How inaccurate may become accurate?

Stachó László

10/02/2021

Computer $\sim 1940-50$

WITH COMPUTER !!!
INCORRECT
WHAT IS THE REASON ?

WITH COMPUTER !!!

INCORRECT

WIINT IS THE REASON

WITH COMPUTER !!!

INCORRECT

WHAT IS THE REASON?

WITH COMPUTER !!!

INCORRECT

WHAT IS THE REASON ?!

ERROR IN SMALL SETTING

STUPID MASHINE working with 2 digits

$$-x_1 + 97x_2 = 97 (1)$$

$$+x_2 = 2 (2)$$

ERROR IN SMALL SETTING

STUPID MASHINE working with 2 digits

$$-x_1 + 97x_2 = 97 (1)$$

$$x_1 + x_2 = 2$$
 (2)

Computation

$$-x_1 + 97x_2 = 97$$

 $x_1 + x_2 = 2$

SYMBOLIC VERSION:

$$(2) + (1) \Longrightarrow$$

 $-x_1 + 97x_2 = 97$
 $98x_2 = 99 \implies x_2 = 99/98, x_1 = 97/98$

with 10 digits: $x_1 = 1.010204081 \approx 1$, $x_2 = 0.9897959183 \approx 1$

Computation

$$-x_1 + 97x_2 = 97$$

 $x_1 + x_2 = 2$

SYMBOLIC VERSION:

$$(2) + (1) \Longrightarrow$$

 $-x_1 + 97x_2 = 97$
 $98x_2 = 99 \implies x_2 = 99/98, x_1 = 97/98$

with 10 digits: $x_1 = 1.010204081 \approx 1$, $x_2 = 0.9897959183 \approx 1$

Computation

$$-x_1 + 97x_2 = 97$$

 $x_1 + x_2 = 2$

SYMBOLIC VERSION:

$$(2) + (1) \Longrightarrow$$

 $-x_1 + 97x_2 = 97$
 $98x_2 = 99 \implies x_2 = 99/98, x_1 = 97/98$

with 10 digits: $x_1 = 1.010204081 \approx 1, \ x_2 = 0.9897959183 \approx 1$

$$-x_1 + 97x_2 = 97$$

 $x_1 + x_2 = 2$

$$-x_1 + 97x_2 = 97$$

 $98x_2 = 99$

$$x_2 = 99:98 = 1.0$$

$$(1) \Rightarrow x_1 = 97x_2 - 97 = 97 - 97 = 0.0$$
!!

$$-x_1 + 97x_2 = 97$$

 $x_1 + x_2 = 2$

$$(2) + (1)$$

$$-x_1 + 97x_2 = 97$$
$$98x_2 = 99$$

$$x_2 = 99:98 = 1.0$$

$$(1) \Rightarrow x_1 = 97x_2 - 97 = 97 - 97 = 0.0$$
!!

$$-x_1 + 97x_2 = 97$$
$$x_1 + x_2 = 2$$

$$(2) + (1)$$

$$-x_1 + 97x_2 = 97$$
$$98x_2 = 99$$

$$x_2 = 99:98 = 1.0$$

$$(1) \Rightarrow x_1 = 97x_2 - 97 = 97 - 97 = \mathbf{0.0}$$
 !!

$$-x_1 + 97x_2 = 97$$

 $x_1 + x_2 = 2$

$$(2) + (1)$$

$$-x_1 + 97x_2 = 97$$
$$98x_2 = 99$$

$$x_2 = 99:98 = 1.0$$

$$(1) \Rightarrow x_1 = 97x_2 - 97 = 97 - 97 = \mathbf{0.0}$$
 !!

$$-x_1 + 97x_2 = 97$$
$$x_1 + x_2 = 2$$

$$(2) + (1)$$

$$-x_1 + 97x_2 = 97$$
$$98x_2 = 99$$

$$x_2 = 99:98 = 1.0$$

$$(1) \Rightarrow x_1 = 97x_2 - 97 = 97 - 97 = \mathbf{0.0}$$
 !!!

Are there sabotages or not?

Neumann János 1903 – 1957

Using arithmetics of 8 digits,

the solution of a linear system of equations with 40 variables IS FALSE WITH A PROBABILITY OF ¿90% IF GAUSSIAN ELIMINATION IS USED

Are there sabotages or not?

Neumann János 1903 – 1957

Using arithmetics of 8 digits,

the solution of a linear system of equations with 40 variables IS FALSE WITH A PROBABILITY OF ¿90% IF GAUSSIAN ELIMINATION IS USED

Are there sabotages or not?

Neumann János 1903 – 1957

Using arithmetics of 8 digits,

the solution of a linear system of equations with 40 variables

IS FALSE WITH A PROBABILITY OF ¿90% IF GAUSSIAN ELIMINATION IS USED

Correction with successive approximation

$$P^* = [\text{True solution}]$$

 $P = [\text{point by Stupid Machine}]$

$$L_1 = \{(x_1, x_2) : -x_1 + 97x_2 = 97\}$$

$$= \{(x_1, x_2) : x_2 = 1 + x_1/97\}$$

$$\approx \{(x_1, x_2) : x_2 = 1\}$$

$$L_2 = \{(x_1, x_2) : x_1 + x_2 = 2\}$$

$$= \{(x_1, x_2) : x_2 = 2 - x_1\}$$

Correction with successive approximation

 $V_1 := egin{bmatrix} ext{Orthogonal projection to L_1^*-re} \ V_2 := egin{bmatrix} ext{Orthogonal projection to L_2^*-re} \end{bmatrix}$

Correction with successive approximation

Apply the projections $V_1,\,V_2$ several times to the point P of Stupid Machine

$$P_0 := P = (\mathbf{0}, \mathbf{1})$$

$$P'_1 = V_1(P_0) = (0, 1) \qquad L_1 - \text{en}$$

$$P_1 = V_2(P'_1) = \left(1 + \frac{1 - 0}{2}, 1 + \frac{0 - 1}{2}\right) = (\mathbf{0}.\mathbf{5}, \ \mathbf{1}.\mathbf{5})$$

$$P'_2 = V_1(P_2) = (0.5, 1)$$

$$P_2 = V_2(P'_2) = \left(1 + \frac{0.5 - 1}{2}, 1 + \frac{1 - 0.5}{2}\right) = (\mathbf{0}.\mathbf{7}, \ \mathbf{1}.\mathbf{3})$$

$$P'_3 = (0.7, 1)$$

$$P_3 = \left(1 + \frac{0.7 - 1}{2}, 1 + \frac{1 - 0.7}{2}\right) = (\mathbf{0}.\mathbf{8}, \ \mathbf{1}.\mathbf{2})$$

$$P'_4 = (0.8, 1)$$

$$P_4 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.\mathbf{9}, \ \mathbf{1}.\mathbf{1})$$

$$P'_5 = (0.8, 1), \quad P_5 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.\mathbf{9}, \ \mathbf{1}.\mathbf{1})$$
NO FURTHER IMPROVEMENT.

$$\begin{split} P_0 &:= P = (\textbf{0}, \textbf{1}) \\ P_1' &= V_1(P_0) = (0 \ , \textbf{1}) \qquad \textbf{L_1-en} \\ P_1 &= V_2(P_1') = \left(1 + \frac{1-0}{2}, 1 + \frac{0-1}{2}\right) = (\textbf{0.5} \ , \ \textbf{1.5}) \\ P_2' &= V_1(P_2) = (0.5 \ , \ \textbf{1}) \\ P_2 &= V_2(P_2') = \left(1 + \frac{0.5-1}{2}, 1 + \frac{1-0.5}{2}\right) = (\textbf{0.7} \ , \ \textbf{1.3}) \\ P_3' &= (0.7 \ , \ \textbf{1}) \\ P_3 &= \left(1 + \frac{0.7-1}{2}, 1 + \frac{1-0.7}{2}\right) = (\textbf{0.8} \ , \ \textbf{1.2}) \\ P_4' &= (0.8 \ , \ \textbf{1}) \\ P_4 &= \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\textbf{0.9} \ , \ \textbf{1.1}) \\ P_5' &= (0.8 \ , \ \textbf{1}), \qquad P_5 &= \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\textbf{0.9} \ , \ \textbf{1.1}) \\ \text{NO FURTHER IMPROVEMENT.} \end{split}$$

$$P_0 := P = (\mathbf{0}, \mathbf{1})$$

$$P_1' = V_1(P_0) = (0, 1) \qquad L_1 - \text{en}$$

$$P_1 = V_2(P_1') = \left(1 + \frac{1 - 0}{2}, 1 + \frac{0 - 1}{2}\right) = (\mathbf{0}.\mathbf{5}, \ \mathbf{1}.\mathbf{5})$$

$$P_2' = V_1(P_2) = (0.5, 1)$$

$$P_2 = V_2(P_2') = \left(1 + \frac{0.5 - 1}{2}, 1 + \frac{1 - 0.5}{2}\right) = (\mathbf{0}.\mathbf{7}, \ \mathbf{1}.\mathbf{3})$$

$$P_3' = (0.7, 1)$$

$$P_3 = \left(1 + \frac{0.7 - 1}{2}, 1 + \frac{1 - 0.7}{2}\right) = (\mathbf{0}.\mathbf{8}, \ \mathbf{1}.\mathbf{2})$$

$$P_4' = (0.8, 1)$$

$$P_4 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.\mathbf{9}, \ \mathbf{1}.\mathbf{1})$$

$$P_5' = (0.8, 1), \quad P_5 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.\mathbf{9}, \ \mathbf{1}.\mathbf{1})$$
NO FURTHER IMPROVEMENT

$$P_0 := P = (\mathbf{0}, \mathbf{1})$$

$$P'_1 = V_1(P_0) = (0 , 1) \qquad L_1 - \text{en}$$

$$P_1 = V_2(P'_1) = \left(1 + \frac{1 - 0}{2}, 1 + \frac{0 - 1}{2}\right) = (\mathbf{0}.\mathbf{5}, \ \mathbf{1}.\mathbf{5})$$

$$P'_2 = V_1(P_2) = (0.5, \ \mathbf{1})$$

$$P_2 = V_2(P'_2) = \left(1 + \frac{0.5 - 1}{2}, 1 + \frac{1 - 0.5}{2}\right) = (\mathbf{0}.\mathbf{7}, \ \mathbf{1}.\mathbf{3})$$

$$P'_3 = (0.7, \ \mathbf{1})$$

$$P_3 = \left(1 + \frac{0.7 - 1}{2}, 1 + \frac{1 - 0.7}{2}\right) = (\mathbf{0}.\mathbf{8}, \ \mathbf{1}.\mathbf{2})$$

$$P'_4 = (0.8, \ \mathbf{1})$$

$$P_4 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.\mathbf{9}, \ \mathbf{1}.\mathbf{1})$$

$$P'_5 = (0.8, \ \mathbf{1}), \quad P_5 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.\mathbf{9}, \ \mathbf{1}.\mathbf{1})$$
NO FURTHER IMPROVEMENT

$$P_0 := P = (\mathbf{0}, \mathbf{1})$$

$$P_1' = V_1(P_0) = (0 , 1) \qquad L_1 - \text{en}$$

$$P_1 = V_2(P_1') = \left(1 + \frac{1 - 0}{2}, 1 + \frac{0 - 1}{2}\right) = (\mathbf{0}.5 , \mathbf{1}.5)$$

$$P_2' = V_1(P_2) = (0.5 , 1)$$

$$P_2 = V_2(P_2') = \left(1 + \frac{0.5 - 1}{2}, 1 + \frac{1 - 0.5}{2}\right) = (\mathbf{0}.7 , \mathbf{1}.3)$$

$$P_3' = (0.7 , 1)$$

$$P_3 = \left(1 + \frac{0.7 - 1}{2}, 1 + \frac{1 - 0.7}{2}\right) = (\mathbf{0}.8 , \mathbf{1}.2)$$

$$P_4' = (0.8 , 1)$$

$$P_4 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.9 , \mathbf{1}.1)$$

$$P_5' = (0.8 , 1), \quad P_5 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.9 , \mathbf{1}.1)$$
NO FURTHER IMPROVEMENT

$$\begin{split} P_0 &:= P = (\textbf{0}, \textbf{1}) \\ P_1' &= V_1(P_0) = (0 \ , 1) \qquad L_1\text{-en} \\ P_1 &= V_2(P_1') = \left(1 + \frac{1-0}{2}, 1 + \frac{0-1}{2}\right) = (\textbf{0.5} \ , \ \textbf{1.5}) \\ P_2' &= V_1(P_2) = (0.5 \ , \ 1) \\ P_2 &= V_2(P_2') = \left(1 + \frac{0.5-1}{2}, 1 + \frac{1-0.5}{2}\right) = (\textbf{0.7} \ , \ \textbf{1.3}) \\ P_3' &= (0.7 \ , \ 1) \\ P_3 &= \left(1 + \frac{0.7-1}{2}, 1 + \frac{1-0.7}{2}\right) = (\textbf{0.8} \ , \ \textbf{1.2}) \\ P_4' &= (0.8 \ , \ 1) \\ P_4 &= \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\textbf{0.9} \ , \ \textbf{1.1}) \\ P_5' &= (0.8 \ , \ 1), \qquad P_5 &= \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\textbf{0.9} \ , \ \textbf{1.1}) \\ \text{NO FURTHER IMPROVEMENT.} \end{split}$$

$$\begin{split} P_0 &:= P = (\textbf{0}, \textbf{1}) \\ P_1' &= V_1(P_0) = (0 \ , 1) \qquad L_1\text{-en} \\ P_1 &= V_2(P_1') = \left(1 + \frac{1-0}{2}, 1 + \frac{0-1}{2}\right) = (\textbf{0.5} \ , \ \textbf{1.5}) \\ P_2' &= V_1(P_2) = (0.5 \ , \ 1) \\ P_2 &= V_2(P_2') = \left(1 + \frac{0.5-1}{2}, 1 + \frac{1-0.5}{2}\right) = (\textbf{0.7} \ , \ \textbf{1.3}) \\ P_3' &= (0.7 \ , \ 1) \\ P_3 &= \left(1 + \frac{0.7-1}{2}, 1 + \frac{1-0.7}{2}\right) = (\textbf{0.8} \ , \ \textbf{1.2}) \\ P_4' &= (0.8 \ , \ 1) \\ P_4 &= \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\textbf{0.9} \ , \ \textbf{1.1}) \\ P_5' &= (0.8 \ , \ 1), \qquad P_5 &= \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\textbf{0.9} \ , \ \textbf{1.1}) \\ \text{NO FURTHER IMPROVEMENT.} \end{split}$$

$$P_0 := P = (\mathbf{0}, \mathbf{1})$$

$$P'_1 = V_1(P_0) = (0, 1) \qquad L_1 - \text{en}$$

$$P_1 = V_2(P'_1) = \left(1 + \frac{1 - 0}{2}, 1 + \frac{0 - 1}{2}\right) = (\mathbf{0}.\mathbf{5}, \ \mathbf{1}.\mathbf{5})$$

$$P'_2 = V_1(P_2) = (0.5, \ 1)$$

$$P_2 = V_2(P'_2) = \left(1 + \frac{0.5 - 1}{2}, 1 + \frac{1 - 0.5}{2}\right) = (\mathbf{0}.\mathbf{7}, \ \mathbf{1}.\mathbf{3})$$

$$P'_3 = (0.7, \ 1)$$

$$P_3 = \left(1 + \frac{0.7 - 1}{2}, 1 + \frac{1 - 0.7}{2}\right) = (\mathbf{0}.\mathbf{8}, \ \mathbf{1}.\mathbf{2})$$

$$P'_4 = (0.8, \ 1)$$

$$P_4 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.\mathbf{9}, \ \mathbf{1}.\mathbf{1})$$

$$P'_5 = (0.8, \ 1), \qquad P_5 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.\mathbf{9}, \ \mathbf{1}.\mathbf{1})$$
NO FURTHER IMPROVEMENT

$$P_0 := P = (\mathbf{0}, \mathbf{1})$$

$$P'_1 = V_1(P_0) = (0, 1) \qquad L_1 - \text{en}$$

$$P_1 = V_2(P'_1) = \left(1 + \frac{1 - 0}{2}, 1 + \frac{0 - 1}{2}\right) = (\mathbf{0}.5, \ \mathbf{1}.5)$$

$$P'_2 = V_1(P_2) = (0.5, \ 1)$$

$$P_2 = V_2(P'_2) = \left(1 + \frac{0.5 - 1}{2}, 1 + \frac{1 - 0.5}{2}\right) = (\mathbf{0}.7, \ \mathbf{1}.3)$$

$$P'_3 = (0.7, \ 1)$$

$$P_3 = \left(1 + \frac{0.7 - 1}{2}, 1 + \frac{1 - 0.7}{2}\right) = (\mathbf{0}.8, \ \mathbf{1}.2)$$

$$P'_4 = (0.8, \ 1)$$

$$P_4 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.9, \ \mathbf{1}.1)$$

$$P'_5 = (0.8, \ 1), \qquad P_5 = \left(1 + \frac{0.8 - 1}{2}, 1 + \frac{1 - 0.8}{2}\right) = (\mathbf{0}.9, \ \mathbf{1}.1)$$

$$\begin{split} P_0 &:= P = (\mathbf{0}, \mathbf{1}) \\ P_1' &= V_1(P_0) = (0 \ , 1) \qquad L_1\text{-en} \\ P_1 &= V_2(P_1') = \left(1 + \frac{1-0}{2}, 1 + \frac{0-1}{2}\right) = (\mathbf{0}.\mathbf{5} \ , \ \mathbf{1}.\mathbf{5}) \\ P_2' &= V_1(P_2) = (0.5 \ , \ 1) \\ P_2 &= V_2(P_2') = \left(1 + \frac{0.5-1}{2}, 1 + \frac{1-0.5}{2}\right) = (\mathbf{0}.\mathbf{7} \ , \ \mathbf{1}.\mathbf{3}) \\ P_3' &= (0.7 \ , \ 1) \\ P_3 &= \left(1 + \frac{0.7-1}{2}, 1 + \frac{1-0.7}{2}\right) = (\mathbf{0}.\mathbf{8} \ , \ \mathbf{1}.\mathbf{2}) \\ P_4' &= (0.8 \ , \ 1) \\ P_4 &= \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\mathbf{0}.\mathbf{9} \ , \ \mathbf{1}.\mathbf{1}) \\ P_5' &= (0.8 \ , \ 1), \qquad P_5 = \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\mathbf{0}.\mathbf{9} \ , \ \mathbf{1}.\mathbf{1}) \end{split}$$

Stachó László

$$\begin{split} P_0 &:= P = (\textbf{0}, \textbf{1}) \\ P_1' &= V_1(P_0) = (0 \ , 1) \qquad L_1\text{-en} \\ P_1 &= V_2(P_1') = \left(1 + \frac{1-0}{2}, 1 + \frac{0-1}{2}\right) = (\textbf{0.5} \ , \ \textbf{1.5}) \\ P_2' &= V_1(P_2) = (0.5 \ , \ 1) \\ P_2 &= V_2(P_2') = \left(1 + \frac{0.5-1}{2}, 1 + \frac{1-0.5}{2}\right) = (\textbf{0.7} \ , \ \textbf{1.3}) \\ P_3' &= (0.7 \ , \ 1) \\ P_3 &= \left(1 + \frac{0.7-1}{2}, 1 + \frac{1-0.7}{2}\right) = (\textbf{0.8} \ , \ \textbf{1.2}) \\ P_4' &= (0.8 \ , \ 1) \\ P_4 &= \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\textbf{0.9} \ , \ \textbf{1.1}) \\ P_5' &= (0.8 \ , \ 1), \qquad P_5 &= \left(1 + \frac{0.8-1}{2}, 1 + \frac{1-0.8}{2}\right) = (\textbf{0.9} \ , \ \textbf{1.1}) \\ \text{NO FURTHER IMPROVEMENT} \end{split}$$

Why does this work?

$$W = ig[V_1 ext{ and then } V_2 ext{ applied}ig] = V_2 \circ V_1$$

 $W: (x_1, x_2) \stackrel{V_1}{\mapsto} (x_1, 1) \stackrel{V_2}{\mapsto} (1 + \frac{x_1 - 1}{2}, 1 - \frac{x_1 - 1}{2}) = (\frac{1}{2} + \frac{x_1}{2}, \frac{3}{2} - \frac{x_1}{2})$ W DECREASES THE DISTANCES VERY STRONGLY

$$d(W(P'), W(P'')) \le \frac{1}{\sqrt{2}} |x_1(P') - x_1(P'')| \le \frac{1}{\sqrt{2}} d(P', P'')$$

Why does this work?

$$W = \begin{bmatrix} V_1 \text{ and then } V_2 \text{ applied} \end{bmatrix} = V_2 \circ V_1$$

$$W : (x_1, x_2) \stackrel{V_1}{\mapsto} (x_1, 1) \stackrel{V_2}{\mapsto} (1 + \frac{x_1 - 1}{2}, 1 - \frac{x_1 - 1}{2}) = (\frac{1}{2} + \frac{x_1}{2}, \frac{3}{2} - \frac{x_1}{2})$$

 $d(W(P'), W(P'')) \le \frac{1}{\sqrt{2}} |x_1(P') - x_1(P'')| \le \frac{1}{\sqrt{2}} d(P', P'')$

Why does this work?

$$W = \begin{bmatrix} V_1 \text{ and then } V_2 \text{ applied} \end{bmatrix} = V_2 \circ V_1$$

$$W : \left(x_1, x_2 \right) \stackrel{V_1}{\mapsto} \left(x_1, 1 \right) \stackrel{V_2}{\mapsto} \left(1 + \frac{x_1 - 1}{2}, 1 - \frac{x_1 - 1}{2} \right) = \left(\frac{1}{2} + \frac{x_1}{2}, \frac{3}{2} - \frac{x_1}{2} \right)$$

$$W \text{ DECREASES THE DISTANCES VERY STRONGLY}$$

$$d(W(P'), W(P'')) \le \frac{1}{\sqrt{2}} |x_1(P') - x_1(P'')| \le \frac{1}{\sqrt{2}} d(P', P'')$$

$$X = \begin{bmatrix} \mathbb{R} \text{ straight line or } \mathbb{R}^2 \text{ plane or closed half line.} \end{bmatrix}$$
 $W: X \to X \qquad W = \alpha \begin{bmatrix} \text{DISTANCE DECREASING} \end{bmatrix} \qquad \exists \ \alpha < 1$
 $Then \qquad \exists ! \ P^* \in X \qquad W(P^*) = P^*$
 $Starting from arbitrary P$
 $W(P), W^2(P) = W(W(P)), W^3(P) = W(W^2(P)), \ldots \to P^*$
 $Remark: (1)+(2) \qquad \text{means that} \qquad W(P^*) = P^*$
 $Remark: (1)+(2) \qquad \text{means that} \qquad W(P^*) = P^*$

$$X = \begin{bmatrix} \mathbb{R} \text{ straight line or } \mathbb{R}^2 \text{ plane or } \mathbf{closed half line.} \end{bmatrix}$$
 $W: X \to X$ $W = \alpha \begin{bmatrix} \mathsf{DISTANCE DECREASING} \end{bmatrix}$ $\exists \ \alpha < 1$ Then $\exists ! \ P^* \in X \ \ W(P^*) = P^*$

$$X = \begin{bmatrix} \mathbb{R} \text{ straight line or } \mathbb{R}^2 \text{ plane or } \mathbf{closed} \text{ half line.} .. \end{bmatrix}$$
 $W: X \to X \qquad W = \alpha \begin{bmatrix} \mathsf{DISTANCE DECREASING} \end{bmatrix} \qquad \exists \ \alpha < 1$

- Then $\exists ! \ P^* \in X \quad W(P^*) = P^*$
- Starting from arbitrary P $W(P), W^2(P) = W(W(P)), W^3(P) = W(W^2(P)), \ldots \longrightarrow P^*$

Remark: (1)+(2) means that
$$W(P^*) = P^*$$

FIXED POINT EQUATION

$$X = \begin{bmatrix} \mathbbm{R} \text{ straight line or } \mathbbm{R}^2 \text{ plane or } \mathbf{closed} \text{ half line.} \ ... \end{bmatrix}$$
 $W: X \to X \qquad W = \alpha \begin{bmatrix} \mathsf{DISTANCE DECREASING} \end{bmatrix} \qquad \exists \ \alpha < 1$

- Then $\exists ! \ P^* \in X \quad W(P^*) = P^*$
- Starting from arbitrary P $W(P), W^{2}(P) = W(W(P)), W^{3}(P) = W(W^{2}(P)), \ldots \longrightarrow P^{*}$

Remark: (1)+(2) means that
$$W(P^*) = P^*$$

FIXED POINT EQUATION

- Then $\exists ! \ P^* \in X \ \ W(P^*) = P^*$
- Starting from arbitrary P $W(P), W^{2}(P) = W(W(P)), W^{3}(P) = W(W^{2}(P)), \ldots \longrightarrow P^{*}$

Remark: (1)+(2) means that
$$W(P^*) = P^*$$

FIXED POINT EQUATION

$$x^2 = a$$
 no fixed point equation

FIXED POINT EQUATION

$$ullet$$
 E.g. $x=a/x$, $W(x)=a/x$ $P=1
ightarrow 1, a, 1, a, 1, a \ldots$ NOT SUITABLE

$$\begin{array}{ll} \mathbf{v} = a/x, & \mathbf{x} = \mathbf{x} & \Rightarrow \mathbf{x} = \frac{1}{2}\mathbf{x} + \frac{1}{2}\frac{a}{\mathbf{x}} \\ & \text{Mesopotamy} & \sqrt{2} & \left[2, \ 1\frac{30}{60}, \ 1\frac{25}{60} \to \right] \ 1\frac{24}{60} \, \frac{\mathbf{5}}{360} \\ & \mathbf{W}(\mathbf{x}) = \frac{1}{2}\mathbf{x} + \frac{1}{2}\,\mathbf{a}/\mathbf{x} \\ & d\left(W(\mathbf{x}'), W(\mathbf{x}'')\right) = \left|W(\mathbf{x}') - W(\mathbf{x}'')\right| \leq \frac{1}{2}d(\mathbf{x}', \mathbf{x}'') \end{array}$$

if
$$x', x'' \in X := [\sqrt{a}, \infty)$$
 half line. With this $W: X \to X$

Proof:
$$W(x) \ge \sqrt{a}$$
, ha $x \ge \sqrt{a}$, and

$$\frac{1}{2} \left[x' + \frac{a}{x'} - x'' - \frac{a}{x''} \right] = \frac{1}{2} \left(x' - x'' \right) \left[1 - \frac{a}{x'x''} \right]$$

$$x^2 = a$$
 no fixed point equation FIXED POINT EQUATION

$$x^2 = a$$
 no fixed point equation FIXED POINT EQUATION

• E.g.
$$x = a/x$$
, $W(x) = a/x$
 $P = 1 \rightarrow 1, a, 1, a, 1, a \dots$ NOT SUITABLE
• $x = a/x$, $x = x \Rightarrow x = \frac{1}{2}x + \frac{1}{2}\frac{a}{x}$
Mesopotamy $\sqrt{2}$ $[2, 1\frac{30}{60}, 1\frac{25}{60} \rightarrow]$ $1\frac{24}{60}\frac{52}{3600}$
• $W(x) = \frac{1}{2}x + \frac{1}{2}a/x$
• $d(W(x'), W(x'')) = |W(x') - W(x'')| \le \frac{1}{2}d(x', x'')$, if $x', x'' \in X := [\sqrt{a}, \infty)$ half line. With this $W: X \rightarrow X$
• Proof: $W(x) \ge \sqrt{a}$, ha $x \ge \sqrt{a}$, and $\frac{1}{2}[x' + \frac{a}{x'} - x'' - \frac{a}{x''}] = \frac{1}{2}(x' - x'')[1 - \frac{a}{x''x''}]$

$$x^2 = a$$
 no fixed point equation FIXED POINT EQUATION

ullet E.g. x=a/x , W(x)=a/x P=1
ightarrow 1 , $a,1,a,1,a\dots$ NOT SUITABLE

•
$$x = a/x$$
, $x = x$ $\Rightarrow x = \frac{1}{2}x + \frac{1}{2}\frac{a}{x}$

Mesopotamy $\sqrt{2}$ $\left[2, \ 1\frac{30}{60}, \ 1\frac{25}{60} \to \right] \ 1\frac{24}{60} \frac{52}{3600}$

• $\mathbf{W}(\mathbf{x}) = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{a}/\mathbf{x}$

• $d\left(W(x'), W(x'')\right) = \left|W(x') - W(x'')\right| \le \frac{1}{2}d(x', x'')$, if $x', x'' \in X := \left[\sqrt{a}, \infty\right)$ half line. With this $W: X \to X$

Proof: $W(x) \ge \sqrt{a}$, ha $x \ge \sqrt{a}$, and $\frac{1}{2}\left[x' + \frac{a}{2} - x'' - \frac{a}{2}\right] = \frac{1}{2}(x' - x'')\left[1 - \frac{a}{2}\right]$

$$x^2 = a$$
 no fixed point equation FIXED POINT EQUATION

- E.g. x=a/x, W(x)=a/x $P=1 \rightarrow 1, a, 1, a, 1, a \dots$ NOT SUITABLE
- x = a/x, x = x $\Rightarrow x = \frac{1}{2}x + \frac{1}{2}\frac{a}{x}$

$$W(x) = \frac{1}{2}x + \frac{1}{2}a/x$$

$$d(W(x'), W(x'')) =$$

$$d(W(x'), W(x'')) = |W(x') - W(x'')| \le \frac{1}{2}d(x', x'')$$
if $x' \cdot x'' \in X := [\sqrt{a}, \infty)$ half line. With this W

Proof:
$$W(x) \ge \sqrt{a}$$
, ha $x \ge \sqrt{a}$, and

$$\frac{1}{2} \left[x' + \frac{a}{x'} - x'' - \frac{a}{x''} \right] = \frac{1}{2} (x' - x'') \left[1 - \frac{a}{x'x''} \right]$$

$$x^2 = a$$
 no fixed point equation FIXED POINT EQUATION

- E.g. x=a/x, W(x)=a/x $P=1 \rightarrow 1, a, 1, a, 1, a \dots$ NOT SUITABLE
- x = a/x, x = x $\Rightarrow x = \frac{1}{2}x + \frac{1}{2}\frac{a}{x}$

Mesopotamy
$$\sqrt{2}$$
 $\left[2,\ 1\frac{30}{60},\ 1\frac{25}{60}
ightarrow
ight]\ 1\ \frac{24}{60}\ \frac{\bf 52}{3600}$

$$W(x) = \frac{1}{2}x + \frac{1}{2}a/x$$

$$d(W(x'), W(x'')) = |W(x') - W(x'')| \le \frac{1}{2}d(x', x''),$$
if $x' \times x'' \in X := [\sqrt{2}, \infty)$ half line. With this $W(x')$

Proof:
$$W(x) \ge \sqrt{a}$$
, ha $x \ge \sqrt{a}$, and

$$\frac{1}{2} \left[x' + \frac{a}{x'} - x'' - \frac{a}{x''} \right] = \frac{1}{2} (x' - x'') \left[1 - \frac{a}{x'x''} \right]$$

$$x^2 = a$$
 no fixed point equation FIXED POINT EQUATION

- ullet E.g. x=a/x , W(x)=a/x P=1
 ightarrow 1 , $a,1,a,1,a\dots$ NOT SUITABLE
- x = a/x, x = x $\Rightarrow x = \frac{1}{2}x + \frac{1}{2}\frac{a}{x}$ Mesopotamy $\sqrt{2}$ $\left[2, \ 1\frac{30}{60}, \ 1\frac{25}{60} \to \right] \ 1\frac{24}{60} \frac{52}{3600}$

$$W(x) = \frac{1}{2}x + \frac{1}{2}a/x$$

$$d(W(x'), W(x'')) = |W(x') - W(x'')| \le \frac{1}{2}d(x', x''),$$
 if $x', x'' \in X := [\sqrt{a}, \infty)$ half line. With this $W : X$

Proof:
$$W(x) \ge \sqrt{a}$$
, ha $x \ge \sqrt{a}$, and

$$\frac{1}{2} \left[x' + \frac{a}{x'} - x'' - \frac{a}{x''} \right] = \frac{1}{2} (x' - x'') \left[1 - \frac{a}{x'x''} \right]$$

$$x^2 = a$$
 no fixed point equation FIXED POINT EQUATION

- ullet E.g. x=a/x , W(x)=a/x P=1
 ightarrow 1 , $a,1,a,1,a\dots$ NOT SUITABLE
- x = a/x, x = x $\Rightarrow x = \frac{1}{2}x + \frac{1}{2}\frac{a}{x}$ Mesopotamy $\sqrt{2}$ $\left[2, \ 1\frac{30}{60}, \ 1\frac{25}{60} \to \right] \ 1\frac{24}{60}\frac{52}{3600}$ • $\mathbf{W}(\mathbf{x}) = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{a}/\mathbf{x}$ • $d\left(W(x'), W(x'')\right) = \left|W(x') - W(x'')\right| \le \frac{1}{2}d(x', x'')$, if $x', x'' \in X := \left[\sqrt{a}, \infty\right)$ half line. With this $W: X \to X$ Proof: $W(x) \ge \sqrt{a}$, has $x \ge \sqrt{a}$, and $\frac{1}{2}\left[x' + \frac{a}{2} - x'' - \frac{a}{2}\right] = \frac{1}{2}\left(x' - x''\right)\left[1 - \frac{a}{2}\right]$

$$x^2 = a$$
 no fixed point equation FIXED POINT EQUATION

- ullet E.g. x=a/x , W(x)=a/x $P=1
 ightarrow 1, a, 1, a, 1, a \dots$ NOT SUITABLE
- x = a/x, x = x $\Rightarrow x = \frac{1}{2}x + \frac{1}{2}\frac{a}{x}$ Mesopotamy $\sqrt{2}$ $\left[2, \ 1\frac{30}{60}, \ 1\frac{25}{60} \to \right] \ 1\frac{24}{60}\frac{52}{3600}$ • $\mathbf{W}(\mathbf{x}) = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{a}/\mathbf{x}$ • $d\left(W(x'), W(x'')\right) = \left|W(x') - W(x'')\right| \le \frac{1}{2}d(x', x'')$, if $x', x'' \in X := [\sqrt{a}, \infty)$ half line. With this $W : X \to X$ Proof: $W(x) \ge \sqrt{a}$, ha $x \ge \sqrt{a}$, and

$$x^2 = a$$
 no fixed point equation FIXED POINT EQUATION

- ullet E.g. x=a/x , W(x)=a/x P=1
 ightarrow 1 , $a,1,a,1,a\dots$ NOT SUITABLE
- x = a/x, x = x $\Rightarrow x = \frac{1}{2}x + \frac{1}{2}\frac{a}{x}$ Mesopotamy $\sqrt{2}$ $\left[2, \ 1\frac{30}{60}, \ 1\frac{25}{60} \to \right] \ 1\frac{24}{60} \frac{\mathbf{52}}{3600}$ • $\mathbf{W}(\mathbf{x}) = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{a}/\mathbf{x}$ • $d(W(x'), W(x'')) = |W(x') - W(x'')| \le \frac{1}{2}d(x', x'')$, if $x', x'' \in X := [\sqrt{a}, \infty)$ half line. With this $W: X \to X$ Proof: $W(x) \ge \sqrt{a}$, ha $x \ge \sqrt{a}$, and $\frac{1}{2}[x' + \frac{a}{x'} - x'' - \frac{a}{x''}] = \frac{1}{2}(x' - x'')[1 - \frac{a}{x'x''}]$

PI.
$$\sqrt{2}$$
 $x_{n+1} = \frac{1}{2} [x_n + 2/x_n], x_0 = 2$

1.41421568627450980392156862745098039215686274509803921

1.4142135623746899106262955788901349101165596221157440

1.414213562373095048801689623502530243614981925776197

1.4142135623730950488016887242096980785696718753769

PI.
$$\sqrt{2}$$
 $x_{n+1} = \frac{1}{2} [x_n + 2/x_n], x_0 = 2$

1.41421568627450980392156862745098039215686274509803921

1.4142135623746899106262955788901349101165596221157440

1.4142135623730950488016887242096980785696718753772

1.4142135623730950488016887242096980785696718753769

PI.
$$\sqrt{2}$$
 $x_{n+1} = \frac{1}{2} [x_n + 2/x_n], x_0 = 2$

- **1.41421**568627450980392156862745098039215686274509803921
- **1.41421356237**46899106262955788901349101165596221157440
- 1.4142135623730950488016887242096980785696718753772

PI.
$$\sqrt{2}$$
 $x_{n+1} = \frac{1}{2} [x_n + 2/x_n], x_0 = 2$

- $\boldsymbol{1.41421} 568627450980392156862745098039215686274509803921$
- **1.41421356237**46899106262955788901349101165596221157440

PI.
$$\sqrt{2}$$
 $x_{n+1} = \frac{1}{2} [x_n + 2/x_n], x_0 = 2$

- **1.41421**568627450980392156862745098039215686274509803921
- **1.41421356237**46899106262955788901349101165596221157440
- **1.41421356237309504880168**9623502530243614981925776197
- 1.4142135623730950488016887242096980785696718753772

PI.
$$\sqrt{2}$$
 $x_{n+1} = \frac{1}{2} [x_n + 2/x_n], x_0 = 2$

- **1.41421**568627450980392156862745098039215686274509803921
- **1.41421356237**46899106262955788901349101165596221157440
- **1.41421356237309504880168**9623502530243614981925776197

 $\boldsymbol{1.4142135623730950488016887242096980785696718753772}$

1.4142135623730950488016887242096980785696718753769

PI.
$$\sqrt{2}$$
 $x_{n+1} = \frac{1}{2} [x_n + 2/x_n], x_0 = 2$

- $\boldsymbol{1.41421} 568627450980392156862745098039215686274509803921$
- **1.41421356237**46899106262955788901349101165596221157440
- **1.41421356237309504880168**9623502530243614981925776197
- $\mathbf{1.41421356237309504880168872420969807856967187537} \\ \mathbf{2000}$
- 1.4142135623730950488016887242096980785696718753769

PI.
$$\sqrt{2}$$
 $x_{n+1} = \frac{1}{2} [x_n + 2/x_n], x_0 = 2$

- $\boldsymbol{1.41421} 568627450980392156862745098039215686274509803921$
- **1.41421356237**46899106262955788901349101165596221157440
- **1.41421356237309504880168**9623502530243614981925776197
- $\mathbf{1.41421356237309504880168872420969807856967187537} \\ \mathbf{2000}$
- 1.4142135623730950488016887242096980785696718753769

GENERALIZATIONS

• Cubic root:
$$\sqrt[3]{a}$$
 Kepler $W(x) = \frac{2}{3}x + \frac{1}{3}a/x^2$

• p-th root:
$$\sqrt[p]{a}$$
 Newton $W(x) = \left(1 - \frac{1}{p}\right)x + \frac{1}{p}a/x^{p-1}$

GENERALIZATIONS

• Cubic root:
$$\sqrt[3]{a}$$
 Kepler $W(x) = \frac{2}{3}x + \frac{1}{3}a/x^2$

• p-th root:
$$\sqrt[p]{a}$$
 Newton $W(x) = \left(1 - \frac{1}{p}\right)x + \frac{1}{p}a/x^{p-1}$

$$X = \{ \text{ OBJECTS } \}$$

- d(x,y) = d(y,x) > 0, if $x \neq y \in X$
- Bypass ≥ direct way:

$$d(x_0, x_1) + d(x_1, x_2) + \cdots + d(x_{n-1}, x_n) \ge d(x_0, x_n)$$

$$X = \left\{ \text{ OBJECTS } \right\}$$

d distance between the elements of X

- d(x,y) = d(y,x) > 0, if $x \neq y \in X$
- Bypass ≥ direct way:

 $d(x_0, x_1) + d(x_1, x_2) + \cdots + d(x_{n-1}, x_n) \ge d(x_0, x_n)$

$$X = \{ \text{ OBJECTS } \}$$

- d(x,y) = d(y,x) > 0, if $x \neq y \in X$
- Bypass ≥ direct way:

$$d(x_0, x_1) + d(x_1, x_2) + \cdots + d(x_{n-1}, x_n) \ge d(x_0, x_n)$$

$$X = \left\{ \text{ OBJECTS } \right\}$$

- d(x,y) = d(y,x) > 0, if $x \neq y \in X$
- Bypass \geq direct way:

$$d(x_0, x_1) + d(x_1, x_2) + \cdots + d(x_{n-1}, x_n) \ge d(x_0, x_n)$$

$$X = \left\{ \text{ OBJECTS } \right\}$$

- d(x,y) = d(y,x) > 0, if $x \neq y \in X$
- Bypass \geq direct way:

$$d(x_0, x_1) + d(x_1, x_2) + \cdots + d(x_{n-1}, x_n) \ge d(x_0, x_n)$$

• **Completeness:** Finite paths (with infinite steps) end in *X*:

$$d(x_0, x_1) \le 1, \ d(x_1, x_2) \le \frac{1}{2}, \ d(x_2, x_3) \le \frac{1}{4}, \dots \Longrightarrow$$

 $\exists \ x^* \in X \ d(x_n, x_*) \le 1/2^{n-1} \ (n = 0, 1, \dots).$

• **Completeness:** Finite paths (with infinite steps) end in *X*:

$$d(x_0, x_1) \le 1, \ d(x_1, x_2) \le \frac{1}{2}, \ d(x_2, x_3) \le \frac{1}{4}, \dots \Longrightarrow$$

 $\exists \ x^* \in X \ d(x_n, x_*) \le 1/2^{n-1} \ (n = 0, 1, \dots).$

• **Completeness:** Finite paths (with infinite steps) end in *X*:

$$d(x_0, x_1) \le 1, \ d(x_1, x_2) \le \frac{1}{2}, \ d(x_2, x_3) \le \frac{1}{4}, \dots \Longrightarrow$$

 $\exists \ x^* \in X \ d(x_n, x_*) \le 1/2^{n-1} \ (n = 0, 1, \dots).$

• **TÉTEL.** X, d complete metric space

• $W: X \to X$ mapping with α [d-DECREASING], $\alpha < 1$. Then $\exists ! \ x^* \in X \qquad W(x^*) = x^*$ and

• **TÉTEL.** X, d complete metric space

• $W: X \to X$ mapping with α [d-DECREASING], $\alpha < 1$.

$$\exists! \ x^* \in X \qquad W(x^*) = x^*$$

and

$$\forall x_0 \in X \quad x_n := W^n(x_0) \to x^*.$$

• **TÉTEL**. *X*, *d* complete metric space

• $W: X \to X$ mapping with α [d-DECREASING], $\alpha < 1$. Then

$$\exists!\ x^* \in X \qquad W(x^*) = x^*$$

and

$$\forall x_0 \in X \quad x_n := W^n(x_0) \to x^*$$

BANACH'S FIXED POINT THEOREM

• TÉTEL. X, d complete metric space

• $W: X \to X$ mapping with α [d-DECREASING], $\alpha < 1$. Then $\exists ! \ x^* \in X$ $W(x^*) = x^*$ and $\forall \ x_0 \in X$ $x_n := W^n(x_0) \to x^*$.

How can be deduced this from Banach's Fixed Point Thm?

How can be deduced this from Banach's Fixed Point Thm?

 $X = \left\{ \mathbb{R}^2 \text{ CLOSED BOUNDED SUBSETS OF THE PLAIN} \right\}$

$$X = \left\{ \mathbb{R}^2 \text{ CLOSED BOUNDED SUBSETS OF THE PLAIN} \right\}$$

$$d(A, B) = \left[\text{HAUSDORFF DISTANCE BETWEEN SETS } A, B \right]$$

$$W = ?$$
 $T_k(x) = \frac{1}{2}x + b_k$ $(k = 1, 2, 3)$

 $W(A) := T_1(A) \cup T_2(A) \cup T_3(A)$!!!!

$$W = ?$$
 $T_k(x) = \frac{1}{2}x + b_k$ $(k = 1, 2, 3)$

$$W(A) := T_1(A) \cup T_2(A) \cup T_3(A)$$
 !!!!

IN GENERAL:

If (X,d) complete and T_1,\ldots,T_n arbitrary strong cntractions wrt. of then $W:A\mapsto T_1(A)\cup\cdots\cup T_n(A)$ strong cntraction

wrt. the Hausdorff distance of the compact sets by the distance d

THEREFORE $H, W(H), W^2(H), \dots$ CONVERGE to some figure!

IN GENERAL:

Ιf

(X, d) complete and T_1, \ldots, T_n arbitrary strong cntractions wrt. d

then

 $W: A \mapsto T_1(A) \cup \cdots \cup T_n(A)$ strong cntraction with the Hausdorff distance of the compact sets by the distance of

THEREFORE H, W(H), $W^2(H)$,... CONVERGE to some figure!

IN GENERAL:

lf

(X,d) complete and T_1,\ldots,T_n arbitrary strong cntractions wrt. d

then

 $W: A \mapsto T_1(A) \cup \cdots \cup T_n(A)$ strong cntraction

wrt. the Hausdorff distance of the compact sets by the distance d.

THEREFORE H, W(H), $W^2(H)$,... CONVERGE to some figure!

IN GENERAL:

If

(X,d) complete and T_1,\ldots,T_n arbitrary strong cntractions wrt. d

then

 $W: A \mapsto T_1(A) \cup \cdots \cup T_n(A)$ strong cntraction

wrt. the Hausdorff distance of the compact sets by the distance d.

THEREFORE H, W(H), $W^2(H)$,... CONVERGE to some figure !

BACK TO THE TRIANGLE — H

W(H)

$W^2(H) = W(W(H))$

$W^3(H) = W(W^2(H)))$

$W^4(H) = W(W^3(H))$

TAJ MAHAL

