruence modular varieties that are congruence n-permutable for some n. (This
conjecture, called “the Congruence Modularity Conjecture”, is still open.)

Let Σ1 be the set consisting of the following identities involving the 3-variable
terms q1, q2, p:

(a) x ≈ q1(x, y, y),
(b) q1(x, x, y) ≈ q2(x, x, y),
(c) q2(x, y, x) ≈ x and q2(x, y, y) ≈ p(x, y, y),
(d) p(x, x, y) ≈ y.

(These are the Gumm identities for congruence modularity, from [8], for n = 2 minus
the Gumm identity q1(x, y, x) ≈ x.) Now let Pn be the set of identities listed in
Theorem 3.10 (2). Bentz proved that any variety realizing Σ1 ∪ Pn, for any given
n, has the property that its T0 topological algebras are Hausdorff. In light of the
Congruence Modularity Conjecture, this led him to raise the question of whether
varieties realizing Σ1 ∪ Pn must be congruence modular.

The question raised by Bentz was answered by Kearnes and Lúıs Sequeira in [18],
where it was shown that any variety realizing Σ1 must already be congruence modular.
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The proof was accomplished by defining

m0(x, u, v, y) := x,

m1(x, u, v, y) := x,

m2(x, u, v, y) := q1(x, q2(x, v, u), p(x, u, v)),

m3(x, u, v, y) := q2(x, u, y),

m4(x, u, v, y) := q2(x, v, y),

m5(x, u, v, y) := p(u, v, y),

m6(x, u, v, y) := y,

and showing that it is provable from Σ1 that the Day identities of Theorem 3.1 hold
for these new terms.

Here we give a different proof that any variety realizing Σ1 is congruence modular,
based on Theorem 3.2. Identities (a), (c) and (d) from the definition of Σ1 suffice to
prove that Σ1 is idempotent, so the theorem applies. Identities (a), (c), and (d) also
show that q1, q2, and p are weakly independent of their middle places relative to Σ1.
Therefore, q1, q2, and p are independent of their middle places relative to Σ′1. Hence

Σ′1 |= x
(a)
≈ q1(x, ∗, y)

(b)
≈ q2(x, ∗, y)

(c)
≈ p(x, ∗, y)

(d)
≈ y,

showing that Σ′1 is inconsistent.

The argument from Example 3.11 actually establishes the following theorem, a
slight strengthening of H. Peter Gumm’s Theorem from [8].

Theorem 3.12. The following are equivalent for a variety V.

(1) V is congruence modular.
(2) There exist 3-variable terms q0, . . . , qn, p such that the following identities hold

in V:
(a) q0(x, u, y) ≈ x,
(b) qi(x, y, x) ≈ x for i in the interval [2, n],
(c) qi(x, y, y) ≈ qi+1(x, y, y) for i even,
(d) qi(x, x, y) ≈ qi+1(x, x, y) for i odd,
(e) qn(x, y, y) ≈ p(x, y, y), and
(f) p(x, x, y) ≈ y.

If Σ is the set of identities in Theorem 3.12, then these are exactly Gumm’s iden-
tities from [8] minus the identity ε : q1(x, y, x) ≈ x. The theorem asserts that we can
delete this single identity from Gumm’s set and still have a set of identities forcing
congruence modularity. The ‘reason’ for this is that the only role played by this
identity ε in our method is to prove that q1 is weakly independent of its middle place
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relative to the Gumm identities Σ ∪ {ε}. But this can be deduced another way,

directly from Σ, using Σ |= x
(a)
≈ q0(x, y, y)

(c)
≈ q1(x, y, y).

Example 3.13. Theorem 3.2 proves that for arbitrary set Σ of idempotent identities,
if Σ′ is inconsistent, then every variety realizing Σ is congruence modular. The
converse is false for some Σ, as the following example shows.

Let Σ be a set of identities that axiomatizes the variety of lattices. Thus Σ is a
set of idempotent identities. The only function symbols appearing in Σ are ∧ and ∨,
which are not weakly independent of any of their two places relative to Σ, therefore
Σ′ = Σ is consistent. However, any variety realizing Σ, i.e., any variety of expanded
lattices, is congruence distributive, hence congruence modular.

4. Testing for a nontrivial congruence identity

Our result about congruence modular varieties has an analogue for varieties that
satisfy a nontrivial congruence identity. First we recall one Maltsev characterization
for this class of varieties.

Theorem 4.1. [15] The following are equivalent for a variety V.

(1) V satisfies a nontrivial congruence identity.
(2) There exist 4-variable terms M0, . . . ,Mn such that the following identities hold

in V:
(a) M0(x, u, v, y) ≈ x and Mn(x, u, v, y) ≈ y,
(b) Mi(x, x, y, y) ≈ Mi+1(x, x, y, y) and Mi(x, y, x, y) ≈ Mi+1(x, y, x, y) for i

odd, and
(c) Mi(x, y, y, y) ≈Mi+1(x, y, y, y) for i even.

There are other Maltsev characterizations of the class of varieties satisfying non-
trivial congruence identities given in Definition 2.17, Theorem 5.23 and Theorem 8.13
of [15], which could be used just as easily in this paper. We chose the one above, which
is part of Theorem 5.28 of [15], since it is the characterization that most resembles
the characterization of congruence modularity in Theorem 3.1.

Theorem 4.2. V satisfies a nontrivial congruence identity if and only if V realizes
some set Σ of idempotent identities whose n-th derivative is inconsistent for some n.

Proof. [⇒] Assume that V satisfies a nontrivial congruence identity, and that Σ is
the set of identities guaranteed by Theorem 4.1. The consequence of these identities
that results from replacing all variables with x is

Σ |= x ≈M0(x, x, x, x) ≈M1(x, x, x, x) ≈ · · · ≈Mn(x, x, x, x),

showing that Σ is idempotent.

Claim 4.3. Σ(i) |= Mi(x, u, v, y) ≈ x for all i.
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The claim holds for i = 0 by identity (2)(a) of Theorem 4.1. Let’s assume that the
claim holds for some k ≥ 0, and prove it for k + 1. If k is odd, then from (2)(b) of
Theorem 4.1 we derive

Σ(k) |= x ≈Mk(x, x, y, y) ≈Mk+1(x, x, y, y) and
Σ(k) |= x ≈Mk(x, y, x, y) ≈Mk+1(x, y, x, y),

from which we conclude that Mk+1(x, u, v, y) is weakly independent of its second,
third and fourth places relative to Σ(k). Hence

(4.1) Σ(k+1) |= Mk+1(x, u, v, y) ≈Mk+1(x, x, x, x) ≈ x,

as claimed. If k is even, then from (2)(c) of Theorem 4.1 we derive

Σ(k) |= x ≈Mk(x, y, y, y) ≈Mk+1(x, y, y, y),

from which we conclude that Mk+1(x, u, v, y) is weakly independent of its second,
third and fourth places relative to Σ(k). Just as in (4.1), this finishes the claim in the
case where k is even.

It follows from the claim and identity (2)(a) of Theorem 4.1 that Σ(n) |= x ≈
Mn(x, u, v, y) ≈ y, so Σ(n) is inconsistent. This concludes the proof of [⇒].1

[⇐] We will argue that if Σ is idempotent and the realization of Σ by V does not
force V to satisfy a nontrivial congruence identity, then the same properties are true
for Σ′.

If Σ is idempotent, then so is Σ′, since it extends Σ and it involves no new function
symbols.

If the realization of Σ by V does not force a nontrivial congruence identity, then
the variety VΣ axiomatized by Σ does not satisfy a nontrivial congruence identity.
The combination of Theorems 2.16 and 7.15 (1)⇔(2) of [15] implies that VΣ has no
“Hobby-McKenzie term”. In this situation, the contrapositive of Lemma 2.5 of [13]
proves that VΣ has a subvariety term equivalent to the variety of sets or the variety
of semilattices. In either case, this means that Σ can be realized by a 2-element meet
semilattice, S = 〈{0, 1};∧〉. If F is weakly independent of its first place relative to
Σ, then Σ |= F (y,w) ≈ x for y 6= x and some sequence of not necessarily distinct
variables w. By setting x = 1 and u = 0 for all other variables u occurring in yw,
if s denotes the sequence of elements of S corresponding to w, then we obtain that
FS(0, s) = 1, where FS is a semilattice term (equivalent to a meet of variables).
Necessarily FS does not depend on its first place. Thus S |= F (x, z) ≈ F (y, z) where
x, y, and all variables in the sequence z are distinct. This shows that S is a model
of Σ′. This is enough to prove that the realization of Σ′ also does not force the
satisfaction of a nontrivial congruence identity (since the variety of semilattices does
not satisfy a nontrivial congruence identity, [6]).

1In fact, it is possible to show that Σ(dn/2e) is inconsistent by working inward from both ends of
the sequence M0, . . . ,Mn at the same time, but this does not add anything useful to this proof.
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We have shown that if Σ is idempotent and the realization of Σ does not force
the satisfaction of a nontrivial congruence identity, then both properties hold for Σ′,
hence for Σ(n) for any n. In particular, Σ(n) is consistent for any n. This is the
contrapositive of [⇐]. �

Example 4.4. Lemma 3.10 of [12], which is credited to Day, proves that a congruence
n-permutable variety with a semilattice operation satisfies a nontrivial congruence
identity. In other words, if Σ1 is the set of identities from Theorem 3.10 (2) and
Σ2 is the set of identities expressing that some binary term s(x, y) is a semilattice
operation, then any variety realizing the (idempotent) set of identities Σ1∪Σ2 satisfies
a nontrivial congruence identity.

Later, in Theorem 9.19 of [10], David Hobby and Ralph McKenzie proved that
any locally finite congruence n-permutable variety satisfies a nontrivial congruence
identity. (No assumption is made about the existence of a semilattice term.)

The full result, that any congruence n-permutable variety satisfies a nontrivial
congruence identity, was established by Paolo Lipparini in [21]. He went on to publish
alternative proofs of this theorem in [20] and [22].

Another proof that any congruence n-permutable variety satisfies a nontrivial con-
gruence identity was found by Kearnes and Nation in [17].

Here we show how to derive this theorem from Theorem 4.2. Let Σ denote the set
of identities in Theorem 3.10 (2).

Claim 4.5. Σ(i) |= pi(x, u, y) ≈ x for all i.

The claim holds for i = 0 by identity (2)(a) of Theorem 3.10. Assume that the
claim holds for some k ≥ 0. From this, by identity (2)(b) of Theorem 3.10, we derive
that Σ(k) |= x ≈ pk(x, x, y) ≈ pk+1(x, y, y), so pk+1 is weakly independent of its last
two places relative to Σ(k). Thus pk+1 is fully independent of its last two places
relative to Σ(k+1), and this means that Σ(k+1) |= pk+1(x, u, y) ≈ pk+1(x, x, x) ≈ x.
This proves the claim.

Combining the claim with Theorem 3.10 (2)(a), we get that

Σ(n) |= x ≈ pn(x, u, y) ≈ y,

hence Σ(n) is inconsistent. Now apply Theorem 4.2.

Example 4.6. Hobby and McKenzie show in Theorem 9.11 of [10] that a locally
finite variety V has the property that its finite members have join semidistributive
congruence lattices if and only if V has ternary terms d0, . . . , dn such that the following
identities are satisfied in V :

(a) d0(x, y, z) ≈ x and dn(x, y, z) ≈ z,
(b) di(x, y, y) ≈ di+1(x, y, y) and di(x, y, x) ≈ di+1(x, y, x) for even i, and
(c) di(x, x, y) ≈ di+1(x, x, y) for odd i.
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Kearnes showed in Theorem 2.6 of [14] that these locally finite varieties satisfy a
nontrivial congruence identity (which depends on the number of di’s).

Kearnes and Emil W. Kiss later showed in Theorem 8.14 of [15] that an arbi-
trary variety is congruence join semidistributive if and only if it has ternary terms
d0, . . . , dn for which the identities (a)–(c) are satisfied, and that these varieties satisfy
a nontrivial congruence identity. The fact that a variety satisfying (a)–(c) satisfies a
nontrivial congruence identity can be proved with Theorem 4.2. For this, let Σ be
the set of (idempotent) identities from (a)–(c).

Claim 4.7. Σ(n) is inconsistent.

We argue by induction on k that (d) Σ(k) |= dn−k(x, y, z) ≈ z. Then, when k = n,

we get inconsistency: Σ(n) |= x
(a)
≈ d0(x, y, z)

(d)
≈ z.

Assertion (d) holds for k = 0 by the second identity in (a). Assume (d) holds for
some k (0 ≤ k < n). If n− k is even, then

Σ(k) |= dn−k−1(x, x, y)
(c)
≈ dn−k(x, x, y)

(d)
≈ y,

so dn−k−1 is weakly independent of its first 2 places relative to Σ(k). Thus

Σ(k+1) |= dn−k−1(x, y, z) ≈ dn−k−1(z, z, z) ≈ z,

showing that (d) holds for k + 1. If n− k is odd, then

Σ(k) |= dn−k−1(x, y, y)
(b)
≈ dn−k(x, y, y)

(d)
≈ y

and

Σ(k) |= dn−k−1(x, y, x)
(b)
≈ dn−k(x, y, x)

(d)
≈ x,

so dn−k−1 is weakly independent of its first 2 places relative to Σ(k). Thus

Σ(k+1) |= dn−k−1(x, y, z) ≈ dn−k−1(z, z, z) ≈ z,

and again (d) holds for k + 1. So, whether k is even or odd, we derive the next
instance of (d): Σ(k+1) |= dn−(k+1)(x, y, z) ≈ z.

5. The linear case is decidable

The title of the paper suggests that the derivative test is an easy test for congruence
modularity. How easy is it?

George McNulty proves in [23] that the problem of determining if a finite set of
identities Σ axiomatizes a congruence modular variety is undecidable. In fact, the
results of his paper imply that each of the following problems is undecidable.

(1) Determining if a finite set of idempotent identities Σ axiomatizes a congruence
modular variety.

(2) Determining if some function symbol F is weakly independent (or indepen-
dent) of one of its places relative to Σ.
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(3) Determining if Σ′ is inconsistent.
(4) Determining if a finitely based variety (given by its basis) realizes a given Σ.

(Here Σ can be any fixed finite set of identities which entails an identity of
the form s ≈ x such that at least two variables x, y occur in the term s.)

On the other hand, one can’t help but notice that the derivative test was easy to
apply in all the examples given earlier in this paper. We prove in this section that
if Σ is a set of identities that is idempotent and linear, then the derivative test is
a necessary and sufficient condition for determining if varieties realizing Σ must be
congruence modular (Theorem 5.1) or must satisfy a nontrivial congruence identity
(Theorem 5.2). We then describe an algorithm for deciding, when Σ is a given finite
set of idempotent linear identities, whether the realization of Σ forces congruence
modularity or the satisfaction of a nontrivial congruence identity (Corollary 5.3).

We call a term t linear if it has at most one occurrence of a function symbol. We
call an identity s ≈ t linear if both s and t are linear. Throughout this section Σ
will be a set of idempotent linear identities. Examples of linear identities are those
expressing that a function symbol is weakly independent of its i-th place, or fully
independent of its i-th place, and the identity x ≈ y.

If Σ is a consistent set of idempotent linear identities, then a construction in [16]
shows that Σ has models of all cardinalities greater than zero. To describe the
construction, let V be a set containing an element 0, and let X = {xv | v ∈ V }
be a set of variables. For each n-ary function symbol F appearing in Σ and for all
v1, . . . , vn ∈ V define

FV(v1, . . . , vn) =

{
v if Σ |= F (xv1 , . . . , xvn) ≈ xv,

0 else.

V is the algebra whose universe is V and whose basic operations are all operations
FV. It is proved in [16] that V is a model of Σ.

Theorem 5.1. The following are equivalent for a set Σ of idempotent linear identi-
ties.

(1) Σ′ is inconsistent.
(2) Any variety that realizes Σ is congruence modular.
(3) The variety axiomatized by Σ is congruence modular.

Proof. The implication (1)⇒(2) is from Theorem 3.2. The implication (2)⇒(3) is
trivial, since the variety axiomatized by Σ realizes Σ. The important part of the
proof is (3)⇒(1), which we prove in contrapositive form.

Assume that Σ′ is consistent. We will show that the variety axiomatized by Σ is
not congruence modular. Let V and V′ be the models of Σ and Σ′ that have the
same universe V = V ′ = {0, 1} and are constructed in the manner described before
the theorem statement. Since both V and V′ are models of Σ, the product algebra
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V ×V′ is a model of Σ. We shall show that this product does not have a modular
congruence lattice.

For simplicity we will write a pair (v, w) ∈ V × V ′ as vw. Let η and η′ be the
kernels of the projections of V ×V′ onto the coordinate algebras V and V′ respec-
tively. These are the equivalence relations on V × V ′ whose associated partitions
are {{00, 01}, {10, 11}} and {{00, 10}, {01, 11}} respectively. Let θ denote the equiv-
alence relation on V × V ′ whose associated partition is {{00, 01}, {10}, {11}}. We
claim that θ is a congruence of V ×V′. Since θ < η, and both of these equivalence
relations are complementary to η′, establishing this claim will show that Con(V×V′)
is not modular. (Specifically, η ∧ (η′ ∨ θ) = η > θ = (η ∧ η′) ∨ θ is a failure of the
modular law.)

If θ is not a congruence, then there must be a function symbol F such that FV×V′

is incompatible with θ. After permuting the places of F , we may assume this incom-
patibility is expressed as

(5.1) FV×V′
(00,00,01,10,11) 6≡ FV×V′

(01,00,01,10,11) (mod θ).

Here the bold symbols xy represent a sequence (xy, xy, . . . , xy) of pairs of some length
(possibly zero) with all pairs equal to xy. The two sides of (5.1) differ only at the
single underlined place. Thus, (5.1) expresses that some basic translation does not
preserve θ.

Since θ ⊆ η, and η is a congruence, the left and right hand sides of (5.1) must be
related by η but not by θ. The only two elements so related are 10 and 11, so we
must have either

(1) FV×V′
(00,00,01,10,11) = 10 and FV×V′

(01,00,01,10,11) = 11, or
(2) FV×V′

(00,00,01,10,11) = 11 and FV×V′
(01,00,01,10,11) = 10.

By examining first coordinates in FV×V′
(01,00,01,10,11) = 10 or 11 we obtain

FV(0,0,0,1,1) = 1, hence

Σ |= F (x0,x0,x0,x1,x1) ≈ x1.

This shows that F (p,q, r, s, t) is weakly independent of its first three blocks of vari-
ables relative to Σ. Hence F (p,q, r, s, t) is fully independent of its first three blocks
of variables relative to Σ′. But now we discover a contradiction by examining the
second coordinates of both expressions from above. In either Case (1) or Case (2) we
have

FV′
(0,0,1,0,1) 6= FV′

(1,0,1,0,1).

This cannot happen in the model V′ of Σ′ if, as we have proved, F is independent of
its first three blocks of variables relative to Σ′. The contradiction proves that θ is a
congruence of V×V′, and therefore that V×V′ is a model of Σ whose congruence
lattice is nonmodular. �
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We have an analogue of Theorem 5.1 concerning the satisfaction of a nontrivial
congruence identity.

Theorem 5.2. The following are equivalent for a set Σ of idempotent linear identi-
ties.

(1) Σ(n) is inconsistent for some finite n.
(2) Any variety that realizes Σ satisfies a nontrivial congruence identity.
(3) The variety axiomatized by Σ satisfies a nontrivial congruence identity.

Proof. As was the case in the proof of Theorem 5.1, the only nonobvious part of
this proof is the part that shows that if Σ(n) is consistent for all n, then the variety
axiomatized by Σ satisfies no nontrivial congruence identity.

Assume that Σ(n) is consistent for all n and let Ω =
⋃
n<ω Σ(n). Then Ω is a consis-

tent set of idempotent linear identities, and Ω′ = Ω. Let V be the 2-element model
of Ω that is defined before the statement of Theorem 5.1. That is, V has universe
V = {0, 1} and for each function symbol F appearing in Ω we have FV(v1, . . . , vn) = 1
if and only if Ω |= F (xv1 , . . . , xvn) ≈ x1.

The fact that Ω′ = Ω implies that weak independence agrees with independence for
all F (relative to Ω). Thus, whenever Ω |= F (xv1 , . . . , xvn) ≈ x1 holds, the variable x1

appears in every place upon which F depends. This means that FV(v1, . . . , vn) = 1
if and only if vi = 1 for each place i upon which F depends. If I ⊆ {1, . . . , n} is
the set of places upon which F depends and ∧ is the meet on {0, 1} for the order
0 < 1, then FV agrees with

∧
i∈I xi on {0, 1}. Since V is a model of Ω, this proves

that Ω can be realized by a 2-element semilattice. Hence Ω (and therefore Σ) cannot
axiomatize a variety satisfying a nontrivial congruence identity. �

Corollary 5.3. Both of the following problems are decidable: For a finite set Σ of
idempotent linear identities

(1) determine if the realization of Σ implies congruence modularity;
(2) determine if the realization of Σ implies the satisfaction of a nontrivial con-

gruence identity.

Proof. We begin by explaining how to decide if Σ |= ϕ when Σ ∪ {ϕ} is a finite set
of linear identities. (This part does not need the assumption that Σ is idempotent.)

Let X be a set of variables that includes all variables occurring in Σ. The weak
closure of Σ in the variables X is the smallest set Σ of linear identities containing Σ
for which

(i) (t ≈ t) ∈ Σ for all linear terms t with variables from X and with function
symbol (if any) occurring in Σ;

(ii) if (s ≈ t) ∈ Σ, then (t ≈ s) ∈ Σ;
(iii) if (r ≈ s) ∈ Σ and (s ≈ t) ∈ Σ, then (r ≈ t) ∈ Σ;
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(iv) if (s ≈ t) ∈ Σ and γ : X → X is a function, then (s[γ] ≈ t[γ]) ∈ Σ, where
s[γ] denotes the linear term obtained from s by replacing each variable x ∈ X
with γ(x) ∈ X.

Write Σ `X ϕ if ϕ belongs to the weak closure of Σ in the variables X. We say that
X is large enough for Σ if

(a) X contains all variables occurring in Σ,
(b) |X| ≥ 2, and
(c) |X| ≥ arity(F ) for any function symbol F occurring in Σ.

We will assume throughout that x, y denote distinct variables in X.
David Kelly’s Completeness Theorem [19, 16] states2 that if X is large enough for

Σ ∪ {ϕ}, then Σ |= ϕ if and only if Σ `X x ≈ y or Σ `X ϕ. Thus, in order to decide
if Σ |= ϕ when Σ∪{ϕ} is linear we must test whether x ≈ y or ϕ belong to the weak
closure Σ of Σ in the variables X. By definition, Σ is an equivalence relation on the
finite set TX of linear terms whose function symbols are from Σ and whose variables
are from X; in fact, Σ is the least equivalence relation on TX containing Σ that is
closed under all variable replacements X → X. Hence Σ can be computed from Σ,
which allows us to decide Σ |= ϕ.

Now we describe decision procedures for items (1) and (2) of the corollary. Given
a finite set Σ of idempotent linear identities, let X be a finite set of variables that
is large enough for Σ and satisfies |X| ≥ 1 + arity(F ) for all function symbols F
occurring in Σ. Then X contains sufficiently many variables to write down identities
expressing that some F is independent of one of its places. Therefore X is large
enough for Σ′, and hence for all Σ(n).

We saw earlier in this proof that the weak closure Σ of Σ in the variables X is an
equivalence relation on the finite set TX , which can be computed from Σ. Therefore,
by inspecting the equivalence class of x ∈ X one can (i) determine if Σ `X x ≈ y
(i.e., if Σ is inconsistent), (ii) find all instances of weak independence relative to Σ,
and hence (iii) compute Σ′. Repeating the same procedure for Σ′ one can determine
if Σ′ is inconsistent. By Theorem 5.1 this proves that problem (1) is decidable.

Since Σ ⊆ Σ′ ⊆ · · · ⊆ Σ(i) ⊆ Σ(i+1) ⊆ · · · and X is sufficiently large for each Σ(i)

(i ≥ 0), we get that their weak closures in the variables X form an ascending chain

(5.2) Σ ⊆ Σ′ ⊆ · · · ⊆ Σ(i) ⊆ Σ(i+1) ⊆ · · ·

of equivalence relations on the finite set TX . By construction, if Σ(i) = Σ(i+1) for

some i, then Σ(i) = Σ(k) for all k ≥ i. Therefore the chain (5.2) stabilizes in at most

|TX | steps. Let Σ(n) denote the largest member of the chain. Our earlier discussion

shows that Σ,Σ′, . . . ,Σ(n) are computable from Σ. It follows from Theorem 5.2 that

2In fact, Kelly proves his completeness theorem for basic identities, which are more general than
linear identities.



AN EASY TEST FOR CONGRUENCE MODULARITY 17

the realization of Σ implies the satisfaction of a nontrivial congruence identity if and

only if Σ(n) is the total relation on TX . This proves that problem (2) is decidable. �

In [3], Gábor Czédli and Ralph Freese describe an algorithm to determine if a lattice
identity ε implies modularity as a congruence identity. The algorithm has two main
steps. In the first step one replaces all joins in ε with 4-fold compositions to obtain a
relational identity ε∗ in the symbols {◦,∩}; then one finds a strong Maltsev condition
Σ equivalent to the satisfaction of ε∗ as a congruence condition. In the second step,
one tests if Σ can be realized in Polin’s variety. The identity ε implies modularity
as a congruence identity if and only if Σ cannot be so realized. (This second step is
decidable because Σ is a finite set of identities and Polin’s variety is locally finite.)
The second step can be replaced with the derivative test, since Σ is idempotent and
linear. In fact, the derivative test may be viewed as a generalization of the Czédli–
Freese result from the setting of congruence identities implying modularity to the
setting of idempotent, linear, strong Maltsev conditions implying modularity.

Problem 5.4. Find derivative-like tests for other Maltsev conditions, such as con-
gruence meet or join semidistributivity, or congruence n-permutability for some n.
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