1. Introduction

Recently some novel interest seems to be raised toward the symbolic LU decomposition
of Vandermonde matrices. Several explicit formulas at various levels along with matrix
subfactorizations are well-known for them and their inverses. Our aim in this paper to
extend these results to the matrices associated with interpolation problems with Hermite

type.
2. Preliminaries

2.1. First we recall briefly the results spread in the literature concerning the LU decom-
position of the Vandermonde matrix
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Henceforth N is a fixed positive integer, and we shall consider (N + 1)2-matrices with
indices ranging from 0 to N. In terms of the formal vectors
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where x is a variable symbol and J, denotes the evaluation functional p — p(a) defined for
polynomials in = of degree< N, we can write

V(x) = d(x)e(z).
Consider the Lagrange interpolation polynomial p := pyxy defined by the requirements

p(x,) = yn (n =0,...,N) (with y := [y0,...,9n]"). Since we can write p in the form
p=> pnxy =e(z)p, it follows y = §(X)pxy(z) = §(x)e(z)pxy = V(X)px,y that is

Pxy () = e()V(x)"y.

N
The Newtonian form p(z) = > p(zo,...,Zn)wn(z) of this polynomial with

n=0

n

wn(x> = H (:I: _mk‘)v p(l‘o, s 7$n) = Z p(l‘]) H (xj - xi)il

k:k<n j=0 BjF#i<n

(convention: wy = 1) yields the relation pxy(z) = e(z)Q(x)A(x)y with the upper resp.
lower triangular matrices

N
Q(x) := [coeffs of wy, in column n] 7]:[20 , A(x) := [ H (z; — xi)_l} o



Hence the following triangular decompositions are immediate

V() =0x)AX), V(x)=AX)Qx)7

N

Ax)"H =V (x)Q(x) = §(x)e(z)Q(x) = [wn(xk)}km:o.

Not stated explicitly in [Monthly] but the arguments can be continued to achieve a shortcut
to a closed (i.e. recursion free) formula for the entries of the upper triangular term Q(x) 1.
Indeed, we have
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For any fixed degree v, the last formula can be obtained by induction on n from the
identities p(zk, ..., Tprs+1) = [p(mk + 1, ., xpyst1) — P(Thy - - xk+8)} [(Tprst1 — Tk)-

2.2. Next we recall the concept of Hermite (or Hermite-Vandermonde) matrices along
with their relationship to Hermite approximation. Henceforth we fix numbers mq,..., m,
such that (m; +1)+...4+(m,+1) = N+ 1. Given an r-tuple a := [aq, ..., a,], along with
row matrices by := [b,({:o), e ,b,(cm’“)} (k =1,...,7), the Hermite interpolation polynomial
¢(z) := qab,,... b, (x) is defined as the unique polynomial of degree< N satisfying

d*q (s)
=b k=1,...,r; 0<s<myg).
dxzs r=ay k ( - - k)
For later matrix operations, we divide the integer interval I := {0,1,..., N} into consec-

utive segments
I, = {V]S:O), . l/]gmk)}, V](CS) = s+ Z (me+1)

0:b<k
with inverse indices k(n) := [k: ne Ik], o(n) = [position of n in Iﬁ(n)} = [s: ”:’/,(:(21)}-
The Hermite- Vandermonde matriz over the base point system a = [aq, . . ., a,] of multiorder
m := [my,...,m,] is the (N + 1)% -matrix H = H™(a) of the system of linear equations

of the form qH™(a) = [by,...,b,]| for the coefficient vector q := [qo,...,qn] of the
polynomial gab,,...b,.. In terms of the linear functionals
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analogously as in the Vandermonde case (r = N +1,m; = --- = mpy41 = 0), we can write
H™(a) =0"(a)e(x), Gab,.. b (r) =e(x)H™(@) 'b with b:=[by,...,b,]".

It is well known that Hermite interpolation polynomials admit also a Newtonian form

q(z) = Z q(al/éo), ceey aylis>)wn(x), wp(z) = H ( — ax())

n=0 2:1<n

in terms of generalized Newton differences. As outlined in [Monthly| hence we can get
again a triangular decomposition of the form

H™(a)"! = O™(a)A™(a)

where A™(a) is a lower triangular matrix whose row with index n contains the coefficients
of gab,,.... br(&,,w), e ,ay(s>) with respect to the variables bz) with v(k, s) < n, while col-
0 k

umn n of Q™ (a) consists of the coefficients of the polynomial w,(z). Similarly as in the
Vandermonde case, we can conclude that

de (@
A™(2)~! = 0™ (a) H™ (a)) = 0™ (2)e(x) 2™ (a) = |

Ao () Wn(fff)]

T=0Ap (i) 1,m=0

in the standard LU decomposition H™(a) = A™(a)~1Q™(a)~ L.

3. Combinatorial formulas of the upper triangular factors

Closed formulas for the entries of the matrices 2™ (a), 2™ (a)~! can be obtained simply

by a formal substitution of the tuple x = (xq,...,zxy) (supposed to have pairwise different
entries in Subsection 2.1 with x := a™ = (ao, N 1 PPN s MUy ) Namely the diagonal
N———
m0+1 m'r+1

entries are 1 in both cases and, for for the entries of indices ¢ < j we have

[Qm(a)}ij = [coeff. of 2’ in :]i[:(m — z)]
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with the index sets

Kij = {(k:o,...,k:r) € [ x [O,ma]} % [0,0(a)] x {0V 7" s kg4 ky :j—i}



and respective weight coefficients géi()’...’kr) = [ H (T]:’a> ] (k:(gj_)l)
a<r(j—1)
Similarly, for n < v we have
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with K, = {(k’o, k)€ [ X [O,ma]] x [0, 0(a)] % {O}T_H(j): ko+-- .+k;T:y—1},

a<k(j—1)

Ty = #{functions ¢:{0,...,n} > Zo with 3 ¢(i) = ks (s =0, .. .,f@(n))} -

i€l
k(n—1)
= [ IT wim.+ L%)}u(a(n) + 1, K
s=0

where 11(¢, k) denotes the number of all functions v : {1,...,¢} — Z 1 with >, (i) = k.

4. Combinatorial formulas of the upper triangular factors

In accordance with the partition I = (J;_, Iy, we partition the vectors z := [z, ..., z2n]
into subvectors

Zp = [Zu(k,O)a Ru(k,1)y - - 7ZV(k,mk)] (k Rt ,7")

and consider the corresponding Newton difference matrices

mg
A(xy) = [ IT @ —%(k,@)_l] njm0”
ijAi<n =

It is well-known from classical analysis [?7] that differentiations can be obtained as limits
of Newton differences: given any smooth function ¢ : IR — IR along with a net x(®) — a™
with pairwise different terms 2 + () (0 <n <v<N), we have

dm
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() [0 ), 6 )] > [0lan), 6 an), o))

a=ayg

5. Hermite interpolation as limit of Lagrange interpolations

As far as we know no explicit formulas were published for the entries of both A™(a)
and its inverse. We achieve them below by a limiting process from Vandermonde cases.

Proposition. Suppose f : IR — IR is a function being C™*-smooth in suitable neighbor-
hoods of the points aj, with &’ /dz? |,—a, f(z) = bg) (k=1,...,m; 0<j5 <myg). Assume a
net of (N +1)-tuples x1°l consists of points with pairwise different coordinates (:L’Ea] # xg-a]
for i # j) and converges to a™. Then £f|{33ga], . ,:1:53]}(36) — HF.
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Proof. Let g := f — HF. Notice that d’//dz|,—a, f(z) =0 (k= 1,...,7; 0 < j < my).
Since HF is a polynomial of degree N, we have LHF = HF and hence it suffices to see
that

Lol 2l @) > 0.

This can be done by showing that for all its Newton differences,

(%) g(x;a>,...,m;?25)—>0 (s=0...,N; 0<n<N-—s).
We verify this statement by induction on the order index s. For s = 0 and fixed n =
(my+1)+---+(mrp+1)+ 75— 1 we have g(ac%a)) — g(ag+1) = 0 because of the continuity
of g at the points aq,...,a, and since xE31)1+1)+-~+(mk+1)+j—1 — ag+1 by assumption.
Assuming (x) for some s, we consider the behavior of g(x%a), o ,xfﬁ?sﬂ) in two cases: (1)
if 24 — ai,xﬁﬁﬁsﬂ — a; with i # j (e a; # a;); (2) if :U,(la),:c;o_‘gsﬂ — a;. In this case
also acff_fl, . ,xff_‘gs — a;. In case (1) we have
(@) (@) () (@)
g(._'l’,' +10 Ty +1) _g(xn ""?xn—‘,—s)
g(aph o algn) = = @ (@) -
Tnfs+1 — In
0-0
— — = 0.
aj; —1a;

In case (2) we apply the fact that a Newton difference of order (s + 1) can be expressed
by a derivation of or order (s + 1) taken at some location between the most left and right
base points:

ds+1

s+1
(@) (@) _ d
g(a:n+1, e ,xn+s+1) = il

_> —_
a::9ag(x) dl’erl r=a;

g(x) =0

with a suitable net 6, — a;.

Corollary. For anyr € R, let x!1l := [ak +gt: k=1,...,r;, 0<5 < mk} (that is xt =

mi

(a1,a1 +t,...,a1 + myt,az,. .., a, —|—mrt)) and let yt .= [Z b,(;)[@_l—,l)t]z 0<5< mk}.
i=0

Then, for some € > 0, the components of the tuples xI*! are different if [t| < e. Fizing such

a value of e, with the function germs fltl := [x([)t] > y([)t], . ,ng]] — y%]] (—e<t<e) we

have HF = lim LfIY) and H(a™) 'b = lim V (x[1) =1y,
t—0 t—0



Lemma. With the upper triangular Newton matrices Ny = [(3)} e we have
0<i<j<my

H(a™) = lim V(x[ﬂ)[ké [Ny diag(l_l,t,...,t_m’“)ﬂ.
=1

t—0

5. Closed formulas for the entries of the upper triangular factors.

N

Lemma. For the subdiagonal matriz S := [1y (€ + 1)k] b0

— T
= > k ere,_, we have
k=1

o6 = [ (]}, = D (el

Proof. The n-th power of a subdiagonal matrix has non-zero entries only in the n-th skew
row below the diagonal. Thus we can write

Sn [1{k}(€—|—n }kﬁ o Z O'K eg+ne£
/=0

We have the recursion

N—(n+1)
5" eyt = 5001 =
=0
N—n N N—n
=95"S = [ Z aén)euneﬂ [Z k eke;ffl] = Z aén)ﬁ €rin€; 1;
k=1 =1

oY) _ Ugi)l (=0,...,N — (n+1)).

Taking into account the definition of S implying 0'( . 1, we conclude by induction

on n that a(n) (Z + 1)l +2)---(£+n)=({+n)/ in all cases. It follows exp(tS) =
N Nk

> 5 e = Z " Z (e:'z) erin€; = > > tk_e@)ekez.

=0 = k=0 (=0
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v(z):=[1,z,22, ... 2"]
X = [1‘0,1'1,1‘2, “eey CL’N]
Y = [Y0s Y1, Y2, -, UN]
f.= [(a:o, vo), (1,91), .-, (N, yN)] function germ
v (o)
V(x) = Vandermonde matrix
v(zy)
Lf(z) = [Lagrange polynomial of f with symbolic variable x]
Lf(z) =co+crz+---eyz™ =v(z)c where c:= [00,01,02, . ,CN}T
V(x)c=y interpolation equations

Lf(z) =v(z)V(x)"ly
)=f(x0)+f(x0, z1)(x—20)+" - -+f(x0,. .., 2N )(T—20) - -(r—2 N1 ) Newton form
f(xg,..., 1) = Z;ﬂ:o Yj [lijricp(@p — )7 = di(x)y  Newton difference quo-

wi(z) = (wk— xg) - (:c —xp—1), wol(z):=1
wi () = 3o w20 = v(z)wg

Q(x) == [wo(x),...,wn(x)] upper triangular matrix
do(x)

Df(x) := lower triangular matrix
dy (x)

Lf(z) = v(z)Q(x)Df (x)y

V(x)~! =Q(x)Df(x) triangular decomposition

a::[al,...,ar], r<N+1

b, b\
b:= ||, b= :

b, by
(mi+1)+--+(m+1)=N+1
F:=[((a1,b1),...,(ar,b,)] function germ with derivatives
HF(x) := [Hermite polynomial of F with symbolic variable x]
%j HF(x) = bg) (k=1,...,m7, 0<j<my) interpolation equations

r=ay
Lagrangian case: r=N+1, m; =---=mpyny41 =0
HF(z) = v(z)c classical polynomial form, c:= [co,...,cn]
m = [my,...,m]
v(a)
d/dzx|,—v(x)

Th(a) = i Taylor matrices

d™/dx™|p=qv(x)



Tml (a’l)
H(a™) := Hermite matrix
T, (ar)
H(a™)c=b interpolation equations
HF(z) = v(z)H(a™) 'b
We get the Newtonian form of 7F(z) as a limit of Vandermode cases
a™(t) .= [al,al +t,...,a1 -I—mlt,...,ar,a,,—|—t,...,ar+mrt}

N N T
b(t) = {bg()), o + 0Vt e b0 o0 Ve T 0 /)
f, = [(al, bgo)), (a1, bgo)—kbgl)(t)), . (artmet, Y bgj)tj/j!)] pairing of a™(t), b(t)
=0
HF (z) = %1_1% Lf(x)



