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Foreword

After several friendly discussions of the pros and cons of tensors versus
differential forms in the solution of engineering problems, I persuaded my
colleague Dr. Flanders to prepare a number of lectures on differential forms.
The result was an- outstanding series of lectures which was presented to a
group of interested faculty members within the several schools of Engineering
at Purdue University.

It became obvious to those attending that the use of differential forms
would give them another tool for the analysis and synthesis of engineering
systems. There are certain problems, normally very difficult to solve by
using tensors only, for which results are more quickly and directly obtained
with differential forms.

The author was encouraged to formalize his notes to the extent necessary
for publication, to enable others to study this important subject. The text
is recommended highly because differential forms and related concepts which
have evolved from modern mathematics are new and powerful analytical
tools for use by the engineer and scientist.

GEORGE A. HaAwkiINs, Dean
Schools of Engineering and Mathematical Sciences
Purdue University

November 20, 1962






Preface to the Dover Edition

I have made the following changes to the 1963 edition. First, I have
rewritten the proof of the Third Lie Theorem, starting on page 109, to better
systematize the computations. Second, I have rewritten the derivation of
some basic relations in phase space, pp. 164-165, to be less computational and
more in the spirit of the book. Finally, there is an addendum to the bibliogra-
phy on page 199 which should be useful. In particular, it mentions the
forthcoming MAA Studies volume in which I give Kannai’s differential
form proof of the Brouwer fixed point theorem.

HARLEY FLANDERS
June 1989






Preface to the First Edition

Last spring the author gave a series of lectures on exterior differential
forms to a group of faculty members and graduate students from the Purdue
Engineering Schools. The material that was covered in these lectures is
presented here in an expanded version. The book is aimed primarily at
engineers and physical scientists in the hope of making available to them new
tools of very great power in modern mathematics. Although none of our
applications goes very deep, it is hoped, nevertheless, that enough ground
is covered in each case to indicate the usefulness of this machinery.

A word about the organization of the book is in order. The first chapter is
introductory and sketches where we are going and why. Chapters II, III,
and V include all of the theoretical material; a knowledge of this opens the
door to the applications. Probably on first reading, one should aim more at
developing some intuition for the subject and getting a firm idea of what the
various different things which are defined look like, rather than at working
out proofs in detail. Applications to questions in differential geometry (in-
cluding many topics of considerable use in physical sciences) are mostly in
Chapters IV, VI, VIII, and IX. Applications to various topics in ordinary
and partial differential equations will be found in Chapter VII. Finally,
applications to several topics in physics are in Sections 3.5, 4.6, 6.4, and
Chapter X.

What is presupposed of the reader is first of all a certain amount of scien-
tific maturity, the precise direction not being too important. While the book
is not really advanced mathematics, it is not exactly ground floor mathe-
matics either, and a reasonable knowledge of the calculus of functions of
several real variables is necessary, as is a working knowledge of linear algebra
through the ideas of linear combination, basis, dimension, linear transforma-
tion. Some exposure to a minimum amount of the ground rules of modern
mathematics, sets, cartesian products, functions on sets, is helpful but not
essential. This material is usually picked up by osmosis anyway, and the
Glossary of Notation at the end of the book should be helpful. The reader
should also know about the existence of solutions of ordinary differential
equations. A passing familiarity with tensor methods is useful, but not
essential.

If our audience consisted of mathematicians alone, it would be in order to
use somewhat more care in our formulations of definitions and proofs of
theorems and to discuss in considerably more depth numerous technical
points we here'pass over lightly. Our goal, however, is to develop an intuition

xi



Xii PREFACE TO THE FIRST EDITION

and a working knowledge of the subject with as much dispatch as is possible.
This perhaps could be done in less space except for our insistence on a degree
of rigor matching that found in the better treatises on theoretical physics.
This falls short of the extremely great precision which is customary in modern
abstract mathematics and pretty much inherent in its nature. One who quite
rightly is searching recent developments in mathematics for applicable
material must find this precision a considerable barricade, overpedantic if not
downright tedious—a very real factor in the great separation between modern
mathematics and modern science. Making his craft available to science is not
a light task for the mathematician and the extent to which this book makes a
contribution therein must necessarily be its primary measure of success.

In spite of all this, we do not hesitate to recommend this material to
graduate students in mathematics as an introduction to modern differential
geometry; indeed, a well-trained advanced undergraduate should find the
book quite accessible. Considering the degree to which present day mathe-
matical training consists of one abstraction after another, some of the things
in this book could be a bit of an eye-opener, even to a mathematics student
who is well along. For example, one could envisage such a student meeting
here a parabolic differential equation, or a matrix group, or a contact trans-
formation for the very first time.

It is my pleasant duty to acknowledge the substantial help and encourage-
ment I have always had from my teachers, colleagues, and students. In this
respect a special vote of thanks is due George A. Hawkins, Dean of the
Schools of Engineering and Mathematical Sciences of Purdue University.
Finally, I wish to express my gratitude to Elizabeth Young, whose beautiful
typing of the manuscript was a substantial contribution.

July 1963 HArRLEY FLANDERS
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Introduction

1.1. Exterior Differential Forms

The objects which we shall study are called exterior differential forms.
These are the things which occur under integral signs. For example, a line
integral

Adx + Bdy + Cdz

leads us to the one-form
w=A4dz + Bdy + Cdz;
a surface integral

Ideydz + Qdzdx + Rdxdy

leads us to the two-form
o = Pdydz + Qdzdz + Rdzdy;

and a volume integral
J:UH dxdydz

A= Hdxdydz.
These are all examples of differential forms which live in the space E3 of three
variables. If we work in an »-dimensional space, the quantity under the
integral sign in an r-fold integral (integral over an r-dimensional variety) is an
r-form in n variables.

In the expression a above, we notice the absence of terms in dzdy, dxdz,
dydz, which suggests symmetry or skew-symmetry. The further absence
of terms dxdz, - - - strongly suggests the latter.

We shall set up a calculus of differential forms which will have certain
inner consistency properties, one of which is the rule for changing variables
in a multiple integral. Our integrals are always oriented integrals, hence
we never take absolute values of Jacobians.

Consider
HA(x, y)dzdy
1

leads us to the three-form



2 I. INTRODUCTION
with the change of variable
{x = z(u, v)

y = y(u, v).
We have

f f Alz, y) dzdy = HA[z(u, o), y(u, v)] "E y;

which leads us to write

ox Oz

‘ ou dv
dedy = Md dv = dudy.

O(u, v) dy oy

ou v

If we set y =z, the determinant has equal rows, hence vanishes. Also if
we interchange = and y, the determinant changes sign. This motivates the
rules

dxdr =0

dydx = —dxdy
for multiplication of differentials in our calculus.
In general, an (exterior) r-form in n variables ', - - - , 2" will be an expression

l -
w=;iZAh....,3r dx'l-..dxi,.’

where the coefficients A are smooth functions of the variables and skew-
symmetric in the indices.

We shall associate with each r-form @ an (r + 1)-form dw called the exterior
derivative of @. Its definition will be given in such a way that validates the

general Stokes’ formula
J o= J. do.
or >

Here L is an (r + 1)-dimensional oriented variety and dX is its boundary.
A basic relation is the Poincaré Lemma:

d(dw) =

In all cases this reduces to the equality of mixed second partials.

1.2. Comparison with Tensors

At the outset we can assure our readers that we shall not do away with
tensors by introducing differential forms. Tensors are here to stay; in a
great many situations, particularly those dealing with symmetries, tensor
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methods are very natural and effective. However, in many other situations
the use of the exterior calculus, often combined with the method of moving
frames of K. Cartan, leads to decisive results in a way which is very difficult
with tensors alone. Sometimes a combination of techniques is in order. We
list several points of contrast.

(a) Tensor analysis per se seems to consist only of techniques for cal-
culations with indexed quantities. It lacks a body of substantial or deep
results established once and for all within the subject and then available for
application. The exterior calculus does have such a body of results.

If one takes a close look at Riemannian geometry as it is customarily
developed by tensor methods one must seriously ask whether the geometric
results cannot be obtained more cheaply by other machinery.

(b) In classical tensor analysis, one never knows what is the range of
applicability simply because one is never told what the space is. Everything
seems to work in a coordinate patch, but we know this is inadequate for most
applications. For example, if a particle is constrained to move on the
sphere S?, a single coordinate system cannot describe its position space, let
alone its phase or state spaces.

This difficulty has been overcome in modern times by the theory of
differentiable manifolds (varieties) which we discuss in Chapter V.

(¢) Tensor fields do not behave themselves under mappings. For
example, given a contravariant vector field a’ on z-space and a mapping ¢
on z-space to y-space, there is no naturally induced field on the y-space.
[Try the map t — (¢2, t*) on E! into E2.]

With exterior forms we have a really attractive situation in this regard. If

¢: M—N

and if w is a p-form on N, there is naturally induced a p-form ¢* w on M.

Let us illustrate this for the simplest case in which w is a 0-form, or scalar,
i.e., a real-valued function on N. Here ¢* v = w o ¢, the composition of the
mapping ¢ followed by w.

P*w=wod

Reals

(d) In tensor calculations the maze of indices often makes one lose sight
of the very great differences between yarious types of quantities which can
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be represented by tensors, for example, vectors tangent to a space,
mappings between such vectors, geometrie structures on the tangent spaces.

(e) It is often quite difficult using tensor methods to discover the deeper
invariants in geometric and physical situations, even the local ones. Using
exterior forms, they seem to come naturally according to these principles:

(i) All local geometric relations arise one way or another from the
equality of mixed partials, i.e., Poincaré’s Lemma.

(ii) Local invariants themselves usually appear as the result of applying
exterior differentiation to everything in sight.

(iii) Global relations arise from integration by parts, i.e., Stokes’
theorem.

(iv) Existence problems which are not genuine partial differential
equations (boundary value or Cauchy problems) generally are of the type of
Frobenius—Cartan—Kahler system of exterior differential forms and can be
reduced thereby to systems of ordinary equations.

(f) In studying geometry by tensor methods, one is invariably restricted
to the natural frames associated with a local coordinate system. Let us
consider a Riemannian geometry as a case in point. This consists of a
manifold in which a Euclidean geometry has been imposed in each of the
tangent spaces. A natural frame leads to an oblique coordinate system in
each tangent space. Now who in his right mind would study Euclidean
geometry with oblique coordinates? Of course the orthonormal coordinate
systems are the natural ones for Euclidean geometry, so they must be the
correct ones for the much harder Riemannian geometry. We are led to
introduce moving frames, a method which goes hand-in-glove with exterior
forms.

We conclude the case by stating our opinion, that exterior calculus is here
to stay, that it will gradually replace tensor methods in numerous situations
where it is the more natural tool, that it will find more and more applications
because of its inner simplicity, body of substantial results begging for further
use, and because it simply is there wherever integrals occur. There is
generally a time lag of some fifty years between mathematical theories and
their applications. The mathematicians H. Poincaré, E. Goursat, and E.
Cartan developed the exterior calculus in the early part of this century; in
the last twenty years it has greatly contributed to the rebirth of differential
geometry, now part of the mathematical main stream. Physicists are begin-
ning to realize its usefulness; perhaps it will soon make its way into
engineering.



11

Exterior Algebra

2.4. The Space of p-Vectors
Notation:
R = field of real numbers a,b,¢, - - - .
L = an n-dimensional vector space over R with elements a, f§, - - .

For each p = 0,1,2, - - - | n we shall construct a new vector space
AL
over R, called the space of p-vectors on L. We begin with
/\° L=R, /\‘ L=L.
Next we shall work out /\2 L in some detail. This space consists of all sums
Z aia; A B)

subject only to these constraints, or reduction rules, and no others:

(@0, + a05) A B —ay(ay A B) —ay(a; A B) =0,

@ A (b1 + b282) —by(a A By) —ba(a A B5) =0,

aAa=0,
aAf+BAa=0.

Here o, B, etc., are vectors in L and a, b, etc., are real numbers; a A § is called
the exterior product of the vectors « and f. If « and § are dependent, say
B = ca, then
aAf=aAfca)=claAa)=c0=0
according to our reductions. Otherwise a A f§ # 0.
Suppose o', - - -, 6" is a basis of L. Then

a=Yas', B=73 by
anf=(Lao') A (L)) = Labie' A o))
We rearrange this as follows. Each term ¢' A ¢’ =0 and each ¢/ A ¢' =
~0' Aol for i <j. Hence

anf =Y (ab;—ap)e’ A’
i<j

5



6 II. EXTERIOR ALGEBRA

The typical element of /\2 L is a linear combination of such exterior pro-
ducts, hence the 2-vectors

6'Adl, 1Zi<jZm,
form a basis of /\2 L. We conclude

dim A2L = ”(”2' V. (’2‘)

In general, we form /\" L (2 £ p £ n) by the same idea. It consists of

all formal sums (p-vectors, or vectors of degree p)
Yala, A Ay
subject only to these constraints:
(i) (@x+dfynayn - na,
=al@aAdy A AL)FOB A A Ay,

and the same if any «, is replaced by a linear combination.

(i) oy A -+ A a,=0if for some pair of indices ¢ # j, «; = a;.

(iii) a; A -+ A o, changes sign if any two a; are interchanged.
It follows easily from (i) that a; A --- A a,islinear in each variable; we may
replace any variable by a linear combination of any number (not just two)
of other vectors and compute the value by distributing, for example

a A (byfy + 2By +b3B3) Ay AS

=b(aAB, AYAS)+b{a Ay AYAS)+by(dAByAyAD)
It follows from (iii) that if 7 is any permutation of the {1,2, - - -, p}, then
Ogery A 0" Ay = (sgamay A =2 - Aa,.
Exactly as in the case p = 2, we can show that if
0’1, RN
is a basis of L, then a basis of /\‘D L is made up as follows: for each set of
indices
H={hy,hy, -, h,}, 1Sh <h, < <h,<n,

P =
we set
ofl=d" A Ao

Then the totality of ¢ is a basis of A? L. We conclude that
y

n
dim AL = ( ),
/\ p
the number of combinations of # things taken p at a time. In particular
dim A"L =1.
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If Aisin AP L, then

A=Y ayo”,
"

summed over all of these ordered sets H. One can also sum over all p-tuples
of indices by introducing skew-symmetric coefficients:

1
A== ¥ By MA--AGH

p!hl,"'uhp PP
where the by, ..., is a skew-symmetric tensor and

by..w, =g for  He=1{h, -k}, h<hy<--<h

e -
This skew-symmetric representation is often quite useful.

Let us note why we do not define /\” L for p > n. (Sometimes it is
convenient to simply set /\" L =0 for p>mn) We express each ¢ in a
product a; A - - A a, as a linear combination of the basis vectors ¢*, - - - , ¢”

and completely distribute according to Rule (i). This leads to
A A AL, =) By, O A A DM

Each term " A - A 6" is a product of p > n vectors taken from the set
al, -+, 6" so there must be a repetition; by Rule (ii) it vanishes. We are
left with a; A + -+ A a, = O as the only possibility.

We close with a very important property of the spaces /\” L.

In order to define a linear mapping f on /\" L it suffices to present a
function ¢ of p variables on L such that (i) g is linear in each variable
separately, (ii) g is alternating in the sense that g vanishes when two of its
variables are equal and g changes sign when two of its variables are inter-
changed. Then

f(alA ...Aap)__-g(al""’ap)

defines f on the generators of AP L.

It can be shown that this property provides an axiomatic characterization
of /\” L. In the next section we apply this property to define the deter-
minant of'a linear transformation.

2.2. Determinants
As above L is a fixed linear space of dimension n. Let A be a linear
transformation on L into itself. We define a function g = g, of » variables
on L as follows:
9,4(0!1,"',0!,.)=A0!1 A A Aoy,

g.: X'L—A'L
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where X" L denotes the cartesian product. Since g is multilinear and
alternating, there is a linear functional f = f,,

fao N'L— AL
satisfying
Salag A orr Ady) =guloy, e, @) = Aoy A -0 A Ag,.

But /\" L is one-dimensional so the only linear transformation on this space
is multiplication by a scalar. We denote the particular one here by |4|
and have

Aag A o+ A Ao, = |A|(0ty A - Aat).

This serves to define the determinant |A| of 4. We must not fail to note
that this definition is completely independent of a matrix representation
of A.
We observe next
|[ABl(oty A -+ Aa,)=(ABoy) A -+ A (ABa,)

= |4|(Boy A -+ A Ba,)

= IAI'IBI(al At A an):
hence

|AB| = |A||B].

We can relate this to the determinant of a matrix as follows. Let
6!, ,c"beabasisof L and ||a;;| ann x n matrix. Set

a; = Za,]aj.
Then
A Ay =laglet A 0 A D"

In particular, if one obtains the matrix representation of 4 with respect to
the basis (¢°) by

Ac' =Y a';d’,
then Aot A - AAc"=|afjlet A - AG", 4] =Y.

2.3. Exterior Products

We now observe that our spaces /\" L have a built-in multiplication process
called exterior multiplication and denoted by A for obvious reasons. We
multiply & p-vector u by a g-vector v to obtain a (p + g)-vector u A v (which
is 0 by definition if p + ¢ > n):

A (AP XAT L) — AL
It suffices to define A on generators and use the basic principle at the end of
Section 1 to extend it to all p- and g-vectors:

(@ A AG)ABL A ABY=a A A ABL A AR,
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The basic properties of this exterior product are

(1) AAp is distributive,

(2) AA(uAV)=(AAp)A v, the associative law

(3) wAi=(=1PUAp
Property (3) simply says that any two vectors of odd degrees anticommute,
otherwise vectors commute. The following will illustrate why this is the

case:
g Aoy Aaz)AB=—(a; Aoy ABAay)

=(=1*oy ABAay Aay)
= (=1 A (2, Ay A ay),
(g Aoy Aag) A By ABy)=(—1)B; Aay Ay Aas) A B,
= (=1*=1)%(By A B2) A (a3 A &y A a3)
=(=1)>3(By A B3) A (g A oz A ay).

Examples. We take for L the linear space based on the differentials
dz,dy, - -+ and, as is customary, omit the exterior multiplication sign A
between dx’s. Thus dxdy denotes dx A dy.

l. (Adz+ Bdy + Cdz) A (Edx + Fdy + Gdz)
= (BG — CF)dydz + (CE — AG)dzdx + (AF — BE)dzdy,

illustrating the vector-, or cross-product of two ordinary vectors.

2. (Adx+ Bdy + Cdz) A (Pdydz + Qdzdx + Rdxdy)
= (AP + BQ + CR)dzdydz,

illustrating the dot-, or inner-product of vector algebra.
3. Let & be any form of odd degree. Then
a*=aAa=0.
For if « and B are of odd degree p, then

BAroa=—anp.
We set p = o to have

CAQ=—0AQ, 2( A a) =0, aAa=0.

4. Here we take
w=dp1dql + - +dpndq”)

a form arising in mechanics. The two-forms dp;dg’ all commute, hence

o" = (nl)dp, dg" dp,dg” - - - dp, dg"
= (= 1y Vi2(al)dp, - - - dp, dg" - dg".
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The product dp; ---dg" is called phase-density. We shall discuss this
further in Chapter X.

We apply the exterior product to obtain the Laplace expansion of a
determinant by complementary minors.

Let |la;;|| be an n x » matrix. For H = {h,, -+, h,}, set
LW TR
by = :
AT N

Setp+g=n. ForK = {k, -, k,}, set

Tp+1,ky * " " Ppt1,kg
gk =|:
@, ky Pt Ok

Thus if K = H’, the complementary set of indices to H (always arranged in
natural order), then by and cy are complementary minors of ||a;;].
Now set

a"—- Za,jdj
where (07) is a basis of L. We easily see that
ay A A, =Y byot,
Upiy A "7t A, = 3 cx0k,
hence
O A s A =0y A A A (G A AD)
=Y bycga? A o*.
But
g A A= layllet Ao A G
and
0 if K+#H'
o Aok =
e (6' A - Ae") fK=H,
hence

la;l =Y " bycy..
H
IfH = {hl,...’hp},H’ = {kl,..-,kq},then
HH

, 1 2 ...n)
U= 8sgn .
& g(hl hz...k

24. Linear Transformations

In this section we deal with two linear spaces M and N with -

dimM =m, dim N = =.
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Let us agree that when we need bases, ¢!, - - -, ¢™ will denote a basis of M and
71, .-+, 7" a basis of N.
Let A be a linear transformation,
A: M— N.

The mapping
(g, -, a)— da; A -+ A Aot

X" M— /\" N.
It is alternating multilinear, hence defines a linear transformation, denoted
A? 4 on /\" M to /\" N. This exterior pth power of A is defined on
generators by

(4

sends

AP A)og A - A=Ay A - A Aa,.
Suppose 4 is represented by the m x n matrix |la’;|| according to
Ac' =Y a1l
The ¢¥ and ¥ form bases of /\" M and /\" N, respectively, where H and K
are ordered sets of p indices. We have
(AP A)o® = Ag™ A -+ A Ao

= Vb, ahn T A e AT

=Y afg %
Hence A? A is represented by the matrix

flat I

of all p x p minors of |la’;|. This is sometimes called the pth compound of

lla; 1.
Suppose one has three spaces L, M, N and this situation:

A
AB
N

We compute AP (4B):
AP (AB)ay A -+ Aa,) =(4Bay) A -+ A (ABa,)
= (AP A)[(Bay) A * -+ A (Ba,)]
= (\" A)JA® B)(ay A -+ Aat)]
=[(A* A)A? B)](ay A -** A aty),
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hence
AP (AB) = (AP A)(A? B).

It follows that the pth compound of the product of two matrices is the
product of their pth compounds, a nontrivial result.
We must consider one other matter. Againlet A: M — N. Suppose
wisin A\?Mand nisin A?M. Then
(AP*9 A) (@ A 1) = (A” A)(w) A (AT A)n).
For if we take monomials, o =ay A --- Aa,, 1 =f; A -+ A B, then
(NP2 A)w An)= (AP ANy A - - Ao AB A ABY)
=Au; A - ANAB,
=(Aay A - AAa,) A(ABy A - A ABY)
= (A A)(@) A (AT A)(n)-

2.5. Inner Product Spaces

In the remainder of the chapter we shall study & space L which has an
inner product (x, ). This is a real-valued function on L ) L which is
(i) Linear in each variable,

(ii) Symmetric: (o, f) = (8, @),
(i) Nondegenerate: if for fixed a, («, f) = O for all §, then o = 0.

Example 1. The Euclidean inner product on E" is given by
a=(ay, s a), B=(b,",b)
(@ B)=ab, + - +ab,.
Example 2. The Lorentz inner product in four-space:
a=(ay, "*,a,), B=(by, ", b,),
(2, B) =a,b, + azb, + azb; — c*ab,
where c is the speed of light.
Condition (iii) is equivalent to the following. Ifg!,--:, ¢"isa basisof L,

then
|(c*, ¢’)| # 0.

(The left-hand member is the Gram determinant, or Grammian.) For this
determinant vanishes if and only if there is a nontrivial solution (a 1977, 0y
of the homogeneous system

Y afd’, ') = 0.
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But this is the same as having the vector
a=Yy a0

satisfy the relation («, ) = 0 for all 8.
An orthonormal basis of L consists of a basis ¢!, - - -, 6" such that

(¢!, ¢’y = +6Y.
If there are r plus signs and s minus signs, then r + s =%, and t =r — s is
the signature of the inner product. It does not depend on the choice of basis.
Tt is a basic fact that each inner product space L has an orthonormal basis.
This is proved in several steps.
1. If dim L > 0, there is a vector ¢ in L such that (o, ¢) # 0.
For if (&, &) = 0 for all a, then

0=(x+ B, o+ p)=(x0)+2(x ) + (B, B)
=2(a,p), (0,8)=0 foralla,}p,

a contradiction to nondegeneracy.
2. Pick a maximal sequence ¢!, - - - , 6" of vectors satisfying

(¢}, 6’) = +6Y.

Let M be the subspace of L these vectors span. Then dimM =7, [The
o' are independent since ) a,0° = 0 implies )’ a,(¢%, 6’) =0, £ a; =0.] We
suppose r < 7.

3. Let N be the orthogonal complement of M, i.e., N is the space of all
vectors f§ such that (a, §) =0 for alla in M. Since N is determined by the
r relations (¢°,8) =0, dimN 2 n —r. But obviously MA N =0 (ie.,
the only vector common to M and N is 0), hence dim N =z —~ 7, M and N
together span L, M + N = L.

4. N itself is an inner product space relative to the inner product of L.
Only the property (iii) of nondegeneracy must be checked. Suppose f is in
N and (y, ) = O forall yin N. But (a, §) =0 for all« in M, hence («, f) = 0
for all « in L since M and N together span L. Hence g = 0.

5. By (1), there is a vector a in N such that (a, «) £ 0. We set

ot = afi( )

and see that we have constructed a sequence o', ---,¢"*! longer than a
maximal one. Since this is impossible we conclude that we must have had
7 = n in the first place, which completes the proof.

There is another basic property of inner product spaces which we shall
need below.

Let f be a linear functional on L. Then there is a unigque vector f in L such
that

f(@) = (2, )-
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This is easily established by taking an orthonormal basis ¢, -, 0" We
set b; = f(c*) and for B simply take

B=Y +bje' =Y (¢/,0) b, 0.

(ai’ B) = Z (aj: aj) bj (ai’ ai) = bj =.f(ai)-

For then

2.6. Inner Products of p-Vectors

Again we start with an n-dimensional vector space L with an inner product
(x, B). We shall define an induced inner product on each of the spaces

A’L We set
(4, 1) = (@, By

for A=a; A --- Adp p=f; A+ AP, This definition works because
the determinant on the right is an alternating multilinear function of the
o’s, ditto the f’s. This means the formula defines a scalar-valued function
on (A\” L) X (/\? L) which is linear in each variable. Next (u, 1) = (4, #)
because interchanging the rows and columns of a matrix (transposing) does
not change its determinant.

The nondegeneracy of this inner product is most easily seen by comput-
ing with respect to an orthonormal basis ¢!, ---,¢" of L. As usual the
o, H="{hy <hy < -+ <h,}, form a basis of AP L. We have

(", o%) = |(o", oM.

If H # K, this is zero since the determinant has a row (also & column) of
zeros. If H = K, all but the diagonal elements vanish and these are +1,

hence
(0'", a.l() = i 5H,K

In other words; the ¢ form an orthonormal basis of /\" L, nondegeneracy
follows free of charge.
In particular ¢ = ¢! A -+ A ¢" is an orthonormal basis of /\" L and

(0,0)=(c',0") - (a", ") = (—1)"""2

where ¢ is the signature of L.
For another example, set
a=c'A--AC
forming a basis of A\"~' L. Clearly

(@, &) = (0, 0)/(d", o) = (0, 0)(d", 0'),

G ad), Y b;ol) = (0,0) Y (', 6)apb,
= (0, o)X a,0', . b;0%).

-1 i+1

AG A AGY

hence
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2.7. The Star Operator

Again let L have inner product («, §). We shall take a definite orientation
of L which will remain fixed. (This simply means we take one basis for L
and only consider other bases which are expressed in terms of this one by a
matrix with positive determinant. The space L has two orientations and
we take one of them.) We only use bases coherent to the orientation.

We shall define an operation =, called the (Hodge) star operator. This will
be a linear transformation on A? L onto A"~? L. This operator depends,
of course, on the inner product and also depends on the orientation. Re-
versing orientation will change its sign.

We note that the orientation of L determines a definite orthonormal basis
ogof \"L.

Now fix Ain AP L. The mapping

p—AAp

is a linear transformation on A"~” L into the one-dimensional space /\" L.
We may write
AAp=filpeo

where f, is a linear functional on /\""’ L. By our result at the end of
Section 2.5, there is a unique (» — p)-vector, which we denote *1 to indicate
its dependence on 2, such that

A A u= (%A, p)o.

This equation defines the * map which is evidently linear on /\" L into
AP L.

In order to compute A for generators of /\" L, in view of the linearity, it
is enough to compute . where 1 = g' A :*+ A o” and where ¢!, ---, ¢" is
an orthonormal basis. Let K run over sets of ¢ =% — p indices. Then

2 A of = (+1, 6%)0.

The left-hand side vanishes unless K = {p + 1,p + 2, - -+, n}, hence

*l=co? LA A Q"
and the constant ¢ is determined taking K = {p + 1, ---, n}:

6 = A A o* = ¢(c%, 60,

c=(c% %)= %1,

*4 = (o, ¥)c.
For definiteness,set H = {1,--+,p}, K = {p+1,--+,n}. Wehave proved
: s = (¥, a¥)d.
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Since X A 6# = (—1)?""PgH A oK, we deduce, taking orientation into

account,
20K = (=1)PC=P) (", gH)gH,

hence

* (s0') = (= 1P~ P!, oH)(o*, 6¥)o",
* (x¢7) = (= 1)P~?X(q, g)6"
=(- l)p(n-p)+(n—')/20-lf_

where t 18 the signature.
It follows that if o is any p-vector, then

k= (—1)"(""")+(""')/2a.

Another consequence of these formulas is this result.
If a, B are p-vectors, then

a A *f =P Asa=(—-1)""2(g f)q.

For when B = o as above, the only generator a = ¢’ for which both sides
do not vanish is « = ¢¥, and then

« A *B = ot A (0¥, a¥)dX = (6%, 6¥)o
= (0%, o")(~1)""%¢g
= (-1, p

Example 1. We take 4-space with coordinates so normalized that dz!, da?,
dz®, dt is an orthonormal basis with (dz', dz') =1, (df,df) = —1. We have
n=4,t=2, (=1)"""2= —1. We shall study certain two-forms. For
p=2,pn—p)=4. Thus

* (dz' dt) = do! dz*
where (¢, j, k) is cyclic order,
*(dxjdx") = —dz‘dt.

Let E, be the components of electric field strength, H, the components of
magnetic field strength (all in free space) and consider the form

o= (B,dx' + E,dx* + E,dz’)dt + (H,dx*dz® + H,dz* dx' + H,dx' dz?).
Then
20 = —(H,dz' + Hydo? + H,de)dt
+ (B, dz?da® + E,deddat + B, da’ da?).

We shall see the use of these forms in Maxwell’s equations later.
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Example 2. E® with the ordinary metric. If f and g are functions,

f of of
d, =3 +=4d +-—dz
if ay Yy
tdf-a—‘fdydz+a'fdzdz+ 'fda:dy
oy 0z
and we have
af og 6fag afag)
d
af A »dg = (axaz 2y 2yt 5 02) WU

2.8. Problems

1. Let L be an n-dimensional space. For each p-vector a0 welet M, be
the subspace of L consisting of all vectors ¢ satisfying « A 6 =0. Prove
that dim(M,) £ p. Prove also that dim(M,)=p if and only if a=

6, A *** A G, where g,, - - -, 6, are vectors in L.
2. (Continuation) Let o be any (n — 1)-vector. Prove that «=
Gy A AGu_yq.

3. Let L be an n-dimensional space and o a 2-vector. Show that there
is a basis 6, , - - -, 6, of L such that
o0=0y /\0'2+0'3/\0'4+ 0y AOy,.

The number 2r, which depends only on «, is called the rank of the 2.vector a.
Show that o # 0, ! = 0.

4. (Continuation) Lets,,:--, o, bea basis of L and let 4 = |a;;|| be a
skew-symmetric matrix. Show that the rank of the matrix 4 coincides
with the rank of the 2-vector a =4 ) a,,0; A 0;.

5. We are given a linear transformation

A: L—L,
where dim L =n. Find the value of the determinant
IAP A|.

6. Let A be an m x n matrix and B an n x m matrix, where m < n.
Prove

|AB| =} ayby
where H runs over ordered sets,
H=1{h by, ", by}, 1Zh <hy<:-<h,<n
and where
@ty " M bu1 o bhym
ay = - s by =

a’m,hm bhm,m
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Note that the special case

a a; a;
A= y B =14
by b, by

yields a well-known formula of vector algebra,
la x b| = [a]?[bj? — (a-b)>.
7. Let A be an n x n matrix and denote by cof A the matrix of cofactors

of A4 [so that A(cof 4) = (cof 4)4 = [A|-I]. Let by x be a typical element
of A? (cof A). Show that

byx = AP 'ay x

where H' is the set of indices complementary to H, ditto K’, K, and ay. g
is the corresponding element of
A"TP A,

8. Express in terms of exterior algebra the formula from vector algebra

ax (B xy)=(xp)p— («p)y.



111

The Exterior Derivative
3.1. Differential Forms
Let P be a point in E". The one-forms at P are the expressions
n
Y a,dz’, @, constants
T

These form an n-dimensional linear space L = L,. The p-forms at P are
the elements of

NL= ALy,

Y ayda - - - dat, ay constants.

i.e., expressions

Note that we are dropping the notation “ A so that differentials dx! juxta-
posed will always be multiplied by exterior multiplication.

Now let U denote an (open) domain in E”. A p-form on U is obtained by
choosing at each point P of U a p-form at that point, and doing this smoothly.
Thus a p-form w has the representation

o =Y ay(x', -, ") da",

where the functions ay(x) are smooth functions on U, differentiable as often
as we please.

The exterior algebra applies at each point of U and so may be interpreted
on the differential forms on U itself. Thus if @ is a p-form and # is a
g-form on U, then w A% is a (p + g)-form on U. (Of course w A 4 =0 if
P+g>n) If

o =Y ayda", n=7Y byda¥,
then
o AR =Y aybydz! da¥

So that the coefficients of w A 5 are again smooth functions, being poly-
Nomials in the coefficients of w and #.
For example a one-form
w= Pdx+Qdy + Rd:
19
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may be identified with an ordinary vector field (P,Q, R) in E3, a two-form
o= Adydz + Bdzdx + Cdxdy

may be identified with a polar vector field in E*.

3.2. Exterior Derivatives

We denote by
F/(U)

the totality of p-forms on U. In particular F°(U) is simply the set of all
smooth functions on U.

We shall now set up an operation d which takes each p-form w to a
(p + 1)-formdw. In E3 it will work this way. For a 0-form f,

df_—fd +g; afdz.

For the one-form w above,

R
do = (6__ - —a—g)dydz +

dP OR 0Q OP
3 % (— - ——) dzdx + (— - -——-) dzdy,

0z oz ox Oy
while for the two-form « above,

0A 0B oC
da = (5;+ e + = )dxdydz
Thus the operator d subsumes the ordinary gradient, curl or rotation, and
divergence.
It will turn out that d is completely independent of coordinate systems.
This will be more or less clear when we axiomatize d.
We shall establish the existence and uniqueness of an operator

d: F(U)— FP*(U)
such that

(i) diw+n)=dw+dy

() dAAp =diApu+(—DEED 2 Ady
(ili) For each w, d{dw) =
(iv) For each function f,

I

Let us note the consistency of (iv) as it applies to the coordinate functions.
For example z' is a function on U and d(z') the effect of d on this function
«! is the symbol dz'. Thus from (iii), d(dz') = O once we have d.
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First we prove there is only one such operation d. Suppose we are given
such a d. We first show that

d(dx"' ...Mp)=0
by induction on p. We have just noted this for p =1. If it is true for
p — 1, then by (i),
d[z"(da*? - - - dal'®)] = dah - - - daPe,
d(da™ - - - da?*) = d{d(aMda® - - - daP?)} = 0
by (iii). Now if w is a p-form,
o =Y ay(x)da",
do =Y d(aydz")
= Y (day)da"”

Zaa"dxfdz"

which shows that the recipe (i~iv) completely determines dw. To prove that
there exists such an operator d, we simply set

do =3 38 dcl dz

for w = ) aydz" and check that the properties are satisfied. Properties
(i) and (iv) are fairly clear; let us look at (ii) and (iii). Evidently if we can
establish these for monomials, by summation they will follow generally.
Suppose
A=ads®, u=>bdz~.
Then
d(A A p) = d(abdz dzX)

_ z:a(ab) ot de dck

_xoa i B i mgk
_zggbdxdz”dxx-;-Zaaxidxdx dx
-y (% dx‘dx") A (BdaX)

+ (_ )(depl)z (de") A (ab dI'd )

= (dA) A p + (—1)98D | A dp.
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The sign results from

da’ dat! = (— 1)1 doH o,
This proves (ii).

Again, let @ = adz”. Then
d(dw) = d(z a—ai dx"dz")
ox
_y P amiann
T~ 0xioa!
o%a d*a

_ 1 i
T2 ) (ax‘axf s az‘)d”id” da't

]
=)

which verifies (iii).

Property (iii) is nothing more than the equality of mixed second partial
derivatives. It is the source of most “‘integrability conditions’ in partial
differential equations and differential geometry. It is usually referred to as
the Poincaré Lemma.

3.3. Mappings
We study the following situation: U is a domain in E™, V is a domain in
E” and ¢ is a smooth mapping on U into V. We write

¢: U—V.

Also, we denote by z!, - - -, 2™ the coordinates of E™ and by y', - -, y" the
coordinates of E". Then we can write

y' =y, -, 2"
to show that the point with coordinates x is transformed by ¢ to the point

with coordinates y. The functions y(x) are smooth.
As before, R denotes the reals. If g is any real-valued function on V,

g: V—R
then we may combine this with ¢ to obtain a function on U to R which we
write
P*9=g0¢.
¢*: F(V)— F(U).

From the mapping ¢ on U to V we have constructed a new (induced)
mapping ¢* on FO(V) to FO(U).

Thus
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p*g=g-¢ g

R

We are now going to define a map ¢* taking p-forms on V to p-forms on U :
¢*: FP(V)— FP(U).

(Strictly speaking we should index ¢* and write ¢,*,p =0,1, -+, but we
shall skip this.) We have taken care of p = 0 already. The crucial case is
p = 1; after we do that, the algebraic considerations of Chapter II do the

rest of the work.
The basic idea is substitution of coordinate functions, replacing dy’ by

ey

Thus if @ = } a,(y)dy’ is a one-form on V, we set

_ dayt .
¢*o =3 ayly(x) 5 da’.
We now have
¢*: FY(V)— F'(U).

By the method of Section 2.4, we extend this mapping to the exterior products
to obtain

¢*: FA(V)— F(U).
As an example,

o* (dy' dy?) = (p* dy' ) ¢* dy?)
_ oyt ; oy .
- (230%) (2 30
o oytoy
=y im0 dit

1 (6y‘ oy* 0y‘6y2) dt d?

24\ 0 0o 0
1

T2

oy, v ,



24 III. THE EXTERIOR DERIVATIVE
We now list the basic properties of ¢*.

(i) ¢*(@+n=0¢*w+¢*n
(i) ¢*AAp=(9*A) A (¢*w)
(iii)) If wis a p-form on V,
d(¢* w) = ¢* (dw)
(ivy If¢: U—Vandy: V— W, then

(o d)* =%y
The first property is evident and the second follows from the final formula

of Section 2.4.
Property (iii) is essentially the chain rule for partial derivatives. First

we take a 0-form g on V.

0 5
4rdg=3 9;’;,"” &

(i ;
=2 (gxig) do’ = d¢*yg.

We proceed inductively, supposing we have verified (iii) for (p — 1)-forms.
It suffices to verify (iii) for p-forms w which are monomial since each p-form
is a sum of such. Suppose then that

w=gdy" = gdn
where n = y" dy?* - - - dy"* is a (p — 1)-form. Then
d*w = (p*g)($*dn) = (¢*9) A (dd*n),
d(¢p* w) = d($*g) A d(¢*n),

and

do =dg A dn,
d*dw = (¢*dg) A (¢*dn)
=d(¢*g) A d(¢p*n) =dd*w;
we have pushed through the next case.

We now look at the final property (iv).
For a 0-form (function) 2 on W we have

(¥ o $)* h)(x) = A{(Y o $)(x)] = h{Y[$(x)]}
= [Y*hllp(x)] = {$*[Y*Al}(x)
=[(@* - Y*)h](x),



34. CHANGE OF COORDINATES 25

hence

(Yo @)*h = (9% o Y*)h.

An induction similar to that above establishes the property in general. All
it means is that one can substitute directly the expressions for the coordinates

U__d’__.___).\l F'(U)~<——L— F?(V)
Voo v W o)* v
= (@*s ¥*)

F/(W)

z* on W in terms of the coordinates 2 on U, or indirectly by first going
through the coordinates y’ of V; the results are the same.

What has really been seen in this section is that one can carry on fearlessly
with the most obvious kind of calculations with differential forms.

Examples. Consider the map ¢: ¢— (z,y) on E!-— E? given by
z=1%y=t*. I w==xdy,aone-formonE?

o*w = (t?) %:f dt = 3t* dt.

Take the map y: (x,y)—t=x—y.
' Y*(dt) = dx — dy.
One final remark. Suppose m < n and ¢ is a map on the domain U of E™

into the domain V of E*. If w is a p-form on V and p > m, then necessarily
¢*w=0.

3.4. Change of Coordinates

We apply the results of the last section to the special case in which U and
V are both domains in E" and ¢ is a one-to-one mapping on U onto V with
both ¢ and ¢ = ¢! smooth. (Note the map x — y =z> on E' — E' is
one-to-one and smooth. But the inverse map y — x = y*/3 is not smooth—
no derivative at y = 0.) In each figure, 1 is the identity map, 1(x)= x. It
follows that ¢* is a one-one map on F?(V) onto FP(U) and its inverse is y/*.
If we interpret the coordinates y of V as new coordinates on U, the result

do*w = ¢*dw
means that the exterior derivative of a differential form is independent of the
coordinate system in which it is computed.
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This inner consistency of the differential form calculus is most important.
Later we shall base the global theory (forms on manifolds) on this.

u—2" > v—Y sy
, l¢ | ¢
U v

We note in passing that with a proper formulation this independence of d
on the coordinate system can be obtained as a consequence of the four basic
defining properties (i-iv) of the exterior derivative in Section 3.2.

3.5. An Example from Mechanics
The following problem is taken from E. Goursat [15, p. 85]. We work in

a region with coordinates (x, u) = (x,, -, x,, %y, ", %,). We are given
a function

¢ = ¢(x, u)
which is supposed homogeneous of degree 2 in the variable u. (For example,
a kinetic energy form )" a,,(x)uu;.) Define

D= 0¢[0u;.

We assume that the mapping (x, u) — (X, p) defines a regular change of
variables. We then write

$(x, u) = y(x, p).
The problem is to prove the relations
oy P oy
—_——-= -, —_— = uk .
63:‘ ax' ap,‘

The proof depends on two things, the Euler formula for homogeneous
functions which in our case implies

¢
z a—uk u" == 2¢,
ie.,
z Dy = 2¢,

and the fact that exterior relations are independent of how they are derived.
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We have
) 06 _ 09
A =% 5 dui+ Lo du =Y o du+ Fopidu
and

2d¢ =Y pduy + Y wdp,,
hence by subtracting

0
b = -):a_"’dz, +3 wdp,.
Zi
Now everything follows from ¢ = § and

7 d
du[t:Za—.:;dx,-+Z%dp,,.

3.6. Converse of the Poincaré Lemma
The Poincaré Lemma, d(dw) = 0, has these interpretations in 3-space:

curl (grad f) =0
div (curlv) =0

according to the examples at the beginning of Section 3.2. In vector
analysis one proves that a curl-free vector field is a gradient by line integrals
and that a divergence-free vector field is a curl, usually by a brute-force
method. We are now going to prove a general result. If w is a p-form
(p2 1) and dw = 0, then there is a (p — 1)-form o such that w = da. The
result is hard if p > 1 because there are many solutions. Also the result is
valid only in domains which are not too complicated topologically.

The demonstration is based on a “cylinder construction.” We begin with
a domain U in E". We denote by | = [0, 1] the unit interval on the ¢-axis
and consider the cylinder or product space.

l X v.
This consists of all pairs (¢, x) where 0 < ¢ £ 1 and x runs over points of U.
We single out the two maps which identify U with the top and bottom of
the cylinder, namely,

jir U— 1 XU, jix)=(1,x)

Jor W— XU, jox) = (0, x).
Thus
j‘.*: F~(1 X U)—pr(U) (z=0,1).
For example, to form j,*w where w is a form on | ) U. simply replace
t by 1 wherever it occurs in  (and d¢ by 0 correspondingly).
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We now form a new operation K,
K: P11 V) — Fr(U);
K is defined on monomials by the formulas

K(a(t, x)dz") =0
1
K(ait, x)dtdx’) = (f a(t, x)dt) da’,
0

and on general differential forms by summing the results on the monomial
parts. Here is the basic property of K: If @ is any (p + 1)-form on
| X U, then

K(dw) + d(Kw) = j,* 0 — jo* .
It is enough to check this for monomials.
Case 1. o =a(t, x)dz¥.
We have Ko = 0, dKw =0,

do = % dtdz? +[terms free of dt],

1
Kdw = (J‘ zt—adt)dx" = [a(1,x) — a(0, x)] da*.
o

But j,* 0 = a(1, x)dz", j,* @ = a(0, x) dz¥, so the formula is valid.
Case 2. o = aft, x)dtdz’.

First j,*w = j,*w = 0. Next,
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da ;
de=K[—zﬁdtdx dx’]
! da ;
-5 (J.oﬁdt)dx d,
1
dKw = d [(I a(t, x)dt) dz’ ]
0
0 1
= ZW U a(t, x)dt] da' do’
)

' da :
-y (Ioﬁdt)h i,

so the formula again works.
Definition. A domain U is deformable to a point P if there is a mapping

¢: 1 X U—Uu
such that
(1, x) =x,
¢(0, x) = P.

The boundary conditions may be interpreted in terms of the j, as follows:

$oji=1,  ¢ojo=P.
For a (p + 1)-form w on U we have as a consequence
Ierel=0, jo*¢*w]=0.
Now we can state and prove the main result.
Let U be a domain in E" which can be deformed to a point P. Let w be a
(p + 1)-form on U such that dw = 0. Then there is a p-form « on U such

that
w = da.

We merely substitute ¢* w in the formula above to have
K[d(¢* w)] + d[K(¢* )] = .

But d(¢* w) = ¢* (dw) = 0, hence w = da with a = K(¢* w).

It is interesting to see how far the solution of the equation da = @ is
determined. If B is another solution, then df = w = da, d(x — B) = 0. If
? 2 1, we conclude by the main result again that « — § = d1 where 4 is a
(p —1)-form. In other words, given one solution o, the general solution is
@ — dA where A is absolutely arbitrary. (When p = 0, « and f are functions
and we conclude that o — § is constant.)
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3.7. An Example
We shall illustrate this whole method in the case n =3, p = 2. Thus we

take a two-form
o= Adydz + Bdzdx + Cdzdy

in E3 for which dw =0, i.e.,
04 0B oC

—_— — =

ox Jdy 0z
The space E* can be deformed to 0 by the map
o(t, z, y, 2) = (tz, ty, tz).
The assertion is that w = da where

o= K¢*w.
First we compute ¢*w:

P*w = A(tx, ty, tz) d(ty)d(tz) + - -
= A(tz, ty, t2)(tdy + ydt)(tdz + 2dt) + - - -
= A(tz, ty, tz)(ytdtdz — ztdtdy) + - - - + (terms free of dt).

Now we have

1

a=K(¢p*w) = (j Atz, ty, tz)tdt)(ydz — zdy)

0

1
+ (.[ B(tz, ty, tz)tdt)(z dx — 2dz)
0

1
+ (J. Cltx, ty, tz)tdt)(xdy - ydz).
0

One verifies after some calculation that indeed da = w.

3.8. Further Remarks

For
w = Adydz + Bdzdx + Cdzdy
the problem of finding
o= Pdx +Qdy + Rdzx
so that

da=w

is that of finding three unknown functions P, @, R of the three variables
Z, ¥, ~ so that the system
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dR 9Q
—— 4
dy 0z
0P OR
% wml
0Q oP
*_ ¢
ox dy

of three partial differential equations is satisfied, the given functions 4, B, C
being subject to the necessary condition

04 0B oC _ 0

% + -a;y— + E =0.
It is remarkable that this system (and the more general ones covered in
Section 3.6) can be solved by an explicit formula involving quadratures. In
general, the theory of exterior differential forms exposes many types of
systems of partial differential equations which are reducible to systems of
ordinary differential equations and often solved by quadratures.

Another point to be noted is this. If we are dealing with a (p +1)-form w
such that dw = 0 and w happens to depend on several parameters smoothly,
then we can find an « such that da =w and « depends on the same parameters
just as smoothly. This again follows from the explicit formulas of Section 3.6.

3.9. Problems
1. Let
o=1%Y ayddidd, a;+a;=0.
Prove that

ba;  day  Oay

= pnt } i dxd
d“"%z(az* + o +0x‘)dx dz’ d=*.

2. Consider a linear transformation ¢: E"— E", ¢(2', ,2") =
(¥',--+, y"), where
y'=Ya';z +b', di}, b constant.

What is ¢* (dx! - - - d2")?
3. Consider the mapping

¢: (%y)— (zy,1)

on E? into E2, Compute ¢* (dz), ¢* (dy), and ¢* (ydzx).
4. Complete the unfinished calculation of Section 3.7.
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Applications

4.1. Moving Frames in E?

We first point out that in dealing with vectors in Euclidean space, no
matter where we draw them for picturesque purposes, when we deal with
them analytically, they always start at the origin.

A e,

x

We attach to each point x of E® a right-handed orthonormal frame
e,, e,, €, and suppose that the vector fields e; are smooth fields.

What we shall do is express everything in sight in terms of the e,, apply d
to these relations to derive further ones, and continue until we obtain no
further results.

First of all, dx is a vector with one-form coefficients, for example, dx =
(dz,dy, dz) =dzi+dyj+dzk. We express dx in terms of the frame
e,, e,, e; at the point x, which we certainly may do, say, by first expanding
i, j, k in terms of the e; and then collecting terms:

dx =o0,e, + 6,e, + 0;e,,
32
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where the g, are one-forms. We do the same with each e;:
de, = w, e, + w8, + wze; (i=1,23)

where the w,; are one-forms.

Since e; €, = d;, we have

de; e, + e;-de, =0,
that is,
wik + (Dk‘ = 0.

In particular, @; =0.
It will be convenient to introduce some matrix notation. We set

€
e=1lejl 6 =(6,,0,,03), Q= |lol
€;3

and have these structure equations:

dx = ge,
de = Qe,
Q+'Q=0.

Here applying d to a matrix means simply applying it to each element. In
the last equation, the left-hand superscript ¢ denotes franspose of the matrix,
i.e., interchange of rows and columns, so this equation expresses the skew-
symmetry of Q.

From d(dx) = 0 we have

doe —ode =0,
doe —cQe=0,
(do — 6Q)e =0.

Because the e; are linearly independent, this means
de = oQ.
Similarly, from d(de) =0, we have
0=dQe — Qde = (dQ — Q?)e,

aQ =02
In summary, then we have
Structure equations Integrability conditions
dx = ox de =6Q
de = Qe {dQ = Qz}

Q+'Q=0
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Further differentiation does not lead to new results. We shall see in our
study of Riemannian geometry that the equation dQ — Q? = 0 expresses the
lack of curvature of Euclidean space.

A point to be noticed is that the three-form o, A o, A g3 is precisely the
element of volume in E3:

Gy A0y A6y =dxdydz.

We shall verify this in the next section.
It will be observed that the calculations of this section work equally well
in E".

e,

/

x

Example. Spherical coordinates. The orthonormal unit vectors e, e,, e;
are taken in the directions of increasing r, ¢, 0, respectively. From

X = (rsin ¢ cos B, rsin ¢ sin0, r cos ¢)
we have
dx = (sin ¢ cos 8, sin ¢ 8in 0, cos @) dr
+ (rcos@cosf, rcos¢psinf, —rsin@)deo
+ (—rsin¢sin, rsin ¢ cos 8, 0)do
= (dr)e, + (rdd)e, + (rsing df)e;
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with
e, = (sin¢ cos f, sin ¢psinf, cos @)
e, = (cos ¢ cos B, cos psinf, —sin ¢)
e, = (—sinf, cos 6, 0)
and so
o, =dr, 0, =rdp, 04 = rsin¢df.
Differentiating,

de, = (dp)e, + (sinpdf)e,
de, = (—d¢)e; + (cos¢df) e,
hence since Q is skew-symmetric,
0 do sin ¢ d0
Q= —d¢ 0 cos ¢ db
—sinpdf —cospdf 0
The volume element is

6, A Gy A Gy =rlsingdrdgds.

4.2. Relation between Orthogonal and Skew-symmetric Matrices

It is no accident that Q turns out to be skew-symmetric. This is a con-
sequence of the principle that the first-order approximation to an orthogonal
transformation is a skew-symmetric one. We shall look at this from several
viewpoints.

A matrix B is orthogonal if its transpose equals its inverse, ‘B = B!, or
B'B='BB=1. Suppose A is skew-symmetric, 4 + ‘A =0. Then for
small ¢ we set B = I + ¢4 and have

B'B=( +ed)I —ed) =1+ O(?)

so that B is orthogonal up to first-order terms.

Here is another approach. Let A be skew-symmetric. Since the
characteristic roots of 4 are pure imaginary, I + 4 and I — 4 are non-
singular. Set

I+4
Per—a
Then
I+A)(I—A)
B=|——)|—)=1
B'B (I—A I+4

8o that B is orthogonal.
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Next we re-examine the calculations of the last section. Let

iy

where the i; are the fixed unit vectors in the z, y, z directions, respectively
(i, j, k in usual vector notation). Then
e =y by, e=BhBi
leading to a matrix B = ||b;;]] which is clearly orthogonal:
I=e'e=Bi'i'B= BI'B= B'B.
(Now we can prove the fact dxzdydz = g, A ¢, A 63 mentioned at the
end of the last section. We have
dx = (dz, dy, dz) | = oe = ¢ Bi,
(dx, dy, dz) = 6B,
hence
dxdydz = |Bloy A6, A 03,
But from ‘BB = I we have |B|> =1, |B| = +1. Since we are supposing e
is a right-handed system, |B| = +1,
dzdydz =0, A 6, A G43.)

Then we have
de=dBi= (dB)B le
so that
Q= (dB)B™'.

We note this general result: If A is an orthogonal matrix whose elements are
functions of any number of variables, then

(d4)A~!

s a skew-symmetric matriz of one-forms.
For we have
‘AA =1,
'dAA+'4d4 =0,
A1 +d4 47 =0,
HYdAA™')+dAA" ' =0.

There is also a converse which is important. Suppose A is a matriz of
functions defined on a domain U. Suppose A is orthogonal at a single point

of U and that
d4A = A4
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where A s a skew-symmetric matriz of one-forms. Then A is orthogonal on

all of U.
We set C = ‘4 A and have

dC = ("dA)A +'A(dA) = (—'AAN)A +'A(A 4) =0,

hence C is a constant matrix on U. But we are assuming C = I at one point
of U, hence C =Ion U,’44 =1Ion U, 4 is orthogonal.

Another point is this. If 4 is a variable orthogonal matrix (transforma-
tion), each point v, of space is sent by the general 4 to

v=Av,.
We then have
dv=dAvy=(dA)A " 'v

so that one passes from v to the “infinitely near” vector v + dv under the
action of the general A of our family by means of

v—v4dv=[]+ (dA)A " ']v

with the skew-symmetric (d4)A~! representing this “infinitesimal trans-
formation.”
All of these considerations work equally well in E”.

4.3. The 6-dimensional Frame Space

We consider the space of all right-handed orthonormal frames E,, E,, E;
at all points x of E*. This space is 6-dimensional because we have three
degrees of freedom in choosing X, two degrees of freedom in choosing the
unit vector E,, one degree of freedom in choosing the unit vector E, per-
pendicular to E, and then E is determined.

We write
E,
E=|E,
E,
and have
E =Ae

where A is a variable (three parameter) orthogonal matrix and e = e(x) is a
definite moving frame.

Then
dx = ce =A™ 'E,
dE = (d4)e + Ade =[dA + AQ]e
=[d4 + AQ)AE.
We set

=641, (O=(d4)4"1+ 404",
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These are matrices of one-forms on the 6-dimensional frame space and we
have

Structure equations Integrability conditions
dx = gE dg = Q0
dE = QF {dﬁ = QZ.]
A+ Q=0

To check the integrability conditions we note
0 = d(dx) = d6E — GdE = (dg — 60})E, d5 = 63, etec.

In making a penetrating study of the differential geometry of E* one is
necessarily led to this 6-dimensional frame space and its differential forms
&', @,; which, it will be noted, are entirely independent of the choice of the
moving frame e on E3.

4.4. The Laplacian, Orthogonal Coordinates

We continue the considerations of Sections 4.1 and 4.2. The forms
dz, dy, dz make up an orthonormal basis for the Euclidean geometry of the
space of one-forms at each point; these are related to the fixed (absolute)
frame i. From

e = Bi, dx = oe = (dz, dy, dz) i
we have
6 B = (dz, dy, dz)

as already noted. As Bis orthogonal, we see that ¢, 6,, 6 is an orthonormal
basis for one-forms at each point.
Let f be a function on E3. Then we have

6f 6f 6f
d —dy
=5t 5%t
*df = Z—i.dydz + zfdz. dz + afdxdy,

2 2 2
dxdf = (6 / g{ zf)d dydz = (Af)dzdydz.

The Laplacian A f of f is known as soon as the three-form d *df is known, for
this has turned out to be the Laplacian multiplied by the volume element
dxdydz.
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Now we know that the * operator can be computed equally well in any
orthonormal coordinate system. Also ¢, A 0, A 63 =dzdydz, so our
procedure is this. We express df in terms of the ¢,

df =a,0, +a,0, +a30;.

Then
*df=a10’20’3+a263a'1 +a/3a'10'z,

d‘df= (Af)dldzdg.

A coordinate system u,v, w in a domain in E3 is called an orthogonal
coordinate system if the vectors

ox ox Ix
ou' v’ dw
are mutually perpendicular. This means that for suitable functions 4, g, v,
the vectors
o — 1 0x o — 10x R 1 ox
710w’ 2 uo’ v ow

form an orthonormal, or moving frame. We shall presuppose that this is a
right-handed one. (Otherwise we merely permute w and v.) We have

ox ox ox
dx=dua+d05;+dw—a;

= (Adu)e; + (udv)e, + (vdw)e,
8o that

oy =Adu, @,=udy, 0y =vdw
build an orthonormal frame for one-forms. Now we compute the Laplacian:
df = f,du + f,dv + f, dw
= (flM) ey + (fil) oy + (fu[V)as.
wdf = (f/A) 0,05 + (flWo30, + (fulV) 0,0,
= (uv f,JA) dvdw + (Av fJu)dwdu + (Au f, [v)dudv,
We compare this to

ddf = (Af)o,0,05 = puv(Af)dudvdw:

LY L)



40 IV. APPLICATIONS
Let us apply this to spherical coordinates r, ¢, 8:
x = rsin ¢ cos
y =rsin¢gsing

2 = rcos ¢.

7 sin ¢ d@
dr

rde

x

The orthogonality is easily checked (it is obvious geometrically) and we have,

o, =dr, g, =rdo, oy =rsin¢gdf,

ot =g i (om0 3) 35 (0 )+ 5 )]

4.5. Surfaces

We study a smooth surface X in E>.  We choose a moving frame e at each
point x of X in such a way that e, is the normal to the surface, Then e,
and e, span the tangent plane at each point. We shall see how the equations
of Section 4.1 specialize.
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Since X is constrained to move in the surface, dx must lie in the tangent

plane, 63 = 0:
dx =0.e, + 0,e;.

It is clear that the two-form o0, represents the element of area of X.

€

€,

unit normal

tangent plane

e
We exploit the skew-symmetry of Q by writing

0 w —w1
Q= -o 0 -~o,

0w, o, 0

The structure and integrability conditions now reduce to

Structure equations Integrability conditions
dx =g, + 0,€, do, = wo,
de, = we, — w,e, do, = —wo,
de, = —we, — w,e; 6.0y + 0,0, =0
de; = w ey + w,e, do + w0, =0
dw; = ww,
dw, = —ww,
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In a certain sense, all of local surface theory is contained in these equations,
It remains to interpret them in terms of curvatures, curves on the surface,
etc. We illustrate a little of this.

As already remarked, ¢,0, is the element of area on X. As x moves over
L, e, moves over a region on the unit sphere S2, called the normal, or
spherical, image of £. Since e, and e, are orthogonal to e;, they lie in the
tangent plane to the spherical image and form a frame there. We see that
the equation de; = w, e, + w,e, plays the same rdle for the spherical image
as dx = 0,e, + 0,e, does for X, hence w,w, represents the element of area
of the spherical image.

Since there is only one linearly independent 2-form on the 2-dimensional
space X, we have

w0, = Ko,0,

where K is a scalar called the Gaussian curvature. We shall see shortly that
it is entirely independent of the choice of e; and e, .
Similarly 6,0, — 6,0, is a 2-form on X, and so

0,0, — 6,0, = 2Ho,0,

defines a scalar H called the mean curvature of X.
The one-forms w,, w, are linear combinations of ¢, and 6,. Because of
the relation
010y + 6,0, =0

we have a symmetry in the coefficients:
W, =po, + 4o,
W, = q0, + r0,.
We easily have from this
2H=p+r, K=pr—g~
The characteristic roots of the symmetric matrix
P q
o
are called the principal curvatures k,, k, of £. We consequently have
2H =, + k,, K =xk,.
From the relation dw + w,w, = 0 we have
do + Koo, =0.
This relation gives us K once we know ¢,, 6, and w. But the relations

do, = wo,, do, = —wo,
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guffice to determine w once ¢, and g, are given. (For then do, = ac,0, and
da, = bo,0, are determined and we must have w = ag, + bs,.) In total
then, K is completely determined analytically from ¢, and 6,. This contains
the theorem of Gauss that the curvature K is an intrinsic invariant of L,
independent of how E is imbedded in E?, so long as the distance between
points of £ measured along X (on geodesics, or shortest paths) is preserved

locally.
When we apply vector operations to vectors with differential form

coefficients, we must always combine the coefficients according to the rules
of exterior algebra and pay strict attention to the ordering of the factors.
With this we form vector (cross) products:

dx x dx = (0,e, + 0,@,;) X (6,@, + 7,e;)

=0,%(e; x &) + 6,%(e, x ;) + 7,0,(€, X €;) + 0,0,(e, X e,).
Now 6,2 =0 (and e, x e, =0), ete. Also
6,0.(€; X &) =(—0,0,)(—e; X &)
= (6,0,)e;,
so finally
dx x dx = 2(0,0,)e;

and we have obtained the vectorial area element.
Precisely, the vectorial area element is
(0107) €3,
a vector directed along the normal with magnitude ¢,0,, the element of
area of X, Since
dx x dx = (dz, dy, dz) x (dz, dy, dz)
= 2(dy dz, dzdz, dx dy)
we have
(dydz, dzdz, dady) = (6,0,) e;.

If v=(P,Q, R) is a vector field, then

I (Pdydz + Qdzdx + Rdzdy) = J‘V'(Gxazes)
T

= f (v-e3)(0,0;)
£

i3 the flux of v through E.
Similarly we have
dx x dx = 2(6,6,) e,
dx x de; = 2H(5,0,)e;
de; x de, = 2K(0,0,) e,



44 IV. APPLICATIONS

which shows the independence of H and K on the tangent vectors e, , e, .
If f is a function on X with
df =a,0, +a,0,,
then on X,
«df = —a,0, + a,0,,
dxdf = d(—a,0, + a,0,) = (Af)o,0,
defines the Laplacian of f on the surface or the second Beltrami operator A,
The same works for vectors and we have
dx =o0,e, + g,e,,
*dX = g,e; — g e,.
We notice that
dx x e; = (0,e, + 0,e,) X e,
= azel - alez N
hence
*dx =dx x e,

d+dx = —dx x de; = —2H(g,0,) e,
and so
Ax = (Az, Ay, Az) = —2He,.

A minimal surface (surface of stationary area) is one for which the mean
curvature vanishes, H =0. We have proved: The coordinate functions
%, y, z are harmonic on each minimal surface. (That is, they satisfy Az =
Ay = Az=0.)

In this section we have given a sample of how the exterior calculus fits
into the classical differential geometry of surfaces. Further material will be
found in Sections 8.1 and 8.2, but there is much of the subject that we cannot
cover in this text. A treatment from this point of view of exterior calculus
which is not quite completely satisfactory and which unfortunately is em-
bellished with historical comments often in bad taste is found in Blaschke [3].

4.6. Maxwell’s Field Equations

In classical electromagnetic field theory one deals with the following
quantities:

E = electric field H = magnetic field
B = magnetic induction } = electric current density

D = dielectric displacement p = charge density.
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These are all functions of the space variables z', 2%, #* and the time t. The
pasic Maxwell equations in ordinary vector language are

1
(i) curlE= — p %—? (Faraday’s law of induction)
1 oD
(i) ocurlH =— j s (Ampére’s law)
(i) divD = 4np (continuity)
(iv) divB=20 (nonexistence of true magnetism)

Here c is the speed of light. We shall put these equations into the language
of exterior forms. To this end, we set

a=(E,dx' + E,dx® + E,dz’)(cdt)
+ (B, dx?dz® + B,dxz*dz' + B,dx'dx?),
B = —(H,dz' + H,dz* + H,dz?)(cdt)
+ (D, dz?dx® + D, dx*dx' + Dyda' dx?),
y = (J,dz?dz® + J, da’ dat + J ;dx' da?)dt — pda! da? da’.

Equations (i) and (iv) become
do = 0.
Equations (ii) and (iii) become

dﬂ + 47y =0.
Applying d to this last equation yields

in vector notation
div ) + %% =0.
From the equation da = 0 one concludes, at least in any region of space-time
which can be shrunken to a point, that there is a one-form 4 such that
di=a.
We introduce the vector potential A and a scalar 4, by writing
A=A dzt + Ayda® + A, da® + Agedt.

The equation dA = « in vector form is

curlA=B

1
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In free space, everything simplifies according to
E=D, H =B,
}J=0, p=0
so that the Maxwell equations become
10H

JE= — - — divE =
cur. prT iv 0

curIH=lE divH =0.
c Ot

We introduce the Lorentz metric into 4-space whereby

dxt, dz?, dx3, cdt
is an orthonormal basis:

(dz', do) = 6Y,  (dx',cdt) =0,
(cdt, cdt) = —1.

The signature is 3 — 1 = 2.
According to the formulas of Section 2.7,

r(dzx' d2?) = —d23(cdt), etc.,

*(dz' cdt) = dx? da®, etc.
We see that

a=(E da* + --)(cdt) + (H,dz*dz® + ---),
B=—(H,dz' + ---)(cdt) + (B, da?dz® + - -+)
= *Q.
Consequently Maxwell’s equations in free space are simply
de=0
dxa=0.

We return to the general situation and refine our analysis by introducing
one-forms:
o, = E,dx* + E,dz* + E,dx®

w, = B, dz*dz® + B,dx®dx' + B;dx'dax?
wy = H dz' + H,dx? + H,dx®

w, = D, dz?dx® + D,dz?dx' + D,dx'dx?
w5 =Jdz?dz® + J,dz’ da’ + J ydxt da?.
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These involve space variable differentials only. Now we interpret d’ to
denote the exterior derivative with respect to space variables only. We intro-
duce 0/0t in this form

a )
5(w1)=05, B dx' + .-+, ete.
Now the Maxwell equations are

1
'’ .
da)1= —’c‘wz

& 41tw +l .
=— -,
(22 e Us TP

d’w: = 0 '

d'w, = dnpdx' dz? dz’.

The Poynting energy-flux vector S is introduced by
c
S=(—]JExH
(4n) 8

(Zc_) 0y A 03 =8, dzr?dz® + 8,dx3 dx’ + 8, dx! dz?.
T

that is

Poynting’s theorem,

N 1
(_l_) B-H+E ')+ (—) E-D+divS =0,
4r 4n
follows from

d(w;, Aw;) =d'w, AWz —w; Ad'w,

1 A w/\(4nw +lcb)
¢ 2 3 1 c 5 ¢ 4

1, 4n 1 .
=——w2/\a)3——a)1/\w5-—-c-0)1/\w4.
c c

For bodies at rest, one assumes D = xE, B = uH where the dielectric constant

k and the permeability u are constant in time. Then Poynting’s theorem
becomes

ou

——=divS + E:

- dvS+E)
Where

1
= E2 H2
u 8n(x + uH?)
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is the energy density of the field. The quantity E-] is called the thermg
chemical activity.

4.7. Problems

1. Develop the formula for the Laplacian in cylindrical coordinates.

2. A complex matrix 4 is wnitary if 4 A* =1J, where A* ='4, thy
transpose conjugate of 4. We call A skew-hermitian if 4* + 4 =0,
Discuss the connection between unitary and skew-hermitian matrices.

3. Show that e4 is orthogonal if 4 is skew-symmetric. Here

4 _ @ An
=1 * ngl -—'
for the real matrix 4.

4. Set up a frame and the structure equations for a sphere of radius R
Compute the curvatures.

5. Find Gaussian curvature of the surface of revolution obtained by
revolving the curve

x = cosf + Intan (9/2)

y =sinf
g<0<7r

about the z-axis.

6. Given a surface in the form z = f(z, ), develop formulas for H and K
in terms of f and its partial derivatives.

7. Let X be a surface. Let e,, e, and e}, e, be two moving frames o:
tangent vectors to X. Determine the relation between the corresponding
@ and @’ and verify that dw = do’.

8. Lete,,e,, e; and e}, e}, e be two moving frames in E3. Set ur
the orthogonal matrix relating these frames and determine how the corre.
sponding Q and Q' are related.



Manifolds and Integration

5.4. Introduction

An n-dimensional manifold is a space which is not necessarily a Euclidean
space nor is it & domain in a Euclidean space, but which, from the viewpoint
of a short-sighted observer living in the space, looks just like such a domain
of Euclidean space. A case in point is the two-sphere $2. This cannot be
considered a part of the Euclidean plane E2. However our observer on $2
sees that he can describe his immediate vicinity by two coordinates and so
he fails to distinguish between this and a small domain on E2.

We have the technical problem of describing an #-manifold with sufficient
precision so that we can define functions, tensors, and differential forms on
such a space. The definition which follows is motivated in this way. Each
observer on the manifold has an immediate neighborhood (local coordinate
neighborhood) described by n coordinates. Each point of the space must
lie in at least one of these observed neighborhoods. Now if we consider
simultaneously two observers, their immediate neighborhoods may overlap,
and we must specify what happens in each such overlap. In the next three
sections we go over these matters with some care.

After this is accomplished we tackle the problem of defining the integral
of a differential form. In Sections 5 and 6 we lay the groundwork by
defining chains, the geometrical sets over which forms are integrated, and
in Section 7 we define the integral.

5.2. Manifolds

An n-dimensional manifold consists of a space M together with a collection
?f local coordinate neighborhoods U, , U, , - - - such that each point of M lies
In at least one of these U. On each U is given a coordinate system

zl, -0, 2"
80 that the values of the coordinates
(ZI(P): M rx"(P))y

Where P ranges over U, make up an open domain in Euclidean n-space E".
49
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Suppose that U with coordinate system
zl, -, 2"
and V with coordinate system
1 n
yl, ey
overlap (intersect). We may express the V coordinates y of a point P in
terms of the U coordinates x of this point:
yi=yi(xl""’x”) (1'—"1,,1&)

As part of the definition, we assume that these functions are smooth (differen,
tiable as often as we please).

Having this formal definition out of the way, we explore some consequences
First of all, on the overlap of U and V above we may interchange the role
of U and V to write smooth functions

Pyl y) (=1,
Substituting yields
y' =9 (=", 2y)
and we may differentiate by the chain rule:
. oy’ ox
G=2 22 6_yI ’
which has the matrix interpretation
al. "_x"“= 1
|| ot
We take determinants by the produect rule:
o', -,y o', ---,2"
oz, -, ") ) a(yl,...,y»)z
It foilows that the Jacobian

ay', -y
a(xl) ctty xn)

it is different from 0 at each point.

#0;
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A manifold is called orientable (two-sided) if it is possible to choose the
Jocal coordinates in the first place so that each such Jacobian (on an overlap
of local coordinate neighborhoods) is positive.
gxample. We make the two-sphere $? into & manifold by using six
coordinate neighborhoods. We set

$?={(z,y,2) where z*+y*+22=1}
The neighborhoods are
U ={z>0}, coordinate system y, z.
U7 ={x <0}, coordinate system z, y.
U7 ={y>0}, coordinate system z, z.
U; ={y <0}, coordinate system z, 2.
U} ={z>0}, coordinate system z, y.
U; ={z<0}, coordinate system y, z.

In comparing the overlap of two of these, we shall not be pedantic and intro-
duce different letters, hoping the reader will forgive this sloppy notation.
On the intersection of U} and U; we have the coordinate transformation

{ = 1-22—-2

z=1z, z>0, y>0
and so
0y, 2) - | e
a(z,x)= v v =r/—=>0.
1 0
On the intersection of U] and Uj,
y=y
{z=—Jm z>0, z2<0,
Ay, 2) °
.2 z
e PR vt

e

On the intersection of U7 and U7,

i

1—-y*—2% y<0, z<0,
s 0 1
(x,2) y
= ==—=>0, ete.
Ayo | L 2|
' v YV
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Thus the two-sphere is a two-manifold, and our choice of local coordinateg
proves it to be orientable.

One could also cover the sphere S? with a system of only two local Co.
ordinate neighborhoods by taking two opposite hemispheres, each extendeq
slightly to make open overlapping neighborhoods.

The sphere $? has two opposite orientations (outward or inward normal,
corresponding to counterclockwise or clockwise sense of rotation). Similarly
an orientable n-manifold has two opposite orientations. A definite one of
these is determined by the order in which local coordinates z!, - - -, 2" are
given, up to an even permutation of this order. Making an odd permutation of
local coordinates gives the opposite orientation.

Let M be an n-manifold. To say that a real-valued function f on M is
smooth at a point P of M means the following. Let U be a local coordinate
neighborhood containing P with coordinates z', -+, 2" We require that
f(z!, -+, z") be smooth near P. This restriction on f is independent of the
particular U one chooses, since two coordinate systems whose neighborhoods
overlap on a region including P are themselves related by smooth functions
(from the definition of manifold). A real-valued function f is smooth on M
if it is smooth at each point of M.

Similarly, if M and N are manifolds of dimensions m and =, respectively,
one defines a smooth mapping

¢: M— N
by the requirements that in local coordinates 2!, -+, 2™ on U in M and
y', -+, 4" on Vin N, we have ¢ represented by smooth functions

y=y@, e =1
on that part of U which ¢ maps into V.
A manifold M is called a submanifold of a manifold N provided there is &
one-to-one smooth mapping
j: M— N
which has this regularity property: in local coordinates (as written above),
the matrix
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has (maximal) rank m at each point. We refer to j itself as an injection or
i mbedding of Min N.

This applies in particular when N = E" so that we may refer to submani-
folds of Euclidean spaces. It is an established result of manifold theory
that each m-dimensional manifold which is not too large may be imbedded
inE"withn=2m+l.

5.3. Tangent Vectors

We study a manifold M and a point P on M. Our job is to define the
tangent space at P, an n-dimensional vector space whose elements are the
tangent vectors at P. Because we are not within the simple terrain of
Euclidean space we cannot merely draw arrows emanating at P. We need
a way of considering ordinary Euclidean vectors which depends in no way
on arrows, or directed line segments. The answer is simple. We may
identify Euclidean vectors with directional differentiations. Thus in case P
is a point of E* and v = (a, b, ¢) is a vector at P, we may identify v with the

operator
(a _6_ +b i +c i)
oz oy 0z

This does the usual things to sums and products, which motivates the
following definition.
First some notation. If M is a manifold, we denote by

FO(M)
the space of all smooth real-valued functions on M.
Let P be a point on a manifold M. A tangent vector v at P is an operator

v: F°(M)— R, the reals

P

satisfying
(i) v(af + bg) = av(f) + bv(g), a.b constant.

(i) v(f-g) = g(P)-v(f) + f(P)-¥(g).

Thus v assigns to each smooth function f on M a real number v(f).

We shall first observe that if we take a constant function ¢, then v(c) = 0.
For setting f =g = 0 in (i) yields v(0) =0, setting =g = 1 in (ii) yields
¥(1) = 0, and setting f =1, @ =0, and g = 0 in (i) yields v(c) = 0. Observe
that

v(cf) = cv(f)

for any f and constant c.

Next, suppose !,--:,a" is a local coordinate system, valid in some
Deighborhood of P. Then each of the operators
0
V=

o
6x,
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(the vertical bar means “evaluated at P’’) is a tangent vector, as one easily
verifies.

The totality of tangent vectors at P makes up a linear space, T, calleq
the tangent space to M at P. We shall show that these vectors v, form ¢
basis of this tangent space. We set

(xl' ""x")'P=(clv""cu)'
If v is any tangent vector at P, set
v(z') = v(z' — ¢!) = a'.
Now if f is any smooth function on M, we expand f in a Taylor series up to
first-order terms with the integral form of remainder:

f(x) = fle) + ¥ (&' — ¢)) gi(x),
l( ) = _l

Then
v(f) = v[f(©)] + Y gi(c) v(z' —c) + ¥ (¢' — ¢) v(g,)
_0+}:a—, +0=Ya ‘af’
hence
7
= i_7
v= z @ ort
which establishes the result. We refer to a!, - - -, @ as the components of v

with respect to the coordinate system x. If y is another coordinate system
valid at P, and

0
v=Y b —
Z ayi
we find, by the chain rule,

ayi

= Z aj —
pi
the usual transformation law for contravariant components of a vector.
Note here that we are working at a single point so that a and b are constant.

A wvector field on M consists of a smooth assignment of a tangent vector to
each point of M. In local coordinates,

v= Za‘(x) Pl a'(x) smooth.
On an overlap,

i
Zb(y)a,,

bi(y(x)) =Y o) 67
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5.4. Differential Forms

The smooth functions on M will also be called 0-forms. They form a
gpace F°(M), the space of forms of degree 0 on M.

We now define a one-form at a point P of M. We must have an

expression
Y a,dz', @, constant

for each local coordinate system () valid in a neighborhood U which
includes P and such that any two such expressions

Y a,da, Y b, dyt

at P are related by ‘

oy
A
the usual transformation law for covariant vectors. Evidently this is
completely consistent with our local study in Chapter III.
Having this, we may form sums of exterior products of one-forms at P to
construct p-forms at P. Now we can define a p-form on M. This is a

smooth assignment of a p-form to each point P of M. If U is given with
local coordinates (z'), then on the neighborhood U we have the representation

o =Y ag(x)da?

with smooth functions ay(x) on U, H = {h,, -, h,}.
If we have the representation ’

o = Z by(y)dy®

with respect to a second coordinate system which overlaps the first, then the
relation between the b’s and a’s is given by substitution of y' = y'(x) for ¥
and

7

fordy’. Asa consequence of our study of coordinate changes in Section 3.4,
We see that the space

F (M)
of p-forms on M is completely defined, that exterior multiplication
©wAnR

of two-forms on M is accomplished by operating with one point at a time, and
that the exterior derivative of a form on M is defined by working it out in
¢ach local coordinate system.
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All the rules of Chapter III are readily verified,

dwAn)=do An+ (=1 g Ady

for example.

If M and N are two manifolds and

¢: M— N
is a smooth mapping, then there is a natural induced mapping ¢*,
¢*: F°(N)— F/(M)

which again is defined by applying the local construction in one local co-
ordinate system at a time and piecing together the results. As in the local
theory, we have the results

(i) ¢*(@+n)=¢*w+¢*n
(i) @*(A A p)=(¢*4) A (¢* p)-
(iii) d(¢*w) = ¢* (dw).

The last of these can be expressed by means of a commutative diagram

¢*
F?(M)—€—— F?(N)

d d

*
F*!(M)——— F**}(N)

Each of the two possible paths from F’(N) to FF*1(M) leads to the same
result.

In practice, one often constructs differential forms on a manifold this
way. One knows in advance several smooth functions f,¢,--+ on M.
From these one constructs one-forms df, dg, - - - and from these in turn forms
of higher degrees by taking exterior products.

Example 1. On the two sphere S2 considered in Section 5.2, the functions
z, y, z are smooth 0-forms. Thus dz, dy, dz are one-forms and dxdy, dydz.
ete., are two-forms. On the neighborhood U{ we have

$2=1—y2—22,

P —ydy —zdz ’
x
—ydy —
dedy= LW =2 G Py ete.
z x
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gxample 2. The circle §! = {2 + 4> =1}. Here « and y are functions on

§! and
zdx + ydy = 0.
This means we can define a one-form a. At a point where x # 0,
d
=
z

At a point where z = 0, we have y 0 and

0= —-—.
y
On any arc of S! which is not the complete circle, we can find a function 6
such that
x = cosf, y =siné,
hence

o = db.

It must be emphasized that no such function § exists on all of S'—it would
have to jump by 27 somewhere.

5.5. Euclidean Simplices

In this section we shall describe the standard building blocks which we
later piece together to form fields of integration, p-dimensional spreads in a
manifold over which we can integrate p-forms. These building blocks will
be called Euclidéan simplices of various dimensions—we shall omit repetition
of the adjective Euclidean in this section, but we understand that everything
takes place in Euclidean space.

A 0-simplex is a single point (Py).

A l-simplex is a directed closed segment on a straight line. It is com-
pletely determined by its ordered pair of vertices (PyP,).

A 2-simplex is a closed triangle with vertices taken in some definite order.
It is completely determined by its ordered triple of vertices in the proper
order,

(Po, Py, Py).
Similarly one has a 3-simplex based on an ordered quadruple
(PO’ Pl’ P2’ PB)

of four points, no three collinear. Geometrically it represents a tetrahedron.
Finally, an n-simplex is the closed convex hull

(PO""’Pn)
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of (n + 1) independent} points taken in a definite order. The geometrical
set so spanned consists of all points

P=t,Py+ -+ +t,P,, 20, Y t;=1,

i.e., all possible centroids of systems of nonnegative masses £,,---,¢,

located at Py, - - -, P,, respectively.
The boundary ds of a simplex s is a formal sum of simplices of one lower
dimension with integer coefficients:

OPo, Py, -+ P = 3 (=1/Pa, Py, o, Puoy, Pra, oo, P
An examination of the lower dimensional cases convinces one that this is
consistent with the customary ideas on boundaries of oriented regions.
a(Po’P1)=(P1)—(Po),
(P, Py, Py)=(Py, P)) = (Po, P;) + (Py, Py),
Py, Py, Py, P3)=(Py, Py, P3) = (P, Py, P3) + (Py, Py, Py)

—(PO’PI’PZ)'

P, P,
O———»——0
PZ
PO Pl

In the triangle, the ordering of the vertices gives a sense of rotation of the
triangle. In the tetrahedron, the ordering of the vertices gives a right-
handed screw sense in space and induces a positive sense of rotation in each
triangular face (outward drawn normal). One thinks of each minus sign
in 0s as representing a reversal in this rotation sense. The result is that
(P, -+ -, P,)represents the oriented geometric boundary of the tetrahedron
according to the outward drawn normal.

t This means that the n vectors (P;— Pg), (Pz— Pg), ..., (Pn— Pp) are linearly
independent.
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An n-chain is a formal sum
c=Yadls,
where the a! are constants and the s; are n-simplices. Its boundary is
defined by

dc = Y a'(ds)).

A basic result is that the boundary of each chain itself has zero boundary:
0[oc] = 0.
It suffices to check this for simplices. Let us try low-dimensional cases:
0[o(Py, Py, P;)) = 0(Py, P;) — 0(Py, Py) + 0(Py, Py)
=[(P;) = (P)] = [(P3) = (Po)]l + [(Py) — (Py)] = 0,
A[0(Py, -+, P3)l=[(P;, P3) — (Py, P3) + (P, P,)]
~[(Py, P3) = (Py, P3) + (P, P,)]
+[(Py, P3) = (Py, P3) + (Po, Py)]
= [(Py, Py) — (Py, P3) + (P, Py)] =0,

which illustrates the general idea; each face occurs twice with opposite signs.
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More generally, in computing

o(Py, -+, Py,
one obtains
(PO""’Pt-l’PHl’""PJ—11Pj+1""1Pn)

twice, with opposite signs, once each from

O Po, Py, Piyyy o, By
and
a(Po’"'ij-1,Pj+1,"'»P,,),

so that everything cancels.

Given two n-simplices (P, -+, P,), (@9, * -+ , @), there is a unique linear
correspondence between them which preserves the ordering of the vertices.
It is given by

t;=1).

i

4P — 0, (420,
0 0

o=

It is convenient for defining integrals to have standard models of the
simplices of each dimension. We define the standard n-simplex

§"=(RO"”»Rn)

as the simplex in E" based on

Ry=0
R, =(10---0)
R, =(010---0)

x
We must now agree on a certain convention for integration. Let @ be an
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n-form defined on a domain U of E” which includes §". We wish to define

We do this by writing w in the unique way
w=A@', -, 2" de' da? - - - da"

with the variables in their natural order, and then setting
J. w=f A(x)dx' dz? - - - d”,
5" "

where the right-hand side is now the standard ordinary n-fold integration,
which may be evaluated by any scheme of iteration, regardless of what order
in which the variables are taken.

For example, if w = dzdydzx, then

1 1-y 1-x—y
J. w=—j dxdydz:—‘[dyj dxf dz = —1/6.
s? s’ 0 0 0

5.,6. Chains and Boundaries

Now we consider a manifold M and we shall define an n-simplex in M.
As a preliminary definition, this consists of three things: a Euclidean =n-
simplex s", an #n-dimensional neighborhood U of s” in Euclidean space,t and
a smooth mapping ¢,

¢: U— M

We denote this preliminary simplex by

(s", U, ¢).

If we are given a second one,
(", V,¥),

it will be considered the same as the first provided

¢(z t,P,-) - ./,(z tiQi) (t,-_>__ 0, Y= 1),
[} 0 o
where
s.=(P07P11“')Pn), tn"—‘(Qo’Ql"",Qn)'
In other words, if we set up the natural order-preserving linear equivalence
T That is, a neighborhood in the smallest flat submanifold of Euclidean space contain-

ing sn. This sma.l\lest flat submanifold is the totality of points 23 tyPy, t; real, z ti=1,
where $% = (Py, ..., Pg).
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between s” and t":
" — t°,

then ¢(P) = (@) whenever P and @ are corresponding points. This is also
expressed by the commutative diagram

"

¢ v
M

The totality of these preliminary simplices (s”, U, ¢) which in this way
are identified with a single one make up an object which we call an n-simplex
in M, denoted by a symbol ¢".

The open neighborhoods U we have introduced merely serve to eliminate
difficulties with differentiability on the boundary.

If 6" is a simplex represented by (s", U, ¢), then s” has faces ty,---, t,,
each a Euclidean (n — 1)-simplex, where
as" =) *t,.

By restricting ¢ to the various t;, each extended a little in U to make open
neighborhoods V;, we define the faces of 6", each represented by

7= (t;, V', 9)
and the corresponding boundary
de" =) *r;.
U
§2
> O to -0 -

This is an (n — 1)-chain in M. By an n-ckain c of M we mean a formal sum
c=)Yaq/
7

with constant coefficients a; and n-simplices 7. Chains may be added and
multiplied by constants. We denote by

C.(M)
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the set of all n-chainst on M. We set

dc=Ya 0] for c=3Y a;0].
Thus
J: C,(M-—C,_ (M) n=1,2,---).
The basic property of the boundary operator ¢ follows readily from the
corresponding Euclidean situation: for each n-chain c,

d(dc) = 0.

A cycle is a chain z whose boundary vanishes, 6z = 0.

A bounding cycle (or simply boundary) b is a chain which is the boundary
of a chain of one higher dimension, b = de.

Each boundary is a cycle, for if b = dc, then

d(b) = 8(d¢c) = 0.

One further thing to be noted is this. In our preliminary definition of a
simplex (s", U, ¢) we do not require that the smooth mapping ¢ on U
into M be a one-to-one mapping. Indeed, it may happen that it takes all of
s" into a lower dimensional space, even into a single point! A close analysis
shows that not only is there no harm in allowing such “bad” mappings but
that there are very great technical difficulties involved in attempting to avoid
them.

5.7. Integration of Forms

Our data is a manifold M of any dimension, a p-form @ on M and a p-chain
con M. We must define
j o.
[

c=) a0,

where the a; are constants and the o, are p-simplices and write

Jomzafo

80 it remains to define the integral of w over a p-simplex 6. Now we can
represent ¢ in the form

First we set

(57, U, ¢)

where §7 is the standard p-simplex in EF and ¢ is a smooth mapping of the
neighborhood U of s? into M. Our definition is

t Precise topological terminology: ordered singular differentiable n-chains.
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o=l

Since ¢* w is a p-form on U, this is an ordinary p-fold integral, as discussed
in the next to last section.

In application, one often does not bother to spell out in detail how a given
geometrical region may be considered as a chain, but rather relies on the
usual combination of experience and intuition, the latter an excellent guide
in geometry. Forexample, suppose wisa 2-form on $? = {2 + y? + 22 = 1}

and one seeks | @ taken over $2. There will usually be a more effective

procedure than using the coordinate planes to decompose the surface $? into
eight spherical triangles, setting up mappings of the standard triangle onto
each of these, etc.

What then is the value of this rather long story on chains, boundaries, and
integrals? 1In this age, it hardly seems necessary to defend the placing on a
logical and rigorous basis things which are only understood in an intuitive
sense. In addition, we have here a powerful theoretical tool as we shall see
immediately in the following section on the general Stokes’ theorem.

As an exercise, one could check that each of the standard tricks used to
evaluate surface integrals, etc., fits into the above scheme of things. It
hardly seems worth our time here.

5.8. Stokes’ Theorem

The general result we establish now includes all known formulas which
transform an integral into one over a one-higher dimension spread.
Let o be a p-form on a manifold M and ¢ a (p + 1)-chain. Then

Joo=] e

Since ¢ is a sum of (p + 1)-simplices with constant coefficients, it suffices

to prove
J. w ='[ dw
‘o o

where ¢ is a (p + 1)-simplex. According to a representation
(", U, ¢)
of & we have from the definition
J’ do = ¢* (dow) =I d(¢* w).
P ip +1 ;’+ 1

This reduces the problem to a Euclidean one. Let 5 be a p-form on a
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neighborhood U of s?*! in EP*!, To prove

[
agp+1 se*1

n= ZA,(x)dx‘ ---dx""dx'“ -"dx"+l

Now

so that it suffices to check the formula in case # is a monomial only. Since
we may permute coordinates provided we are careful about signs, it suffices
to take the case

n=Ads - dz?.
Then
04
dn = (=1) =TT dxl - - dzPtl.
We remember that $P7* consists of all points («*, - - - , P *!) satisfying
p+1
z =20, Y @<l
T
We have
04
dn = (=1)? J P da! -+ - daP*?
sP+! §o+1
(1-Zx)
|
=(-1)* J‘ dxt ---dx"( f a—x;‘*‘_ldxp“)
{x20, ZEBx'g1}) 0
)
=(-1) [A(x‘,-~-,x",l - Y
1

xzo, Zixis1)
— A(xt, - ,x”,O)]dx‘ oo daP.

We must next investigate dsP*:. We write
§p+1 = (RO’ Rl PR Rp+l),

points in EP*1.
. Ryyy=(0:-01)
e have *
a§p+l=(Rh""Rp+1)+(—1)p+l(Ro’R11"'va)

N

+ other faces,
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where 7 = 0 on each of the other faces since some one of 2!, - -, 2P is constan
there. Thus

[ae [ wecrs [

ogp (Ry,*»*» Rp+1) (Ro, Ry, **, Rp)

The face (Ry, Ry, -+, R,) is the standard °. On it 2**! =0 and so

(—1)r*t f n= (—l)"“JA(x‘,x’, s, 2P, 0)dat - da?

(Ro, - -, Rp) [ 14

which is precisely the second term in the expression for J dn above. The
first term is obtained by projecting downward in the z?*?! direction:

»
n= J‘ A(z‘,“-,x",l—Zz‘)dx‘---dx”
1

Ry, -+, Rps1) (Ry, * -+, Rp, Ro)
=(~1) A(z‘,---,x",l—-ix‘)dx‘-“dx”
1
(Ro, Ry, « -, Rp)
=(—1)”IA(x1,'--,x’,1 - izl)dxl .- daP,
'

and this is the first term in the expression for j dn. The proof is completed.

5.9. Periods and De Rham’s Theorems

We consider an example. The manifold M consists of E® with the origin
removed,
M=E*-{0}.
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Suppose w is a one-form on M such that dw = 0. Then is w exact? That
is, is it the differential of a function on M? The proof in Section 3.6 will
not avail here because M cannot be shrunk to a point. Nonetheless, w = df,

where
Sf(x) =j ,

(1,0,0)

the integral taken along any path ¢ which avoids 0. That this is independent
of the path follows from Stokes’ theorem. For if ¢’ is another path in M
from (1, 0, 0) to x, then the chain ¢ — ¢’ is the boundary of a piece of surface
I (2-chain) in M and

[

Next suppose « is a two-form on M such that da = 0. We seek a one-
form A on M such that « =dA. By the converse to Poincaré’s lemma in
Section 3.6, such a form A exists locally. But we are asking the global
question: Is there such a form 1 on all of M? The answer to this one is no
in general, we shall have explicit examples later. For if there were such a
one-form A with dA = « we would have

oL

since the unit sphere $? has no boundary. But there is no reason a priori
for assuming that
J a=0.
2

The correct result is this. If « is a two-form on M = E3 — {0} with da = 0

and
J a=0,
sl

then « = dA for some one-form 1 on M.

This result is contained in De Rham’s theorems which we shall formulate
now without proofs.

We deal with a fixed manifold M about which we assume only some mild
limitation on its size, for example we may suppose it can be imbedded in a
sufficiently high dimensional Euclidean space.

A closed form is a differential form w on M satisfying dw = 0.

An ezact form is a differential form w on M satisfying w = dn for some form
non M.

Each exact form is closed:

dw = d(dn) = 0.
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Let w be a closed p-form. To each p-cycle z on M corresponds a periodt

Joo

If z happens to be a boundary b = dc, the period vanishes,

[ ffieefo

Because of this there is a relation between periods:

Of w,

W henever cycles z, , - - - are related by
Y a,z; = boundary,
(1) then

Ya;| @=0.
z;

D Ruam’s First THEOREM. A closed form is exact if and only if all of
its periods vanish.

DE RHAM’s SECOND THEOREM. Suppose to each p-cycle z is assigned a
number, per(z), subject to the consistency relations

whenever
Y a,z; = boundary,
®)
then
Y a; per(z;) = 0.

Then there is a closed form @ on M which has the assigned periods,
J. w = per(z) for each p-cycle z.
z

On many spaces one is able to apply these results because there is a finite
set of independent p-cycles which spans all p-cycles, up to boundaries. For
example, on the n-sphere $" it is known that each p-cycle is a boundary for
P >0, p # n, and that in dimension » there is a single n-cycle (S" itself with
outward normal for orientation) such that each n-cycle is a multiple of this
one plus a boundary. These things are established by algebraic topology.

A complete analysis of De Rham’s theorems reveals the following result,
which has considerable attraction in itself.

Suppose we consider only chains ¢ = Y a6, which are sums of simplices

) T The nomenclature derives from the periods of elliptic integrals and the corresponding
differentials for algebraic functions.
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with integer coefficients. Then we may talk of these as infeger-chains and
have integer-cycles and integer-boundaries. The integer-periods

Jo

of a closed form w are the periods taken over integer-cycles only.
Let w and n be closed forms of degrees p and g respectively. Suppose that
the integer-periods of w and n are all integers. Then the same is true of w A 1.

5.10. Surfaces; Some Examples

It is shown in topology that each closed surface in E* may be smoothly
deformed into a sphere with % handles, or alternatively, a button with %
holes. Let us consider the case 2 = 2 and orient this surface X with the out-
ward drawn normal. The only significant two-cycle is Zitself. By De Rham’s
First Theorem, a two-form o on this surface is an exact differential if and
only if

C
- /J E J
4)rmal

There are four significant one-cycles, ¢, €}, ¢,, ¢;. Here ¢, and ¢, intersect
once and cross, the same for ¢, and c,. But ¢; and c, intersect once
without crossing. To see the geometric plausibility of the statement that
each one-cycle ¢ on I is a sum of multiples of the ¢; and ¢; plus a boundary,
one cuts the surface I along these basic cycles. Having done this, Z may be
Smoothly deformed into a plane domain without holes.

De Rham’s First Theorem now asserts that if w is a closed one-form on I,
then @ is an exact differential if and only if
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[

Applied to dimension one, De Rham’s Second Theorem asserts that if real
numbers a, , a; , @, , @, are given, there exists a closed one-form w satisfying

fw=al, f w=a,, Iw=az, f w=aj.
Cy c’y C2 [}

< <2
<} c

It is also interesting to consider non-orientable closed surfaces. These of
course cannot be realized in E3. Perhaps the simplest is the projective
plane P2, This is defined by pasting the edges of a rectangle together in the
order indicated. The boundary relations are

3(P?) = 2¢' — 2¢,
dc = (P) - (Q)
a¢' = (P) - (Q).

This means first of all that there is no effective two-cycle, each two-form is
exact. The only effective one-cycle is ¢’ — ¢, and this actually bounds,
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¢’— ¢ = }3P2, Thus each closed one-form is exact.

Another interesting example is the Klein bottle K2, again defined by
pasting edges together. The boundary relations are

K2 = —2¢
oc=0c =0.

The one independent one-cycle is ¢’.

5.11. Mappings of Chains
Suppose M and N are manifolds and f is a smooth mapping:
f: M—N.
Then to each p-chain ¢ on M there corresponds in a natural way a p-chain

fecon N.

It suffices to explain this when c is a simplex ¢?. Such a simplex is
represented by (s?, U, ¢) where U is a neighborhood of the Euclidean
simplex s and ¢: U — M. We merely compose f and ¢ so that f, c is
represented by

(s?, U,fo 9).
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We illustrate the process for the case of a two-simplex

This induced map f, takes the space of chains onto the space of chains:
M-—7N
C,(M) 5> C(N).
We observe that if ¢ is a p-chain in M, then
fa(0€) = 0(fy ),

which leads to the commutative diagram

C,(M) 7 > C,(N)
d d
C,-(M) 7 »C,_(N)

which is certainly analogous to the corresponding diagram in Section 5.4
for f* and d. The validity of the result is established by looking at in-
dividual simplices.

We now see what happens with two mappings. Let

M___f__,.N
g
gof

Then the assertion is
Gof)e=guofs
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which again follows for a simplex almost directly from the definition of f,, .
Finally we consider this situation. Let

f: M—N.

Suppose that w is a p-form on N and c is a p-chain on M. Then f*w isa
p-form on M and f, ¢ is a p-chain on N. We have

ff*co -—-I .
[ Ss€

This important result also follows directly from the definition for a simplex
and is obtained for a general chain by summation.

5.12. Problems

1. Show that the totality of unit tangent vectors to the sphere S2 is a
three-manifold. Construct local coordinates.

2. Show that the set of all directed lines in E2 is a 2-manifold. Discuss
orientation.

3. More generally, consider the set of all oriented r-dimensional planes in
E*. Show that this is a manifold, compute its dimension, and discuss
orientation.

4. Projective n-space P" consists of all (n + 1)-tuples (aqy,---,a,) of
real numbers not all zero, where proportional (n + 1)-tuples are considered as
representing the same point. Show that P" is an n-manifold.

5. Complex projective z-space CP" consists of all (n + 1)-tuples
(ag, ", a,) of complex numbers not all zero, where two such n-tuples are
considered the same if they differ by a (complex) proportionality factor.
Show that CP” is a manifold and determine its dimension.

6. Show that the manifolds of Examples 4 and 5 are closed (compact).

7. Let M be the manifold of Example 3. Show that the set N of all
oriented r-planes in E" which pass through the origin is a closed submanifold
of M.

8. Denote by U the open region

U={zl+ - +22>1}
in E”. Suppose w is an r-form in E" which vanishes identically on U.
Under what conditions does there exist an (r — 1)-form « on E” which also
vanishes identically on U and which satisfies dx = w?
9. Show By direct calculation (i.e., without De Rham’s theorems) that

if @ is a two-form on S2 whose integral over S? vanishes, then w = d for a
suitable one-formt'e on S2.
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Applications in Euclidean Space

64. Volumesin E"

We denote by
w=dx, ---dz,

the element of volume in E”, an n-form, and set

v,=j o, P=Yd
rs1

so that ¥, is the volume of the unit ball. Next we denote by ¢’ the element
of (n — 1)-dimensional volume on the unit sphere $"~! = {x |r = 1}, and set

4,4 =J a.

Thus A; =2r, A, =4n, V., =2, V,==n, V;=4n It is clear that the
volume of the sphere of radius r is "~ '4,_, , hence

1
1
v, =J P Ay dr =4,

0
One may evaluate V, by integrating over slabs:

1
v, =j l(1 —x2)r" 2y de

= Vn— lJn
where

1
J, ='[ (1 — 23"~ 12 gy,
-1

Integration by parts once leads to

1
Tu= f et2a)(“52 )1 = )02 o = (0 = DT, 4,
1 -

n—
Jn=%lJ"_

n 2.

74
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L

——

These recursion formulae lead to the standard result
7t"/ 2

e
rf-+1
E+1)
Next we obtain an explicit formula for ¢’ in terms of the Euclidean co-
ordinates z,,-+-,z,. We begin with the form
rdr = zdx;,

a one-form in E” which is invariant under rotations (orthogonal transforma-
tions) of E”. Consequently

N\
xrdr =Y (=1)" 'z de, - da; - da,

(the “hat” denotes a missing factor) is an (n — 1)-form in E" which is in-
variant under rotations. It follows that on $" !,

¢ =cxrdr,
where, ¢ is a constant.
Next we note that

. N\
d(xrdr) = Y (=1)"Vdz,dz, -+ - dz; - - - dx, = no,

A"—l=_[ a’=cj trdr=ch d(* rdr)
n=1 sn-[ 'él

« =6J nw=ch,,=cA,,__1,
rs1

hence

c=1,6"=xrdronS"" 1.
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Summarizing, we set
L] /\
c=xrdr=3 (~1y 'z de, - dz; - da,,
=1
defining an (n — 1)-form ¢ in E*. Then do = nw, and if ¢ is restricted to

§"~ 1, the result is the (n — 1)-dimensional volume form ¢’ of $"~ 1.
Next we consider the natural projection

n: E'—{0}— 8§

defined by n(x) = x/|x|.
We seek n* 6’, an (n — 1)-form on E" — {0} satisfying

d(n*a’) =0 since d(n*o’) = n*(de’) = n*(0) =
(do’ is an n-form on $"~!, hence 0.) We shall prove
g
* g =
o=
We could prove this by directly substituting

. /\
Y= xyfr in ¢’ =Z(_l)l—lyldyl'”dyi"'dyrn

but we prefer to proceed indirectly by exploiting the symmetries present.
We set

Xla

Then
1 n nw nmlo
dr =Fda'—rn—+i(rdr)a=7n-—m— 0.
Now we observe that *(n*¢’) is a one-form in E" — {0} which is invariant
under rotations, hence dependent on r alone. We may write

*(n*c’) —f—(—) (rdr).
From this we have
n*c’ =f(—) o = f(r)r,
0=d(n*a’)=:—'{t, Z—‘::O, f=e¢,

a constant, n* ¢’ =ct. To evaluate ¢, we simply note that on $"~!, both
n* ¢’ and 1 collapse to o, hence ¢ =1,

n*o =1.
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6.2. Winding Numbers, Degree of a Mapping

A basic result of topology (Seifert und Threlfall [20], p. 283) asserts that
if M and N are closed oriented n-manifolds and f: M — N, then the
chain f, M is an integral multiple of N plus a boundary. This integer
multiplier is called the degree of f and written deg f.

Now suppose that T is a closed oriented (n — 1)-manifold in E" — {0}.
Then by the Jordan-Brouwer theorem of topology, £ decomposes E” into
exactly two regions. We assume X is oriented by the outward normal. The
projection mapping n of Section 6.1 sends T into $""!. It is true that
deg 7 = 0 or 1; our point is that this can be determined by an integral. Let

d =degnm.
It=Jn*o’=I a’=5J‘ ¢ =04,_,,
z z n(Z) sn-1

Then
1
6= 1.
An—l J;

More generally, let M*~! be a closed oriented manifold,
fi ML E - {0}

hence

Essentially we are thinking of f(M"~!) as a hypersurface in E” — {0} which
may intersect itself. We look on this hypersurface as winding around the
origin and we want to count how many times it encircles. This winding
number is given by the Kronecker integral

1
—_— *1.
An-l Mf

We may justify this as follows. Setg=no.f: M""!— $""1. What we
are after is degg. Now

g+ (M) = (degg)$"~! + (boundary),

V[ g* al =J‘ a.,
M gs M

= (degg) J; o' =4,  degy,

hence

1
degg =—— | g*o'.
g An—l M
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M1 — L (0)
= Tlof §
sn-l

Butg*o’ = (f* - n*)6’ = f*1, so we have
degg = —1—-- f*t
ApoyJm
The most general situation is this:

fi M"— N~

Let B be the volume form on N taken so thatf f=1. Then
N

degf=J' f*B.
M

For f, M = (deg f)N + (boundary), hence

J f*ﬂ=f ﬂ=(degf)J. B =deg f.
M foM N

One interesting example: let T” be the n-torus, f: §"— T"wheren 2 2.
Then deg f = 0.

Because the integrals involved are integer-valued, they remain constant
when the mapping in question is subject to a deformation. Precisely, let
fi: M — N be a one-parameter family of maps. Then

deg f; =f fi*B
M

is a smooth function of ¢, always an integer, hence constant. It follows that

deg fo = deg f; .
One other remark. Suppose we have

fif M—N, g: N—P sothat h=g.f: M—P.

Then
degh = (deg f)-(degg).
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6.3. The Hopf Invariant
For each sphere §”, let g, denote the element of area, normalized so that

Consider first a map f: S — S2. Then f*g, is a 2-form on S%. Also
d(f*a,) =f*(ds,) =0. Since S* has no nontrivial 2-dimensional cycles,
we deduce that

f*o, =da,

where the one-form a; on $* is unique up to the differential of a function.
The 3-form a; A f*o, has an integral

J‘ssal A f*o'z ’

which has the remarkable property of being an integer, called the Hopf
invariant of f. It is invariant under deformation of f. More generally, let

f: sZn—l —

Then f* ¢, = da,_, , and the Hopf invariant of f is

J.sz %=1 Af*o,.

We may represent S* by pairs of complex numbers
(zw), |2+ |wl*=1.

The mapping (2, w) —» z/w provides a mapping of $* into the closed complex
plane, i.e., the Riemann sphere S2. This map has Hopf invariant + 1, hence
it is essential in the sense that it cannot be deformed to a trivial map, every-
thing going to a single point.

64. Linking Numbers, The Gauss integral, Ampére’s Law

Let M’, N* be oriented closed manifolds in E”, where r + s =n — 1, and
suppose these have no common point. (Best example: two disjoint closed
curves in E3.) We want to count how many times they link. To do this,
we form the product space M X N which is an oriented manifold of dimen-
sionr +s=n—1. We consider the map f: M X N — E" —{0} defined
by

fx, y) =y —x.
Now we set
link (M, N) = deg f.
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Thus if 7 is the #-form in E* — {O} we considered above,
1 1
f*t= '[ j f*t
An—l.[MXN Ap-1JMIN
We shall work this out in E> for a pair of closed curves M, N:
1 1 (z xdz)-dz
t=|—z-|—522,dzjdzk=|—zl—3——2———- .

We let x, y be the moving points on M, N, respectively. Then

link (M, N) =

z =f(x’ Y) =
so that
1
fro= 2—';—"7'5 y — x) x (dy — dx)]-(dy — dx)
gy = U= = %) xdyldx — [y — x) x dx]-dy}
l

= (y — x) x dy

finke (M N)‘_I j Ty=x®

(In this computation dy x dy = 0, etc., since dy involves only one variable.)

Imagine a steady unit electric current flowing around the closed loop N.

By Ampére’s law, the magnetic field at a point x due to the current in a
segment dy is

1 (y—x)xdy

dn |y —-x]*

hence the total magnetic field at x is

1 (y — x) x dy
R M

N
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It follows that link (M, N) = f F(x)-dx is precisely the work done by this
M
field on a unit magnetic pole which makes one circuit of M.

In the next example, link (M, N) = 0, which seems surprising since the
curves cannot really be separated.




VII

Applications to
Differential Equations

7.1. Potential Theory

We summarize the notation of Section 6.1. Space: E". Coordinates;
Ty, Ty, Xy

P =2l 4 -0 422,
n

rdr = x,dz;,
1

n n /\\
o =*(rdr) =) z;edx; = Y (—1)" 'z de, - day - - da,.
1 1

o
T=F,

o = dx, - -+ dz, = volume element of E".

do = now, dr = 0.

v i A v
"= = e -1 = o=ny,.
jrglw r((nlz) + 1) ! J‘r=l

Let u be a smooth function on a domain in E*. Then

du = Z % dx’,

AN
sdu =Y (=1)7! %dzl co-datee e da,

az
dadu = (z E%)w = (Au)o,
defining the Laplacian
*u

Au=ZW.

(See Section 4.4 for details when n = 3.)

82
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If » and v are functions on the finite domain R, the Dirichlet (bilinear)
integral i8

Dz, 7] = Indu A xdv = J;dv A sdu = J;ZL (%) (%)w

Next we have by Stokes’ theorem

f u *dv =j d(u »dv).
aR R

d(u *dv) = du A *dv + ud *dv

But

=du A *dv + uAv o,
hence we have

GrEEN’S FORMULA

J. u*dv = Dfu, v] +quvw.
oR R

By reversing » and v and subtracting the results, we obtain

GREEN’'S SYMMETRICAL FORMULA
f (u*dv — vxdu) = f (v Av — v Au)w.
R R

[One usually writes *du = (6u/dv)A where A is the (» — 1)-dimensional volume
element on R and Ju/dv is the normal derivative.]
In case v is harmonic in the region R, Av = 0, and we have

J (u*dv—vtdu)+J\ vAuw =0.
oR R

By specializing further we have this result:
Let u and v be harmonic functions in a region R. Then

J‘ u*dv = f v xdu.
aR oR

We derive further consequences by setting

dv = :_(.”;"—_.2_) (rdr),

*dv = —(n — 2)t,
daxdv = 0, Av = 0.
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The function v is defined on E" — {0}. We suppose the region R containg
and we apply the formula above to the punctured region

R-—{r<e}

with ¢ a small positive constant. We suppose u is harmonic on all of R,

Since
IR—{r<e}J=0R—~{r=¢},

I u*dv—f u*dv_J v*du—j v *du,
r=e

_(n-Z)f ut+(n—2)J'_ur—-J;R;’——*du f_ 1—’,1_—24-du.

we have

We evaluate the individual terms:

1 1 1
Ut = — UG = — d(uo) = — (du A 6 + % nw).
r=e en r=eg 6" r<e 8” rse

Now for |x| < ¢, u(x) = »(0) + O(¢), hence

f uw = w(0)V, + O(e)e".
rs<e

.[ du A o =J ( a—u,x')a) =J O(e)w = O(e)e",
rse rse ax rse

Similarly
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hence

f ut = n¥V,u(0) + O(e) = A, ;u(0) + O(e).

J. ! *d ! j d ! I d(xdu)
T3 U = ——5 U = ——y *U
r=c7ﬁ 2 & 2 r=g en 2 rse

1
= '8—"—_—5 J.rés(Au)a) =0.

We substitute these results and let ¢ — 0 to get

1 J’ + 1 J *du
Ut + —————— -3
A1 )om n—2)4,., Jor" 2

which gives the value of a harmonic function at a point in terms of the
boundary values of it and its normal derivative.

Special case. Let R be the spherical region of radius a centered at 0,
R={r < a}. In this case the second term on the right-hand side vanishes
for the same reason that the corresponding integral taken over {r = e}
vanishes. On OR = {r = a} we have

u(0) =

T =

Sla

(l" -1 U
where

1 . N
L=y = ;Z(—l)"lx,dxl coodz; - da,

is the element of (n — 1)-dimensional volume on {r =a}. (Fora=1 this
reduces to . Since there are % z-terms in the numerator and a = |x| is in
the denominator, it is homogeneous of the right degree, n — 1.) We have the

[
r=a

u(0) = a—,;:TIJ‘ up = j
n-1Jr=a P

Gauss MEAN VALUE THEOREM

Which tells us that the mean value of u over the sphere of radius a is the value
of u at the center.
Two important properties of harmonic functions follow from this result.

Maxmvum (Minmmum) PRINCIPLE.  Let u be harmonic on the finite region R.
hen u never assumes its mazimum (minimum) value at an interior point of
R unless v, is constant.
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For suppose u assumes its maximum at an interior point z,of R which,after
translation of coordinates, may be taken to be 0. Let ¥ be any (n — 1)-
sphere of radius a centered at 0 with a so small that {r < a} is in R. Since
u(X) < u(0) we have

u(0) = J' S / Lﬂ < f zu(O)u / Ly = u(0)

so we must have u(x) = u(0) forall xin . Hence u is constant on the largest
spherical neighborhood of x, we can draw in R. Evidently this means  is
constant in all of R since we can reach any other interior point by a sequence
of such overlapping spheres. The result for minima follows the same way.

UNIQUENESS PRINCIPLE FOR THE BOUNDARY VALUE PrROBLEM. Let u and
v be harmonic on a finite domain R and coincide on 0R. Then w = v on R.

For « — v vanishes on dR and is harmonic. By the Maximum Principle,
u—v<0onR,u<v. Similarly » < u, hence u = v.

The function (1/7"~2) is ideally suited to the sphere. On other domains
it is inconvenient because of the term involving the normal derivative in the
expression above for #(0). Hence we introduce the Green’s function.

Let R be a finite domain. A function »(x, y) defined for x and y distinct
points of R is called the Green’s function of R if

(i) For each fixed y in R, v(x, y) is a harmonic function of x for x in
R—{y}.
(ii) For each fixed y in R, v(x, y) = 0 for x in R.
(i) For each fixed y in R,

1

v(x,y) — x—yr2

is a smooth harmonic function on all of R.

Using the same method as above one proves the following:

If u is any harmonic function on a finite domain R and v = v(x, y) is tha
Green’s function for R, then

-1
uy) = (T—T)A,,—_—,Lnu(x) *dyv(X, ).

In case R is the spherical domain 7 < a centered at 0, the Green’s fune-
tion is

(x y) 1 an—Z
vix, = —ylr—2 - 2 =2
X - sy
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We note that
2

Y—a
yi2Y

is the inverse of y with respect to the sphere R (reciprocal radii). For x on
OR, |x| = a and we have

x—y'2 = (x— y)( 2o @ «
X—yYPP=x-y)X—-y)=a*>-2— x'y + —
yrx-y |y|2 U
a? 2 2
= — — 2%y + |x}?) =
mﬂm y + Ix}%) ||2I yl%
a
IX—y|l=—|x-Yy]|
y Iﬂ' yl
This explains why v vanishes for x on dR.
Next
an—z
*d,v=—<n—2>[z(x—y>—ly7_—z<x—y')]
where
(X—y) = yan(zi y;) *dx,,
(x—y) = 3 (5 — 9/) d
(X —y)=—oY (2, — y,) ¥dz;.
Y Ix_ylln i Yy

We only need dv for x on dR. Recalling that y’ = (a?/|y|?)y for |x| = @ we
have

. —(n—-2) lyl? a?
)= e 290 = o (5 ) o
_ —(n—2)a® —y]? _—m—mf—WP
T x—yf @ x—y" & ¥

so that the representation of % in terms of its boundary values specializes to

a? —y)? u(x)
= ad,. x| =a [X = ¥I" Hx:

This is the PoissoN INTEGRAL FormMuLA which provides an explicit solution
formula for the Dirichlet problem on the sphere-—find a harmonic function
with prescribed boundary values.

Returning to a general finite domain, we mention the important symmetry
property of the Green’s function:

(X, Y) = v(y, X).
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(That this is the case for the sphere is not apparent from the unsymmetrical
formula above. But for the denominator of the second term we have

a? at
lyl?jx —y'2 = lyl2(x —y) (x—y) = Iylz(lxl2 —2— (xy) + —2)
lyl lyl
= |x|?|y|?> — 2a%(x-y) + a*,

which turns out to be symmetrical after all.)
One of the many important consequences of the Poisson Integral Formula
is the

LiouviLLE THEOREM. Let u be a harmonic function on all of E” and u = 0.
Then u 18 constant.

We shall show that for each y in E”, u(y) = »(0). We fix y with |y| =b
and select any @ > b. Then

a? - b? J’ u(x)

uy) =

ad,y JixmalX =y
Now
x—ylSIx|+|yl=a+b,
[x—ylZ[%| - |y| =a—b,
hence

1 1 1
< S
@+d) = [x—y|"~ (a—b)

Since u(x) = 0 we may use these inequalities to estimate the integral:

(az - bZ) (az - bZ)
aAn—l(a + b)"f|x|=,u(x) Hx u(Y) = a'A' —,,-1(0 — b)" J\lxl‘au(X)ﬂx .

But from the Mean Value Theorem,

f | u(X) py = (a7 14, _1) w(0),
{X|=a

so we have
(al _ bZ)an-Z (aZ — b2)an—2
< < —_—
i MO S U S T o),
By letting @ ~— o0 we have
u(0) < u(y) < w(0),

and so for each y, u(y) = u(0), » is constant.
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Remark 1. We return to the symmetrical Green’s formula

(udv — vadu) = J. (xAv — v Au)w.
oR R
We apply this in this situation:
R={e<r<a},

» harmonic in R for all ¢ > 0,
v vanishes on r = a,
u smooth in {r < a}.

We do not require that » be harmonic. The formula reduces to

'[ u*dv-f u*dv+I

First case.

vxdu + I v(Au)ow = 0.
3 esrsa

1 1

=51 e

v

*dy = — (n — 2)t.
By the methods above,

j wrdv = —_("—8:—22 uo = —(n - 2) 4,_,u(0) + O),

r=e

J.'"v sdu = (s"_l_i - an'—l-i) I's d(xdu) = O(e?).

Substituting these in and letting ¢ — 0 we obtain

1 1 1 1 A
0 = | e, ) e

This gives information about a solution u of the Poisson equation Au = f
with boundary values of « assigned.

Second case.

=

]l

’

1 1
sdy = (F—a;)tdxi—nFt—'za.

One differentiates this to prove Av =0. This also follows when one notes

that
3 (1\_—m-2
() = =

%R
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The end result in this case is

ou _ n 1 x ( 1 l)(Au)
h a'n+lAn-l r=axiu” An—l r<a f " a @

0z}lo

Analogous formulas for higher derivatives are possible.

Remark 2. We have avoided = = 2. In this case the basic difference is
that the symmetrical harmonic function with singularity at 0 is Inr rather
than r~®~2), TUsing this, results similar to those above follow.

7.2. The Heat Equation
We consider the parabolic equation
*u + ’u_ ou
02yt ot
Suppose % is a solution, valid in a region of z, y, ¢ space which includes a
region R and its boundary.
First we consider
o = (u,dy — u,dx)dt — udzdy.
Then -
do = (u,, +u,)dxdydt — u,dtdedy = 0,

J o= J. do = 0.
aR R
Next we consider

B = 2u(u,dy — u,dz)dt — u? dzdy.

hence

Then

dp = 2(u,dx + u,dy)(u, dy — u,dx)dt + 2u(u,, + u,,)dedydt — 2uu,dtdcdy
= 2(ul + u?)dxdydt.

It follows that

J. [2u(u, dy — u,dz)dt — w?dzdy] = 2f (u? + u?)dwdyds.
aR R

Suppose R is taken in the special form of a cylinder T X [0, b] where T is a
region in the z, y-plane. We then have

oR = (aT) X [0,3] + T X {8} = T X {0}.

We now assert the basic uniqueness theorem:
If u vanishes on the base T ) {0} and on the lateral surface 8T ) [0, b], then u
vanishes identically in R. For the integral formula above reduces to

2J‘ (w2 + ul)dedydt + I u(z, y, b)2dzdy = 0.
R T
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Since everything is positive, this implies

u,=u,=0 in R,

u=0 on TX {8},
which is more than enough to imply « = 0 in R. Because the heat equation
is linear, we deduce that two temperature distributions which coincide
initially at £ = 0 and always coincide on the boundary of R must be identical
for all ¢ at each point of R.

¢

]

x y/ N
T
We shall now do the same thing in n dimensions, where there is an inter-
esting sign change. Our variables are z,, - - -, #,, £ and the heat equation is
Au = du/ot

where as usual Au =Y d%u/ox?. The operator * will apply to space
variables only.
This time we set
B = 2u(xdu)dt + (—1)"" u’w,

where @ = dz, +--dz,. Now
2 ou\,
du A (xdu) = (grad u)’m = Y )@
[

and we have

dp = 2(grad u)’w dt + 2u(Au) o dt + 2(—1)""'uu,dtw
= 2(grad u)’wdt,

J B= 2J‘ (grad u)2w dt.
R R

hence
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Now let Tbearegionin E*, R=T X {0,5]). Then
oR =T X [0,8] + (—=1)"T X [0, b)
=T X [0, + (-1yT X b+ (-1 'TX 0.
Suppose u vanishes on 8T ) [0, b]andon T ) 0. Since dt=0onT X b
(i.e., t = b = constant) we have
J. uxdudt = 0,
oR

consequently

(—1)""1j ul = 2I (grad u)?w dt,
8 R

R
that is .

Xb
and we conclude as before (gradu)? = Y (9u/dz,)*> = 0 on R, du/dxz; = 0 on
R, u is constant on R, u = 0.

j o + 2J (grad u)’wdt = 0
T R

7.3. The Frobenius Integration Theorem?

Everything is local in this section; we operate in a neighborhood of 0 in
E". Let w be a one-form which does not vanish at 0. We ask, under what
conditions are there functions f and ¢ satisfying w = fdg? In other words,
we seek an integrating factor for the differential equation w = 0. Ifw = fdy,
then f does not vanish in a neighborhood of 0, hence

do=df ndg=df A f'w,
do=0Arw (@=f"'df =dn|f|)

and so
oAdo=0A0Aw=0.

For a one-form w = Pdz + Qdy + Rdz in E3, this is the condition
P(Ry_Qz)+Q(Pz_Rx)+ R(Qx—Py)=0'
We note that if @ = fdg, then the equations @ = 0 and dg = 0 are the same

and hence the solutions or integral surfaces of w = 0 are the hypersurfaces

g = constant.
Before passing on to precise statements we give two instructive examples.

Example 1. Let w = yzdz + 2zdy + dz so that dw = ydzdx + 2dzdy. It

follows that
d
do = (—z) A
z

t Material in this and the next section is taken from a University of California Tech-
nical Report of June 1957, Seminar on exterior differential forms. This was prepared
for the U.S. Army Office of Ordnance Research Contract DA-04-200~-ORD-456.
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which is not so useful since dz/z is singular along the z-axis. A better choice
is @ = —ydx — xdy and we have dw = 0 A @. To determine the function g,
we use the fact that each integral surface g = constant will be cut by the
plane {z =at, y = bt} in a curve which intersects the z-axis in the solution
z of g(0, 0, 2) = constant. The equation @ =0 on the plane x =at, y = bt
becomes

dz + 2abztdt = 0
with solution

z = cexp (—abt?)

satisfying the initial condition 2(0) = c. However abt?> = ry so these curves
span out a surface
z=1ce ¥,

We now think of a, b, ¢ as variables and make the transformation

x =a
. oz, y,2)  _
=b th —2 D =% 2 (.

y b d(a, b, ¢) e #

z = oe—ab
We have

dz = e~ **dc — z(adb + bda),

which yields

w=e"dc,
or in the original variables
w = e ¥ d(ze™)
and the integral surfaces are
z¢*¥ = constant.

It will be observed that we have arranged the function ¢ so that g =c¢
intersects the z-axis precisely in z = c.

Example 2. This time we try the procedure on @ =dz —ydx —~dy. On
the plane z =af, y = b, the equation w =0 becomes dz = (abt + b)dt,
2 = }abt? + bt + ¢ and we arrive at the surface

z=dxy+y+ec.
But on the parabolic cylinders = at, y = bt*> we have
dz = (abt? + 2bt)dt, 2z = }abt® + bt + ¢,
z=dry+y+e

a different family of surfaces. The reason for this failure to obtain integral
surfaces is seen from

do = —dydz, o A do = —dzdydx # 0.
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TuroreM. Let w = Y fdx' be a one-form which does not vanish at 0.
Suppose there is a one-form 0 satisfying dw = 0 A w. Then there are functions
f and g in a sufficiently small neighborhood of 0 which satisfy w = fdg.

Note 1. Since  is given while @ is certainly not uniquely determined, it
simplifies the proof if we avoid explicit use of 8 as long as possible.

Note2. The condition on w is unchanged when we replace w by a multiple
of w. In fact, if 2 % 0, then

dhw) =dh Aw+hdo=dh A 0+ k0 A © = (dh + }6) A 0,
d(hw) = [(dR)h ™! + 81(hw).

Proof. Since w # 0 at 0, we may assume some one of the functions f; does
not vanish at 0. Since neither the hypothesis nor conclusion changes when
we multiply @ by a nonvanishing factor, we may assume

w=dz— Y A, da', A;=A(x,z).
1

|

— 2

a=(al...,a"

We fix any point a in x-space and consider the equation w = 0 on the
hyperplane z' = a't, i =1, -+, n):

“l—; =) AJat, z)a’.
We solve this equation with the initial condition z(0) = ¢. More precisely,
we seek a function F(t, a, ) satisfying
F(t a,c)=) Afat, F(t, a,c)]a
F(0,a,c) = c.
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The usual existence theorem of ordinary differential equations yields a unique
solution. We see that a change of scale is possible:

F(t,a,c)= F(Ict, % a, c)

since the function on the right is again a solution to the same problem. In
particular, setting k = 1/¢,
F(t, a,c) = F(1, ta, c).

We introduce the change of variables

X=Uu
{z:F(l,u,v)

with
o(x,z)| 1 0 1
u,v), [(» 1
since
0 d d
_Fl, s =—Fl,0, = —F(0, a,
% ( “v)o 7 (1,0,v) o dvF( a,v) o
_dv -1
7] PO

Thus the new variables u, v form a local coordinate system in a sufficiently
small neighborhood of 0. We suppose that in these coordinates we have

o =Y Pdu'+ Bdv, P;=Pyfu,v), B=B(u,v).
Since @ vaniéhes identically on u = af, v = constant, we have the relation
- Y P(at,v)a' =0.

To continue, we consider the mapping ¢ on (¢, a, v)-space to (u, v)-space
given by
¢(t’ a,v) = (ta, v) = (u, ).
We have
¢*w =Y P(ta, v)(a'dt + tda’) + B(ta, v)dv

= Y tP(ta, v)da' + B(ta, v)do,
¢*w = Y Pt a,v)da' + B(t, a, v)dv,
where P(t, a, v) = tP(ta, v) so that P0, a, v) =0. The important point is
that ¢* w is free of dt.
The equation dw = 8 A @ implies d(¢*w) ={9*0) A (¢*w). We may

set
¢*0 = H(t, a, v)dt + other terms.
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Then
oP, )
d¢*w) = Y 5 dtda' + other terms.
We compare the dé¢da’ terms in this on the one hand and (¢*8) A (¢* w) on
the other to obtain
=i _
ﬂ:. - HP,

But this combined with P,(0, a, v) =0 implies, by the uniqueness theorem
for ordinary equations, that P, = 0. Hence P; =0,

w = Bdv,
the desired result.

References. For this theorem and the generalization which follows, see
E. Cartan [9, p. 46], [7, p. 367].

Example. @ =zdy —ydx. Certainly @ A dw = 0 since w A dw is a three-
form. However, the form w vanishes at 0 so one does not expect that the
integral curves of w = 0 will span out evenly a neighborhood of 0; in fact
these curves are just the lines ax + by = 0 through 0. We note, however,
that dw = 0 A w is impossible in any neighborhood of 0. For dw = 2dxdy
so that if 6 = Adx + Bdy, then 2 = Ax + By which fails at z =y = 0.

Remark. From the theorem we easily deduce again that a one-form w
satisfying dw = 0 is exact. For consider § = dz — @ where w is a form in
x-space. Then df =0, hence there is a one-parameter family z = F(x, ¢)
of integral surfaces, F(0,¢) =c. For each choice of ¢, # vanishes on
z= F(x,c), i.e., o=dF. (We cannot proceed without passing to one
more dimension since @ may vanish at 0.) This trick of introducing a new
independent variable for an unknown function is a useful one.

We now pass to the general problem. Let w!,- -, ®" be one-forms in
r 4+ 8 space, linearly independent at 0. Set Q=w' A -+ A" The
system is called completely integrable if it satisfies any of the conditions of the
following lemma.

LemMa. The following conditions are equivalent:
(i) There exist one-forms @', satisfying
do' =Y 0, A @’ (G=1,--,7) (n=r+s)
j=1
(i) do'AQ=0 (i=1,--+,7
(ili) There exists a one-form A satisfying

dQ=1AQ.
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Proof. That (i) implies (ii) is obvious (but unnecessary). Also (i) implies
(iii) with 2 = ) 6%;. Next, (iii) implies (ii) is the case since (jii) means

Y= ldo'l A A s AT AT A

=AAO'A - AO"

and we merely multiply by w’ to deduce (ii).
It remains to prove that (ii) implies (i). Let w™*!, -, ®" be one-forms so
that w!, - - -, ©" form a basis of all one-forms. We write

dwi = Zfiﬂ‘w"' A w*.
j<k

Since do’ A Q = 0, we have

Y flao'A A0 A0l At =0,
r<j<k

hence fi;, =0 forr <j <k,
do' =Y (Y —fipo*) Ao’
i1 k=T+1

FroBENIUS INTEGRATION THEOREM. Let o!,:--, @ be one-fqrms i E",
n =r + s, linearly independent at 0. Suppose there are one-forms 0°; satisfying
dwi=jZ::10"jAw" (=1, ,0).

Then there are functions f',, g/ satisfying
w‘=jz':1f"jdy" G=1,--,7).

Discussion. The hypothesis is certainly a necessary one. For if we
write

w=(wly”"w')) F=“fij"’ 8=(91,"',9'),

the conclusion is @ = dg F. The matrix F must be nonsingular in a neigh-
borhood of 0 and so

do=—dgAndF=—-oAF 'dF=0A0O

where
= —F~14dF.

Next we note the hypothesis is invariant under a linear transformation of
the w'. In fact, if y = wA where 4 is an r x r matrix of functions, non-
singular near 0, then

dp=dod+ordd=0r0O4+0vAndd
=g A (47104 + 471dA).
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We shall give two proofs of the theorem, each from a somewhat different
point of view. The starting point is always the same. We write

w"=2h‘jdx’ F=1,---,7).
j=1
Since the ' are linearly independent at 0, some r x r minor of |4’ ;1| is non-
singular in a neighborhood of 0. We multiply (@', -+, @") by the inverse
of this minor. On changing our notation slightly then we have

o'=dd - Yy Ay, -, 282,20 ded (i=1,2,000, 7).
j=1

First proof. For each point a = (a!, - -+, a®) in X-space we consider the
system of equations @' = 0 along the linear variety x = ta:
d2!

5= Y A4ijta, z)a’

with initial conditions z(0) = ¢!. By ordinary differential equations, there
is a unique solution in a sufficiently small neighborhood of 0, i.e., there exist
functions F'(t, a, c) satisfying
oF!
ot
Fi(0,a,¢) =c¢' (i=1,:,7).
We shall write F = (F!, .-, F").
Next, we fix k and set G(¢, a, ¢} = F(kt, a, ¢). Then G(0, a, ¢) = c and
G

i
= (tac)=k égt—‘ (kt,a,¢c) = Y A'tka, G)ka’,

hence by uniqueness, G(t, a, ¢) = F(t, ka, c), i.e.,
F(kt, a, c) = F(¢, ka, c).

(t, a,c) = Z.: A'jlta, F(t, a, €)]a’
j=1

In particular, setting ¢ = 1 and then replacing k by ¢,
F(t, a, ¢) = F(1, ta, c).
We pass to new variables u, v according to the transformation
X=0Uu
z=F(1, u, v).
This is nonsingular in some neighborhood of 0 since

I 0 oz
o o
* 0v]|,

a(x, z)
d(u, v)

o o
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For
ozt Ja d i
— = — l’ y = J ) N = m— = i'.
|, = T B0V =5 F0a ) =5 =3

In these new variables we may write
Z B (u, v)dv* + Z Piy(u, v)du'.

The fact that each o' vanishes identically along the curve u = ta, v = con-
stant implies

Y Plia,vial=0 (i=1,---,7)

=1

We propose to show that the functions P’\(u, v) vanish identically. To do
this we consider the cone mapping ¢ on (¢, a, v)-space to (u, v)-space
defined by
&, a, v) = (ta, v) =(u, v).
We have
¢*w' =Y P!jta, v)tda’ + terms in do*
= Y P'(t, a, v)da’ + terms in do*

where P' (¢, a, v) = P'/(ta, v)¢ so that P',(0, a, v) = 0. It follows that
do*w z f dtda’ + other terms.

Finally we use the hypotheses dw’ = Y ', A 0*. We write
¢*6', = H' (¢, a, v)dt + other terms
and compare the coefficients of dtda/ in the relation

do*o’ =Y (9*6') A (9* 0*):
Ppi
a—% (t,a,v) =Y H\(t,a,v) Pt a, v).

We conclude from the uniqueness of solutions of ordinary systems together
with the initial conditions P',(0, a, v) = 0 that P, =0, P/, =0,

o = Z': B'\(u, v)dv*

as required.
Our next proof is based on the sketch in E. Cartan [10, pp. 188, 193].
We begin as before with the system

o' =dt - Y A'de (i=1,--,7)
=



100 VII. APPLICATIONS TO DIFFERENTIAL EQUATIONS

with the conditions dw’ = ¥ 6'; A @/. We take any smooth curve from
the origin to a point a. We solve the system o' =0 on the cylinder this
curve spans in X, z-space, taking some definite initial point ¢ on the z-axis.
We shall show that the point on this curve lying over x = a is independent
of the particular curve we start with in x-space. The point is that in a suffici-
ently small neighborhood of 0 in x-space, any two smooth curves with the
same end points 0, a can be smoothly deformed, one to the other. Thus let

P 2

— "
— a

UH o ——

X = X(t, 0)
X = x(t, 1)

x = x(¢, a) be a one-parameter family of curves from O to a, the time variable
¢ on each curve running from 0 to 1 and the parameter o taking all real values;
we are interested in the curves x(¢, 0) and x(t, 1). We are assuming

x(0, a) =0, x(1, a) = a.

Fixing «, the solution of @’ =0 on the corresponding cylinder with initial
value c is given by functions Fi(¢, «) satisfying
oF! s ar’
— = ¥ A'(x(t,a), Ft, a)) —
= L, At 0, Fit ) =
Fi0,a) = cf (G=1---,7.
We reduce the problem to a two-dimensional one by considering the mapping
¢ on (t, a)-space to (X, Z)-space given by
o, a) =(X(t, a), F(t, a)) = (x, z).
Then
oFt oF!

. . o’ o’
*pi = —da - Y A —dt - L
$*o atdt+aad°‘ ) ’atd ZA’aad“

= H'da
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where

. oF! o’

Hi=Hita) =— — Y A", —.

(& ) oo X4 do

We set
¢*0‘j = P‘jdt + Qijda

and compare coefficients of dtda in

d¢*o' =3 (9*0') A (¢* o)

to obtain
O0H! .
— =Y PLHI.
But
oF! . o’
HY0, a) = — - ¥V 440, a) —
0, o) el B (0, @) 3| ms
d . ; d’ (0, o)
R - i
L F00 -3 450,00 —
d do
S e i —_— i —_—= (),
dac Y A0, a) 7a 0
It follows that H! = 0,
oF! ox!
— (o) =Y A}, —.
oo t,a) =3 4 O
We apply this in particular at ¢ = 1; here
o/ d . d
— (t, = — (1, =—-’=O,
6a( a) > (1,2 =
hence
oF!

= (L) =0,  FY1, a) = constant.

We next fix the notation more precisely; we write Fi(t, «; a, ¢) instead
of Fi(t, ) so as to specify the dependence of this function on the initial
conditions. Since Fi(1, a) is independent of & we may set

Gi(a, ¢) = F'(1,a; a, ¢),
and also
F=(Fl"”’F')a G=(Gl:"':G')*

Then we have the following facts:

(i) G(0,c)=c¢c

(i) For fixed ¢, a «—— (a, G(a, c)) is a 1-1 correspondence on a neighbor-
hood of 0 in a-space onto a manifold V_ in a, c-space. (For we simply take
any curve from O to a and use it to define F and then G.)
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(iii) Each o' vanishes identically on V.. (For ' vanishes on each
curve on V, since it is a one-form it vanishes identically.)
We consider the mapping

(a, C) — (a’ G(a) C)) = (" z)

on a, c-space to X, z-space. Because of (ii),
a(x, z)
d(a, c)
hence we may use (a, c) for a new coordinate system in some neighborhood
of 0. Writing o' in these new coordinates and using (iii) shows us that o'
involves only the differentials dec!, - - -, dc”, which completes the proof.

The striking feature of these proofs is that we reduce the original system of
partial differential equations (with integrability conditions) to a system of
ordinary differential equations.

=1,
0

7.4. Applications of the Frobenius Theorem

Example 1.  We begin with a question in matrix form which is motivated
by considerations in differential geometry centering around infinitesimal
transformations.

Let Q = ||| be an r x r matrix of one-forms defined in a neighborhood
of 0, say, in E*. We ask when it is possible to find an r x r matrix 4 of
functions, nonsingular, satisfying

Q=d44™*
To fix matters, let us require the initial value 4, = I. It is convenient to
set

0 =dQ - 0%
Then the basic result is this.

There is a matriz of functions A defined in a neighborhood of 0 such that both

Ay=1and
Q=(d4)4~t
if and only if
©=0.
When this is the case, then there is only one such matriz A. First of all suppose
there is a solution 4. Then (d4)A™! = Q, d4 = QA, and we have

0=ddA)=dQA - QdA = (0 + Q*)4 - QQA4) = OA.
Hence ©®4 = 0. Since A4 is nonsingular we have ® = 0. If B is another
solution so that d4 = Q A4, dB = QB and 4, = By = I, then
d(B"'4)= -B"'dBB'4 4+ B 'dA
= ~B"Y(QB)B !4 4+ B"1(Q4) =0,
hence B~'4 is constant, B4 = (B"'4), = I, B = A.
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Now we come to the existence. We pass to (n + r?)-dimensional space

with cqordinates z', .-, 2" 2/ (1 <4,j <) and introduce the 72> forms
which are the coefficients of the matrix

A=dZ - QZ, Z = ||z/|.
We are assuming © = 0, hence we have
dA = —dQZ + QdZ = —-Q*Z + Q(A + QZ),
dA = QA.

It follows that our system A, which is already in standard form, is completely
integrable, hence there exists a matrix 4 of functions of x with prescribed
initial values at x = 0, so that Z = A is an integral manifold of A = 0, that is,

d4d =QA.

We remark that if Q is skew-symmetric, then 4 is orthogonal (provided
the initial condition is 4y = I). For we set B ='A~!, the inverse transpose
of 4, and have

By=1, dB=—-B({d'A)B=—-B'A'QB= + QB.
It follows by uniqueness that B = 4.

Example 2. We next consider another equation:
dA = QA4 — AQ.

Here Q is the same as before, an r x r matrix of one-forms in a neighborhood
of E" and A4 is the unknown matrix of functions. Again we set ©@ = dQ — Q2.
Let us pose the problem this way. Can we find a solution 4 of the above
equation taking an arbitrary initial value 4,? We seek a necessary con-
dition by differentiating:

0=d(dA)=dQA — QdAd —dAQ — 4dQ
= (0 +0)4 - Q4 — 4Q) — (Q4 ~ AQ)Q — A(® + O?),

which simplifies to
04 = A06.

Since we are assuming the initial values 4, may be arbitrarily prescribed,
the values of 4 at each point of a sufficiently small neighborhood of 0 will
fill an n-dimensional domain; the commutativity of © at such points with
so many different 4 evidently implies that the matrix © of two-forms must
be of type

O=al
where o is a two-form. From

Q- Q*=al
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we have, differentiating,

dal=—dQQ + QdQ
= —(al + Q) Q + Qal + Q) =0.

Thus, locally, a = do where ¢ is a one-form. The necessary condition we
arrive at is this: There must exist a one-form o satisfying

dQ — Q* = (do) L.
This can also be expressed another way: The matrix
H=Q -0l
satisfies
dH — H* =0.

Under this condition, the sufficiency is easily demonstrated. As before

we form
Fr=dZ-QZ + ZQ

in X, z-space, and note that

Al = —dQZ + QdZ +dZQ + ZdQ
=—-(Q*+0)Z+ QT+ QZ-ZQ)+(T+ QZ — ZQ)Q + Z(Q* + ©)
=Z0-0Z+Qr+rQ,

hence
ar=Qr +rQ,

which shows that the system I is a completely integrable one. The existence
proof now proceeds as in the last example. Uniqueness can be handled this
way. Since the system I' = 0 is in normal form and is completely integrable
we know there is a unique integral surface passing through a given initial
point Z|, = 4,.

Example 3. We shall consider a type of system of partial differential
equations known as a system of A. Mayer (see C. Carathéodory [6, pp.

26-31]).

We work in a neighborhood of 0 in E'** with coordinates z!,---, z°,
z', -+ -, 2" as before and are given functions B /(x,z),i =1, ,r,j=1,--,s
The Mayer system is

07
i Bj(x’ z).
We define
OB’ B! aB
Al = Tk k ﬁ
*= g T g YL R Z B
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We evidently have 4';, + A’%,; =0. The Mayer system is called completely
integrable in a neighborhood of 0 provided to each choice of initial conditions
¢ there exists a solution z = F(x, c) of the system with F(0, c) = ¢. The
necessary and sufficient condition for complete integrability is precisely
A% =0. The reason is the following. We set

o' =d — ,-;1 Bix,z)dz’  (i=1,---,r)

a system of one-forms in x, z-space in our standard form. The vanishing
!« = 0 implies, after a short calculation,

] aB'
dw‘=2( aa’dxf)/\w
so that the system w!,:::,w" is completely integrable. The integral

surfaces z = F(x, ¢) solve the Mayer system. Conversely, suppose the
Mayer system is completely integrable. Then it is clear that the system

o' =+ =@ =0 has integral surfaces, one for each choice of initial
conditions ¢. Hence the necessary condition
= Z 0‘ iN o’

must be satisfied. On the other hand, we directly verify that
do' = } Y Alpded i + ¥ 0’y A 0°

where
oB!
nlﬂ Z a lj dxj
Since da!, - - -, dz%, @!, + -+ , " are linearly independent we conclude that

Oine =Y nne, Y Audddt=0, A'y=0.
Note. If w!,-:-, w" is completely integrable, there is an r x 7 matrix of
one-forms © = |6 satisfying
d(l)‘ = Z O‘j A wj;
or
do=—-wAO

in matrix notation. However, from the solution
o=dgF, g=@. .9, F=|fi

we conclude that dw = —w A F~'dF so that we may always choose © in
the very special form © = F~'dF. (This provides some motivation for the
Problem in Example 1.)

We shall see further applications of the Frobenius theorem in our study of
local Riemannian geometry. Also cf. Problems 4-7, p. 194.
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7.5. Systems of Ordinary Equations
We consider a system

dl
%=X1(t,x‘, , 7")
da*
& = X, 2, D)
dt ¢, 2% 2")

Closely associated with this system is the differential n-form
Q= (dz! — X1dt) - -+ (do" — X"dt)
in (¢, x)-space. By a short computation,

i
dQ = (z ‘Z)X)dtdx‘ - da.

We make a change of variables
yi=yi(t,ml,"‘,x”) (i=l,-~-,n)
and suppose that the systems

d_x = X(t, x) and dy

dt z = Ty

are equivalent under this change. We set
=(dy' — Y'dt)--- (dy" — Y"d¥)
and propose to determine how dQ and dQ are related. Now

dy' oy . oy’ da’
ot ~od dt’
.oy 6y
Yi=—
ot ox
Also
dy' = —dt + Z -——dx’
hence

. . oy . .
dy' — Yidt = Y — (dz/ — X'dt).
y' - Y y P (dx dt)
We denote the Jacobian by J:

oy, .-,y |y

Jza(m‘,---,x") o
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and have by exterior multiplication,

Q=JQ.
We differentiate this:
dQ = (dJ)Q + J dQ.
Now

i
aQ = (y_g-l:,.) didy' - - ( z )dtdx'
oy
and

oJ

@N)Q +JdQ = (a

dt + Z dx')Q +J(Z %iii)dtdz‘ o dat

oJ 6J .
= (-a-t- + Z 5-:;, Z )dtdx - dz”,
hence

oY 1) _oUX))
Za_yi‘.?(E + L )

A function f = f(t, x) is called a first integral of the system if f is constant
along each trajectory, or solution curve. Since the usual existence and
uniqueness theorems guarantee a solution through each point of space where
the system is defined, we have the condition

daf
a=
ie.,
df Z o

for a first integral.
Suppose that each of the functions y', - - - , " in the transformation above
is a first integral. Then

Yi=0, Q=dy'---dy.

(Such a transformation is always possible in a small region of space because
of the existence of a general solution, one depending on arbitrarily prescribed
initial conditions.)

A function M = M(t, x',-- -, 2") is called a last multiplier of the original
system if

dMQ) =
ie.,
oM AMXY)

—_— — = 0,
P
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Using the transformation above based on first integrals,

MQ = (g)ﬁ=Hﬁ=de‘ e dy,

Hence

aMQ) = @Hdy' - dy = Tl dedyt - dy

so that M is a last multiplier if and only if H is independent of ¢, i.e.,
MQ = H(y)dy' - - - dy".
If M, and M, are two last multipliers, then

M\ Q=H,(y)dy' ---dy", M, Q=H,(y)dy"---dy",
hence
M, |M, = H,(y)/H,(y)-

Tt follows that M, /M, depends only on the y‘, hence is constant along
trajectories (as is each y‘) and consequently is a first integral. This proves
the important result:

The quotient of two last multipliers is a first integral.

7.6. The Third Lie Theorem

What is known as the Third Fundamental Theorem of Sophus Lie was
devised in order to reconstruct a continuous group given only its constants of
structure. These concepts will be explained in Chapter IX. For our present
purposes, we shall look upon this theorem as a result, and a rather deep one
at that, in partial differential equations.

We work in E”. All indices run from 1 to #. First of all we are given n
constants ¢’;, subject to these constraints:

3

i i
Cjk"‘chj:()

Z (€l + cijrcjsk + cijscjkr) =0.
7

The problem is to find n one-forms ¢', - - -, ¢" which are linearly indepen-
dent on some neighborhood of 0 in E" and which satisfy the relations

do' =131y c'pol A ct.
The Lie Theorem asserts that this can be done.

The quadratic relations we have assumed for the constants (c) are easily
verified to be the same as d(dg’) = 0, assuming our problem is solved, hence
they are necessary conditions. That they also are sufficient conditions will
now be seen. The proof we give is based on those in Cartan [10, p. 239] and
[7, pp. 280-283). Because the proof is lengthy, we shall break it into several
steps.
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Step 1. 'We define an n X n matrix F = [fi,] of homogeneous linear
forms by

fi. = Z ¢y T
Then we consider the linear initial value problem

%=I+HF, H,x) =0

for an nXn matrix H=H (t,x). For each x it has a unique solution,
defined for all ¢, and the solution is analytic in (¢,x). At x=0 we have
F=0, so

H
o ,0)=1, H(0,0=0,

hence
H(t,0)=tI and H(1,0)=1.

Step 2. We set
o=dxH (t,x)
so that w is a row vector of one-forms, free of dt. Clearly
do=dt de(I+HF)+A\
=dt(dx+oF)+A\,

where A is a row vector of two-forms, also free of di. We also define a square
matrix A=[a’;] of one-forms by

al,= Zc‘jko)" .
We note the obvious relations:
x4d=wF and dxA=-—adF.
We also note two less obvious relations :
d(wAd)=2do A A and 2x4°=wAF.

The first follows from the skew-symmetry of the constants ¢';, in their lower
indices. The second follows from the quadratic relations on the ¢’s. We
multiply the quadratie relation (p. 108) by z'w*w* and sum:

Zz’a'}xi, + E ficd, o @'+ Zx’a",af,. =0,

which in matrix language is —xA°+ ®wAF —xA4°=0.
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Step 3. From the formula for dw that defines A, we have
dA=dt A d(wF)=dt(doF - wdF)
=dt(AF —odF) =dt(AF +dxd).

Step 4. We define
0=A—iw4,

a row vector of two-forms, free of dt. We shall prove the decisive formula

dO=dt NOF—A A A.
We have
dO=dA—dw A A=dt(NF+dx A A) - [dt(dx+eF) +)]4
=di(AF—@FA)—A N A
=di(AF~-x4%)—-A N A
=dt(AF—$wAF)-An 4
=dt NOF—A N A.

Step 5. We shall now prove that
6'=0.
Since both the &’ and the A’ are free of dt, so is 6 and we have
=3 z g‘jkdxidxk’ gijk = gijk(t’ x).

We may even assert that
7' %0, %) =0

For k' (0, x) = 0 which not only means that the coefficients of the o' vamsh»
at ¢ = 0, but also that the coefficients of
oK', om',
do*
=i ( P axf) do’

vanish at ¢ = 0 according to the very definition of partial derivative,

Qh_‘, _ahj(Ox)_O
0|,y 0 :

From these facts, what we say about the initial values of the g i follows,
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The result of Step 4 implies

og'
at]" = Z cirs a’ gsjk ‘

This homogeneous linear system taken together with the initial conditions,
the vanishing of the ¢g’s at ¢ = 0, has the unique solution

gijk(t’ x) =0,
and so §' = 0.

Step 6. Now we can wind up this story. Since §° = 0 we have
A=1Ycy0l Aok
do'=14Y c¢'pf A *+dt A dl
We consider this relation on the subspace ¢ = 1.
Setting
o' = @'l,=y =Y B(1, x)do?,
it becomes
dot =14 'yl A d*

Since hij(1, 0) = &/ (Step 1), the one-forms ¢*, - - -, ¢" are linearly independent,
at 0, which implies of course that they are linearly independent in some
neighborhood of 0. The proof is complete.



VI

Applications to
Differential Geometry

8.1. Surfaces (Continued)

Everything in this section will be based on the local theory of Section 4.5.
Now we have integration at our disposal and we shall discuss a few global
results. Let I be a closed surface in E>. For e, we take the outward drawn
normal to £. The mapping

X-— e,

is a map on X to the unit sphere $2. As x varies over I, e, varies over $? a
whole number of times, called the degree of the normal map (cf. Section 6.2).
The element of area of the normal map is

0,0, = Ko,0,
since
des = wlel + (Dzez .

Here K is the Gaussian curvature. Hence

j Ko,0, = 4nn
]

where n is the degree. The factor 4x is simply the area of the unit sphere.
In particular, if X is a closed convexr surface, then e, covers $? exactly
once as X covers X, hence

I Koo, =4n
]

in this case.
After this, we shall limit our discussion to closed convex surfaces. Two
important invariants are the total area

A =J‘ 0'162
E

and the integrated mean curvature

M=IH0102-
E

112
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Given a closed convex surface X and a fixed positive number a, we form
the surface I’ parallel to X at distance a by marking off on the outward-drawn
normal at each point x of X the distance a and taking the locus of all points
so obtained. Thus the typical point on the parallel surface is

y =X + ae 3
where e, always denotes the normal at x. We have
dy = dx + ade,
= (0, + 0,8,) + a(w, e, + w,e,)
= (0, + aw,)e; + (0, + aw,)e,.

It follows that the normal to the parallel surface X’ at y is again e, and that
e, and e, can be taken as a basis of the tangent space at y. Thus we have

dy = 1,@; + 1758,
with
1:1=0'1+aw1, Tz=0'2+a(02.
It follows that the element of area of X’ is
7172 = (03 + 20)(0; + aw,)
= 0,0, + a(0 0, — 6,0,) +a%w,w,
= (1 + 2aH + a*K)0,0,
so that the total area of X’ is

A’ =J.1112 =f(1 + 20H + a’K)o,0,,

A = A + 2aM + 4ma?.

(This formula can also be proved by first doing it for a polyhedron and then
taking limits in an approximation of X by a sequence of polyhedra. If one
examines what the formula means when I is.a convex polyhedron, one will
see that H measures dihedral angle and K vertex angle.)

By integrating with respect to a, one easily comes to a relation between the
three-dimensional volumes V' and V enclosed by I’ and X, respectively:

V'=V +ad + a*M + 4na’.

One can also verify the relations

M =M + 4na,
. H +aK
71+ 2aH + 2K’
K
KI

=1+ 2H+ @K
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We next introduce the support function of our closed convex surface X.

This is defined by
p=X-e;.

It is convenient to fix X in space so that the origin O is inside X.

have p > 0 at each point of Z.

The following method will be used to obtain several identities.

any one-form on £. Then

[ar=o
E

For 90X = 0 and Stokes’ theorem gives us
fa=11=a
] oE

o = e;-(x x dx).

First we consider the form

Here
do = de,-(x x dX) + e;-(dx x dx).
Now
de; (X x dx) = —'x-(de3 x dx)

= —x-(dx x de,;) = —x-(2Ho,0,e,)

= —2Hg,0,(x-e;) = —2pHo 0,
and

e;-(dx x dx) = e;-(20,0,€;)
= 26162 )

so that

do = 2[0,0, — pHo0,].

Since the integral of da is zero,

A =I 0,0, =I pHo0,.
T T

B=x-(e; x dey).

Next we set

By a calculation similar to that used for «,

dp = 2[pKo,6, — Ha,0,]
80 that

M =J' Ho, o, =I pKo,0,.
) E

Then we

Let A be
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Since we have found the integrals of H and K weighted by p it is also reason-
able to seek the integral over X of the formi pg,6,. We get this by starting
with the vectorial area

(0,0,)e; = 3dx x dx = (dydz, dzdz, dxdy)
from which
P10, = (X-@3)(0,0;) = X (dydz, dzdz, dxdy)

= zdydz + ydzdx + zdzdy.

Let R be the region of E® bounded by the closed convex surface and let V
denote its volume. Then

J. po,0, =J. (xdydz + ydzdx + zdxdy)
b} (£=0R)
=f dxdydz + --+) = 3f dxdydz =3V,
R R

ij pooy=V.
)

We close this section with the following interesting theorem:

Let T be a closed convex surface of constant Gaussian curvature K. Then
X is a sphere.

To prove this, we recall the relations
dx =o,e, + 0,e,
de; = w,e, + w,e,

{“’1 =po, + 96,
W, =40, +70,

{H=§(p+r)
K =pr—g¢*

developed in Section 4.5 for any moving frame. Since I is convex, the

matrix
? q
q r

is positive definite, p > 0,7 > 0, K > 0. (See p. 120-121 in the next section
for details.) Because of the arithmetic-geometric mean inequality we have

K=pr—¢ <pr<[ip+n)=H"
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We also note that there can be equality, K = H2, only when ¢ =0 ang
p =r = H, which implies w, = He,, w, = Ho,, de; = Hdx.

But
[[7i72=[[ o102 [ 2vEai02 = 12 [[ 01

= %J‘J‘ Hoyo, = —\/17‘[ VKoo, = J‘j 0,05,

where each integral is taken over X and we have exploited the hypothesis
K = constant. Because the quantities at the ends of this chain of in-
equalities are equal, all integrands must be equal, H = /K. By our remarks
in the last paragraph, this implies that de, = Hdx with H constant,
Hx = e; +Hc with c a constant vector, |[x — ¢| = (1/H)|e;| =1/H, L is a
sphere.

8.2. Hypersurfaces

We shall extend our study of surfaces to higher dimensions and at the same
time motivate some of the things in the next section on Riemannian geometry.

A hypersurface is an n-dimensional manifold M embedded in E"*!. We
denote the moving point on M by x. Our study is local so we pick a definite
unit normal n at each point x of M. The map x — n is a smooth map on
M into §". (This can be done globally on a hypersurface M precisely when
M is orientable.) The tangent space at x is an n-dimensional Euclidean
space; we pick an orthonormal basis for it, e, ,---,e,. Thus at x, the
vectors e, , - - -, ,, n make up an orthonormal basis of E"*!. Since dx is

in the tangent space we have
dx =0 + - - +o.e,
where ¢, , - - -, 0, are one-forms on M. From the relations

e e, =0d,, e;n=0, nn=1,
we deduce that
de;-e, + e;-de, =0,

de;'n + e;:dn =0, ndn=20

de;=) w;;e; — wn
dn = Z w‘ei

and so

where ;;, w; are one-forms on M and

wij + wj‘ = 0.
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It is convenient to write all of these structure relations in matrix form. We

set
€
e = ' s a=(o-l,-..,o-n),
en
Q = fjay;ll, 0= (W, ", 0,
Then
dx = ge
e Q —~'w\ (e
()= o))
‘ Q+'Q=0.

By taking exterior derivatives we obtain integrability conditions. (We
shall omit the symbol “ A" in what follows. All products of differentials are
exterior.)

0 = d(dx) = (d6) e — a(de)

= (do)e — 6(Qe — ‘wn)
= (do — 6Q)e + o 'wn,
de = oQ, c'ow=0;

o-al¢(;)
n

_ [@Q -d'ow)(e) (Q ‘o af®
T \do 0 n ) 0 n
_ (i@ —d'o\(e) (Q —‘w\fe
T \do 0 n w 0 n
_ (1 -Q*+'wo0  —'do)+ Q'o)(e
T dQ - 0Q 0 n)’

dQ-Q*+'ow=90, do=of.

We define a skew-symmetric matrix of two-forms:

O = |6, =dQ - Q2.
We sum up our results:

de =6Q,
Q+'Q=0,
¢'w=0,

do = 0Q,

O+'on=0,
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or in terms of individual elements of the matrices,
dO’J = z o'in >
CUU + Wj; = O,
Z d‘w‘ = 0,
do; =Y ww;,
0,~j + (Ui(l)] = 0.
The g, form a basis for one-forms on M, hence we have relations
wW; = Z bu dj .
Because ) 6,w; = 0, the b;; must be symmetric,
bu = bji .

The mean curvature H and Gaussian curvature K are defined by
1
H=;Zb”, K=|bu|

Since o, - - - 0, is the n-dimensional volume element on M and w, - - w, is
the corresponding quantity for S”, K represents the ratio of volumes, volume
of spherical image over volume of M, due to

oy oy = (L by0)) - (X bajo) = byloy -+ o,
= Ko, -+ 0,.
Suppose one has a function v = v(y, z, - - +) of several variables where v is
always a tangent vector to M. For example, we might assign to each point

of a curve on M a tangent vector at that point, arriving at a vector-valued

function of one variable.
How does an observer constrained to M observe the motion of v? We

write
= Z &
where the c; are functions and have
dv =Y dc;e, +Y cde,
=Y dec;e;+ ) ¢,() w;e; —wn)
=Y (do; + Leiwy;)e; — (L cig)m.
Our observer who is constrained to move in the hypersurface M cannot
“see’” the motion of v which takes place in the direction normal to M; he

sees only the tangential motion of v. Consequently he believes v is motion-

less provided
(de; + X ci0) ;= 0;
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that is,
dc,+Zciw‘j=0 (j:l,---’n)_

A vector function for which these equations are valid is said to move by
parallel displacement.

The following can be checked. If v=v(y,z --:) and w=w(y,z, -*)
are two such vector-valued functions which are compatible [for each point
(y, %, * - *) in the parameter space v and w are tangent at the same point of
M] and each moves by parallel displacement, then v-w is constant. In
particular, |v|> = v-v is constant.

Let P = P(s) be a curve on M parametrized by its arc length s so that

dpP
t= 3(8) = 73’

is the unit tangent vector. The curve is called a geodesic provided t moves
by parallel displacement.

There is a geometric interpretation of the matrix |jb;|l which is quite
fundamental. To each particular displacement dx of the position vector x
corresponds a displacement dn of the unit normal n. Both dx and dn are
in the tangent space at x so that we can look on

dx — dn

as a linear transformation 4 of this tangent space. More precisely, let v be
any tangent vector at X. Pick any curve x = x(t) through x so that

dx _
dt|y
We follow the normal n = n(t) as x traverses the curve. Then
dn
—| =4
@), Y

is our definition of A. We see that this is quite independent of the choice of
the curve x(¢) so long as it has the prescribed tangent v at £ = 0.
For suppose
v=c,e + - +c,e,.

Then
dx =Y 0;e,
50 that
0
a—t . =C;.
But
dn w;

dt

Tl
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Now
w; = Z bijaj,

..aj

a)‘ = — = vy
dt R "'Z b'l dt z bUcJ'

[

A cie) =3 (Y byc5)e,
which establishes these points: (1) 4 is a well-defined function on the tangent
space at X to itself, (2) A is linear, (3) the matrix representation of 4 with
respect to the basis e is [|b.
Since the matrix [|b;| is symmetric, the linear transformation 4 on the
{Euclidean) n-dimensional tangent space at x is self-adjoint: for each pair
of tangent vectors v, w,

so our result is

(Av) w =v-(4w).

It is clear that our definition of A depends only on the hypersurface M and
the way it is embedded in E"* 1 not on our choice of the moving frame e.
Consequently the formulas

1
H = — trace (4)
n

K = |4|

show that H and K are geometric quantities.

Since A is self-adjoint, its characteristic roots are all real and they are
called principal curvatures. The corresponding characteristic vectors define
(in general) n direction fields on M called principal directions whose
integral curves are lines of curvature.

Convexity of M can be interpreted in terms of a definiteness condition on
the transformation 4. To make this precise, suppose M is convex and we
choose for n the inward unit normal.

L)
z

We fix a point x, on M and form a corresponding normal section, the curve’
of intersection of M with any (two-dimensional) plane on the line n,. This
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is a curve x = x(t) which is convex on its plane, which means that the function

ne ’x

1(x —_ ‘0)"‘

[ x, = x(0)

J&) = (x — Xo) g
is convex, hence satisfies

%,=og°'
We have
£ () e (5]
= Tla)ecme 2 ()G
Now

@ _Z( ) Mo~ (dt)""°

Since the tangent vectors e;(0) at x(0) = x, are orthogonal to the normal
n(0) = n,, the condition reduces to

> @) @)=

But w; =Y b;;0;, so we have
("f) <0.

zag)] (4,

(f'n an)
dat’  dtf],

is arbitrary, we conclude from this that the matrix
o1

is negative semidefinite so that the same is true for the transformation 4
which this symmetric matrix represents.

Since the direction




122 VIII. APPLICATIONS TO DIFFERENTIAL GEOMETRY

(The correctness of sign can be verified in the simplest possible case, that
of a convex curve in the plane. The usual Frenet formulas are

dx =dse,
de; =kdsn
dn = —kdse, (s = arc length)

8o that o, =ds, w, = —kds, b;;, = —k £ 0.)

.

We return to the general situation. The elements 0;; of the curvature
matriz © are curvature forms. We may write

0,‘} = %Z Rijkla'kal ’ Rijkl + RU"‘ = 0’

defining the Riemann curvature tensor R,;, of the hypersurface. Because of
the relations

0;_,~+a)iwj=0,
and
wiwj-_:zbikbjlako.l:%Z(bubﬂ_bilbjk)akal
we have
R, +|.% "l=o.
gkl ka bjl

Algebraic consequences of these formulas are the following:
Rij + Riju =0,
R+ By =0,
Riju + Ryy; + BRyjp =0,

Ruu = Rkllj ’

all of which follow easily.
‘We shall see that the Riemann tensor is independent of how M is embedded
in E"*! so that these relations are particularly interesting, connecting the
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intrinsic Riemann tensor with the quantities b;;, which clearly depend on
the embedding.

Indeed, it turns out that the R’s are determined by the ¢’s alone with no
reference to the normal n. This means that if two hypersurfaces M; and M,
are in a one-one correspondence which preserves distance (i.e., preserves the
Euclidean geometries in each pair of correspending tangent hyperplanes),
then M; and M, have the same Riemann curvature tensor.

What we shall show is that the equations

de = aQ, Q+'Q=0

determine Q uniquely, so that Q is completely determined by the ¢’s alone.
This is more in context in general Riemannian geometry so we shall postpone
the proof until p. 129 of the next section. Having this result, it follows that

®=dQ-Q?

is also completely determined by the g’s, hence so is the Riemann tensor.
We shall now take up the special case in which our hypersurface M is
given in the form

u=uz, -, 2"

inz!, .-, 2", u-space.

U

A n

x
o 2"
2
It is convenient to set
ou 0%u

B TuT g
We have for the position vector

x=(r', 2% -, 2" u)
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and so
dx = (de!, da?, -+ -, da”, du)
= (da',---,d2", ) p;dz)
=Y t,dat
where

ti=(6i1""»5¢m1’i)-

The vectors t;, - - -, t, are tangent vectors and evidently form a linear basis,
but generally not an orthonormal basis, of the tangent hyperplane.
The vector

w=(—p1,"', _pn’l)
satisfies
W't,- =0

8o it is a normal vector (with positive component in the u-direction). The
unit normal n is given by
W = wn
where
w=ww=1+Yp2
We note that
wdw =Y pdp; =Y p,r,da’.

We shall now determine the matrix representation of the basic linear trans-
formation A4 with respect to the basis t,, - - -, t, of the tangent hyperplane.
This matrix is not symmetric in general because (t;) is not an orthonormal
basis. However, its trace and determinant are the trace and determinant
of A since any matrix representation yields a valid determination of these
quantities.

Suppose the matrix we seek is {la;;}. Then this means

At; =Y a;t;.

Let v be any tangent vector. Because of these relations plus the fact that 4
is self-adjoint we have

(Av)-t, = (At)-v =Y a;(t;'V).
Now going back to the very definition of 4, symbolically,
A: dx—dn,
we see that this relation means that

@dn)-t; =Y a;(dx-t)).
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It is from this set of equations that we shall determine |la,;l|. We have
dw =dwn 4+ wdn,

dw-t; = w(dn)-t;
since n-t; =0. But

dw'tl = (_dpl PR "dprn 0)'(511 P 5&;,,?1)
= —dp,'= "Z "udxj
so we have obtained
1 ,
dn-t, = — — da/,
n-t » Xy
On the other hand,

dx'tj = (dx‘, e ,dx", du)'(aﬂ, ey, 6_,,,,171)
=d2/ + p,du =da/ + p; Y p,da*
=;(5ﬂ +P1Pk)dxk’

8o we have
1
Zaij(ajk + pjpk)dx" = Y rudat,
1
Zalj(ajk +p;0) = — id 2
Setting

Py
R=|rall, p= ( ) A = |lagll,
P
we may write this as

1 1
P)= —— A=--R(I )L
A(I+p'p) wR, - (I 4+ p'p)

Since
pp=Yp’=w~-1
we see that
2

1 1 w* —1
(I+p‘p)(1-(;)p'p)=I+P‘p—(F)p‘p- PPp=1

hence

1
d+p'p) =1~ (F)P'P:
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The mean curvature H is found by taking the trace:

1 1
H=—tr(A)= ———tr[R—%Rp‘p]

&2

nw

1 1
== —[Au -2 ?pi"upj]

nw
where Au is the Laplacian of u.
The Gaussian curvature K is found by taking the determinant:

(-1 -
= A B — ' l.
14} — |R|II + p'p|

One finds by a short calculationt that

I +p'pl =w?
so that
(—1)

K= ,wn+2

||

For the special case n = 2 of surfaces, we use the standard Monge notation

ou ou %u 0%u %u

= —, = = = — = —
P=% 1% "T@ ‘T wmay o
and have
w2=l+p2+q2,
H -—[w’(f +t) — (p*r + 2pgs + ¢t)]

= '—; [+ 2% + @) + 8) — (%r + 2pgs + ¢*1)]

~1
= o5 [(1+ ¢ — 2pge + (1 + P,

and
(rt — &%)
w*

K=

both familiar formulas.

1 Set ¢;=(1,0,...,0), e2=(0,1,...,0),...,€,=(0,0,...,0,1). Then

I + ptpl =|e1 + p1tp,..., €s + patp|
= ‘el’-~-1°ﬂ| +2pl-|.lr'~-) .'—lv‘pl .H-lv---).'ll
=1+ pd=uwt
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8.3. Riemannian Geometry, Local Theory

The problem here is to deal with the inner geometry of a manifold which is
not part of a Euclidean space. If the manifold were part of Euclidean space,
it would inherit a local Euclidean geometry (distance function) from that of
the including space, as was the case for the hypersurfaces discussed in the last
section. However, it is not part of Euclidean space, so we must postulate
the existence of a local distance geometry. What we do in effect is to pre-
suppose that each tangent space possesses an inner product which is
smooth.

Thus we let M be an n-dimensional manifold. We suppose that an inner
product is given in the tangent space at each point P of M. Thus if
v and w are two tangent-vectors at the same point P, v-w is a real number.
The inner product is supposed to be smooth in this sense: If v and w are
vector fields on M, then v-w is a smooth function on M. (Precisely, at
each point P of M, the values of the given fields v, w at P are vp, w,,
tangent vectors at P, and we are requiring that v,-wp be a smooth funection
of P.)

The procedure in Section 2.5 (pp. 13-14) for finding an orth®normal basis
may be made constructive, smooth operations at each step. We know that
there exists on each local coordinate neighborhood on M a set of n vector
fields, forming a basis for the tangent space at each point of the neighbor-
hood. We convert these fields to orthonormal ones to arrive at smooth
vector fields

e, e,
defined on the local coordinate neighborhood in question and satisfying
' e e =9;.

Pretending for a moment that we are observers constrained to the manifold
M, we set out on a somewhat symbolic voyage, hoping in doing so to motivate
the right steps. We let P denote the moving point on M and wish to think
of its arbitrary displacement dP as a tangent vector with differential form
coefficients; we hopefully write

dP =) o
with ¢,,---, 0, differential one-forms on our neighborhood. (Since dP
is in no sense an exterior derivative of anything, we distinguish this d by
bold-face type from the usual d. The same applies to the de; below.) We
expect to arrive at a basis ¢, , * -+, ¢, for the one-forms which in some sense
is orthonormal, dual to the basis e, , - - -, e, of vectors.

We must be guided by our experience in Euclidean space. There we
would take-a coordinate system u!, - - -, »" and without hesitation write

dP = Z dui(%):
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the vectors

i 0

being the natural frame associated with the coordinate system. But pre-
cisely this can be done on M. The expression

dP = Zdu‘(a%)

is independent of the local coordinate system. Indeed, if @',---,@" is
another system, then

dit =Yy 2—; du’,
(se) =2 il

and so

it () - £ 35 2w

—Z&‘duf( ) ):duf( )

that is, d P is the same either way.
Having this, we express the natural frame in terms of the orthonormal one,

(a—ii) =Y a;e,

Zdu( ) dP=3Y o,
Y dua;e;=Y 0e;,
o;=Y a;du’.
We have reached our first equation of structure for local Riemannian
geometry :

and solve for the ¢ §

dP = 2 g;e;.
Our next venture is to attempt an analogue to the equations for the displace-
ments de; of the vectors of the moving frame. Here we make an essential
departure from what we did with surfaces and hypersurfaces; we must
restrict our attention to ‘‘the tangential component” of de; for the simple
reason that we are constrained to M and can see no happenings in any-
“normal” direction. Thus we seek expressions

del = Zw”ej
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with one-forms w;;. We try to find such w;; 50 as to be consistent with these
conditions:

(1) de;-e, + e;-de, =0,
(2) d(dP)=0.
The reason for (1) is that d(e; ;) = d(d,,) = 0 and we hope to ‘‘differentiate’”
the dot product by the usual product rule. In choosing (2) we simply go
according to the Euclidean analogue. In the usual way, (1) reduces to
(1) Wy + @y = 0.
We explore condition (2):
d(z ai ei) = 0,
Y do,e;— 3 o,de; =0,
Y (do;— Y oi0,)e;=0,
so (2) is equivalent to

(2) do;=3 0,0
We have finally come to a well-formulated problem: given the basis
0y, """, 0, of one-forms, find one-forms w;; satisfying
1) i+ w;; =0
(2') dai=261wﬁ.

We shall show that this problem has exactly one solution. (This completes a
point we left open on p. 123 of the last section.)
Since the o, form a basis we may write

Wy = Z Lo

where the (unknown) functions I';;;, are the connection coefficients, or Christoffel
symbols. Equivalent to (1’) is

(") T+ Tju=0.
The do; are known since the o; are known; we may write
doy=3%) ciu0;0,  Cip+Cy;=0.
We have
do,=1%Y cpojo, =3 0,0
=Y0;Y Tijuou=1%Y (T — Tui))o;04,
and so (2') .is equivalent to

27 i = Ty = Cajpc-
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Our precise statement now is this:
Ghiven funclions c;; such that ¢, + cy; = 0, the system of linear equations
Fip+T=0
Ui — Ty = Cijk

has a unique solution given by
T = $exij — Cjri — Ci)-
For if ', is any solution, then we use the equations alternately to derive
Cip=—Tju=—Tu; —cip
=Tu; = i = Ti + 6y — i

= =Tt eij—Cyp= _rijk = Cjki + Chij — Cijic»
hence
2T i = Cij — Cjui — Cuji

which establishes the uniqueness of solution. It is easily verified that the
asserted values of I';;, really are a solution.
We have completed our structure equations,

dP = ge
de = Qe
Q+'Q=0,

where we have introduced the matrix notation
€,

a=(al!...’an), e = Q="wij"

e'l
and already have one integrability condition,
do = 0Q.
There is no reason for believing that d(de) = 0 in any sense. We have
d?e = d(de) = d(Qe) = (dQ) e — Q(de)
= (dQ - Q%e.
We set
O = [0, =dQ - Q?,

the curvature matriz which appears from the symbolic equation

d’e = Oe
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as representing a ‘“‘second derivative”’—exactly how one thinks of curvature
in elementary differential geometry.
We derive further integrability conditions by differentiating. From

do = o

we have

0 =d(do) = (do) Q — a(dQ)

= (6Q) Q — ¢(dQ),
hence
0@ = 0.
From
@ =dQ-Q?

we have

dO = d(dQ) — d(Q?)

— (@Q)Q + QAQ)
=—(0+0Q%)Q+ QO + 0?),
hence
do = Q0 — 0Q,
which comprises the Bianchi identity.
We sum up:
Structure equations Integrability conditions
dP =ge do = o)
de = Qe 60 =0
Q+'Q=0 do = Q0 - 0Q.
@=d4dQ-Q?

The » form o, - - g, is the volume element of M. It is determined up to
sign. If M is oriented, one may fix it by choosing only moving frames
coherent to the orientation.

The 6,; are two-forms which may be written

oij =1 Z Rijklakal

which defines the Riemann curvature tensor. We have

Riju+ Rye=0

R+ By =0.
The relation d® = 0, or
. zRijklaiakal=0’
1s equivalent to

Biji + Biyj + Byp = 0.
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In the special case of a hypersurface we had the symmetry condition

Ri ki = ij
as an obvious consequence of the expression for R, as a two-round minor
(see p. 122). Such a determinant representation is not possible in this

general situation, but it turns out that this symmetry of the Riemann
tensor is true anyway, an algebraic consequence of the other relations:

(Rijir — Bigip) = By + (Byijo + Byjyy)
= (B + Rij) — By
= “Rujk - ij
= Ryu+ (Bju + Rjud)
(B + Bijs) + By
= —Ry;;+ By
= —(Ruu - Rutj),

and so
2Ry — By =0
which implies the symmetry in question.
Those who have been through the mill in Riemannian geometry ¢ la
classical tensors will be anxious to see the connection. There one deals with
a natural frame

7} b7}
I
due to a local coordinate system (u', -« -, u"). One sets
9.;=Vi'V;
defining the positive definite symmetric matrix (metric tensor)
G = gyl

Usually one looks instead at the corresponding definite quadratic form
ds?> =Y g,;[du’ du’]

where the brackets remind us that this is ordinary, not exterior, multiplica-
tion of differentials. This is motivated by the formula

= [lzal@) @]

for the arc length of a curve u' =u'(t).
Now one has
dP =Y du'v;.
We try
dv;=3 nlv;
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and then introduce Christoffel symbols by

n'=3 {,‘2} du.

To have
dg;;=dv;-v; + v;-dv;
and
0=d(dP)= -} du'dv,
requires

iagui: X {ilk}g'i +2 { jlk}gu
{zjk} = llfz}

6.8 =3 o

Lowering indices:

the equations become

G, ik] + [5, jk] = ;1
[j, ik] = [j, ki

_1(0g,;  O9u  Ogi
b, 34 = (au T T aui)’

with the usual solution

and so it goes.

This digression out of the way, we briefly consider parallel displacement.
Let v be a tangent vector on M which is a function of one or more variables.
We write

v=>y ce

where the c; are functions and have
dv=>Ydc,e;+ ) c,0;e;
=Y (de; + Y c;w;)) e
A vector v moves by parallel displacement if dv = 0, i.e.,
de;+ Y ¢, =0.

With this interpretation of dv one has for two compatible vector functions
v, W that
d(v-w) = (dv)-w + v-(dw).

Consequently if both v and w move by parallel displacement then v-w is
constant; its differential vanishes.
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A curve P=P(s)on M whlere s is the arc length is called a geodesic if
the unit tangent d P/ds moves by parallel displacement.

Example. We consider the upper half plane with the (Poincaré) metric

P G ! [y
Here
1 y H 2 y

Since the position vector is P = (z, y) we have

dP = (dz,dy) = 0,e, + 0,€,

so that
e = (%, 0), e, = (0, ).
We have
dxd
do, = :zy = 06,0,, do, =0,
hence .
0 o
do,,do,) = (6,,0 ( ‘),
( 1 2) ( 1 2) _0,1 0
_( 0 g
Q_(_Ul 0)’

_o_or_( 0 doy _( O1
0=dQ-Q —(—dal o )=\_1 o)orC:

The only significant component of the curvature tensor is
Ry, =1

In our discussion of surfaces we wrote dw + Ko,0, =0 for the Gaussian
curvature K. Here the right interpretationisw = w,, =0,, K= —R,, ,,
= —1. For this reason we say that the upper half plane with the Poincaré
metric has constant negative curvature.

We shall show that each semicircle

P = (a + rcost, rsint) O<t<nm
orthogonal to the z-axis is a geodesic. In coordinates it is given by

x = a + rcost, y = rsint,
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and we have for the tangent

dP/dt = r(—sint, cost)

= 5[(—sint) e, + (cost)e,]

= él—t[(—sint) e, + (cost)e,].

Hence for the arc length s,

ds _ [(—sint)® + (cost)®],,, 1
dt sin?¢ " sint

t = dP[ds = (—sint)e, + (cost)e,.

Along the curve we have
W, =0, = —dt,
de, = —dte,, de, = die,,

dt = d[(—sint)e, + (cost)e,]

—(cost)dte, — (sint)dte, — (sint)(—dte,) + (cost)(dte,)
=0,

the unit tangent moves by parallel displacement, the curve is a geodesic.
We shall close this local study with an application of The Frobenius
Integration Theorem of Sections 7.3 and 7 4.
Let M be a Riemannian manifold with curvature tensor zero. Then M is
flat: there exists a local coordinate system u', - - -, u" for which the natural frame

a L a
out’  ou"

s an orthonormal frame.
This is proved as follows. We are assuming © =0, ie.,, dQ = Q2. By
the first application in Section 7.4, there is a matrix 4 of functions satisfying

@4)a~' =Q,
and 4 is orthogonal. We define t =(7y,-,1,) by t=064. Then
dt=d(cA) = (d6) A — 0dA = (6Q) 4 — 6(Q4) = 0.
Each of the one-forms t; is closed, d1; = 0, hence exact locally,

7, = du’.
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This defines our local coordinate system (u!, -+-,%"). On the one hand we
have

[0
dP =Y du (67,)
dP =ge = td e,

o/ou’
( : ) = A" le.
ajou”

Since the frame e is orthonormal and the matrix A is orthogonal, the natural
frame (9/du', - - -, 8/0u") is also orthonormal.

and on the other,

hence

8.4. Riemannian Geometry, Harmonic Integrals

In this section we shall sketch the remarkable results of W. V. D. Hodge
on the potential theory of closed Riemannian manifolds. This work pertains
to differential forms alone so we can forget all about vector fields. In this
spirit we had better make a fresh start and reformulate the pertinent facts
about Riemannian manifolds which we shall need. We shall presuppose
that the manifolds we discuss are orientable, so this will be built into the
structure.

Thus we have a manifold M. It is covered by a system of overlapping

neighborhoods U,, U,,---. On each U, there is a basis
Gy, ", 0,
for the one-forms. If6,,:--, o, is this basis on U and 7,, -, G, is the
one on U, then wherever U and U intersect we must have
=) a0,
where A = |la;;|| is a proper (determinant one) orthogonal matrix.
The volume element g, , - - -, g, is an intrinsic quantity, according to

6y 6= layloy - 0,=0,"""0,.

Next, the star operator of Section 2.7 applies. To each p-form w corresponds
on (n — p)-form *w. Locally

*(61' : ’Up) = ap+1' * Oy
We recall that
*@ = (—1)P"" Py,

We define & new operator § by

dw = (—1)”p+"+ltd*w.
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The significance of the sign will appear shortly. We note that dw is a
(p — 1)-form when  is a p-form. If w = fis a zero-form, or function, then
éf =0. The final operator we define is the harmonic operator (generalized
Laplacian) according to

A=de°d+d°d.

We henceforth restrict attention to a closed (compact) manifold M. We
denote by t the volume element, an n-form on M which nowhere vanishes
and which satisfies T =g, - - - g, locally.

We propose to turn the space of p-forms on M into an (infinite dimensional)
inner product space. If @ and 5 are two p-forms then w A *n is an n-form
and we define

S e
M
This is evidently linear in each variable and we have

(0, 1) = (n, ®),
a consequence of
WA XN =1 A *0.

Locally, if
w=Y ayo,
then
oAr=3af)
hence

(w0, 0) =0
and (w, ) = 0 if and only if @ = 0.
We shall now establish the fundamental formula:
If w is @ p-form and n a (p + 1)-form then
(dw, 1) = (o, dn).
For we integrate over the closed manifold M the relation

do A+ (=10 Adxn =d(o A *n):

j dcuAm+(—1)”j co/\dam=J~ d(w/\*n)=f oA *m=0,
M M M oM

(dw, n) = (—1)"'1-[ W A dxn.
M
Since d #7 is an (n — p)-form, we have

rx(dan) = »(xd +n) = (= 1)P""Pd xy
80 that
(=17 'y = (=12~ (=1)P"" Px(xd »n)
= (=1)"""La(xd *1).
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But n is a (p + 1)-form, hence

on = (_l)n(p+l)+n+ l.d *y = (—1)"7* l*d*ﬂ,
and so
(=1)7~'dwn = xdn,

@, n) = (—1)""_[ o A dxn
M

=f'w A %(dn) = (w, n).
M

A form @ is called harmonic provided
Aw = 0.

It is clear that if the p-form w satisfies the two equations dw=0, dw = 0,
then w is harmonic. The converse is also true. Indeed, if w is any p-form,
then

(Aw, @) = (déw, ) + (6dw, )

= (bw, dv) + (dw, dw).
Now if @ is harmonie, then Aw = 0,
(b, dw) + (dw, dw) = 0.
But each term is nonnegative, hence each vanishes, (dw, dw) = 0, (bw, Sw)
= 0 and this implies in turn that dw = 0, dw = 0.
The operators d, §, act on the space of p-forms. The relation (dw, 1)

= (w, 1) may be interpreted as saying that d and § are adjoint to each other.
We next see that A, which maps p-forms into p-forms, is self-adjoint,

(Aw, n) = (w, An),

indeed, either side is (dw, dn) + (dw, én). Since (Aw, w) = 0 with equality
only when Aw = 0, we are entitled to call A a positive definite (or elliptic)
self-adjoint differential operator.

We may now state Hodge’s main result, a deep theorem in harmonic
analysis:

If w is any p-form then there is a (p — 1)-form a, a (p + 1)-form B and a
harmonic p-form y such that

w=da+ 6+ y.

The forms da, 688, y are unique.
The proof that a, B, and y exist is difficult. We shall only settle the
uniqueness part. Suppose we have

do+ 6+ y=0.
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We then have d(da) = 0 and also dy = 0 since y is harmonie. Hence

dép =0,
(@3B, B) =0,
(68, 6p) =0,
o =0,
da+y=0.

Similarly da =0, y = 0.
By an almost identical argument one shows that in case w is a closed
p-form, dw = 0, then the term 58 in the Hodge decomposition of w is absent.
w=dx+ 7.

It follows from this that if z is any p-cycle, then

foefy

that is, y has the same periods as does w. (See De Rham’s theorems,
Section 5.9.) The result of this is that if w is any closed form, then there
exists a unique harmonic form y with the same periods as those of w.

We can also answer the following question. Given a p-form A, when is
there a p-form #n such that the equation

An=24
is satisfied? The answer is: if and only if

(»A=0
for every harmonic form 7.
For suppose 4 = Ay and y is harmonic. Then

(7. )= (v, An) = (Ay,n) =(0,n) =0.

On the other hand, suppose 2 is a form satisfying (y, 1) = 0 for each harmonic
form y. From the decomposition

A=du+f+7y
we have, using the particular y which is part of 4,
0= (y, A) = (v, d) + (v, 38) + (¥, 7)
= (67, 2) + (@, B) + (v, )

=7
hence y = 0,

) = do + .
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We shall set # =u + v and try to solve Au = da, Av = 48, separatery. We
take the first

Ap = da.
Decomposing «,
a=doy + 6B, + 71,
do =dép, .
Next,
By =da; + 6B, + v,
dop, = déda, = (dé + od)(day) = A(day),
do=Ap with pu=da,.
We find v similarly.
Example 1. E. We shall compute the operator A in E". Contrary to our
previous notation in dealing with the standard Laplacian, we shall denote the
Laplacian by Lap,
Lapu=z'u,.i=z—a.2—u,.
0z’ ox
The result is this: if
w=Y agda¥,
then
Aw = =Y (Lapay)da”.
It will suffice to establish this for the monomial
o= Adz* - - daP.

We shall abbreviate the calculation by these conventions:
(1) subscripts on 4 denote partial derivatives;
@a=12-,pj=p+1,-,n
(3) each repeated index is summed over its range.
We also remark that in taking the star of a monomial, the choice of sign is
always governed by the rule 5 A *n = Bdx'---da" where B> 0, for
example,

*(da:’dx"“ ceodat oo dat) = (_l)np+p+a+1dzl eoodz® e dxPd’.
Another point: since w is a p-form and dw is a (p + 1)-form,
dw = (—=1)?*"* lad xe,

ddw = (—1)""* xd »do.
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We have
*xw = AdgP*! - d2”,
d*w = A dx*dzP*! - - - da",
sda = (—1)PHrHatig dgt ... gx\a e da?,
dw = (—1)°4,dz! - gz\“ - - da?,
déw = —A,,da' - - - daP + (~1)**P*1 4, dxt - - d/z\“ -+ da? dad.
Next,
do = A d2/ da' - - - da?,
xdw = (—1)*14, da?*! o R
AN
drdw = (—1)PA;;daP* - da” + (= 1Y 114, dadaP* ! -+ - da - - - da”,
*dxdey = (—1)PA;;dx' - - da? + (—1)yPFPretig, dot - @ -+ daPda!,
Sdw = —Aj;de' - - da® + (—1)P*°4; da’ - gx\" e dePdal.
Combining these expressions,

Ao = déw + ddw = —[A,, + Ajj]dx! - - da?
—(Lap d)dz! - - - da.

The minus -sign seems strange in view of the relation
(A, w) 20

on closed manifolds. An example may clear this point. Let us take the
zero-form sin z on the flat torus 0 < z, y, z £ 2r, where numbers are identified
if they differ by a multiple of 2n. Then

d(sinz) = (cosz)dz
»d(sinz) = (cosz)dydz
d*d(sinz) = — (sinx)dzdydz,
*d *d(sinz) = — (sinx),

A(sinz) = dd(sinz) = +sinz,

2n
(A(sinz), sinz) = (27t)zf sinzdzx = (2n)%% > 0.

0
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We have used the fact that d(sinz) is a one-form, n=3,p =1,
d[d(sinz)] = (—1)"*"*1(x da)d(sinz) = —»d *d(sinz).

Example 2. $2. If f is a function on E3, we have the spherical coordinate
form of the Laplacian (Section 4.4, p. 40),

Lepf=1 s:n(b [;'( sm¢af) ¢( sné ai) M (sntqﬁgg)]

Suppose that Lap f = 0 and that f is of the form
f(r, ¢, 0) =r"9(¢, 6).

Then g is called a spherical harmonic and must satisfy

-+ ieingly + 2 (sindig, 1+ (L) =o.

o sin ¢

The function g may be considered as a function, or zero-form, on $2, the unit
sphere. There we have

6y =d¢, o,=sin¢db,
_ 90
dg - géal + (Sin¢) g3,

-9,
*dg = (;_o) Oy + G402

ng
-- (ﬁd—,) d + (sin )g, d0,
d,dg=b‘le(sm¢) dgdo + 2 ¢ [(sin §)g,] deb d
[
wivin = 5[5 () * 55 @]

But
= (d0 + dd)g = ddg = — »d »dyg,

so the condition for g to be a spherical harmonic is
Ag —n(n + 1)g=0.

In other words, the spherical harmonics are eigenfunctions for the generalized
Laplacian on S2. Many of the usual facts about spherical harmonics
follow from our calculations. We take one example, the orthogonality
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relation: If g and h are spherical harmonics of distinct degrees m and n,
respectively, then (g, k) = 0.
For Ag = m(m + 1)g, Ah = n(n + 1)k, hence

1
(grh)"' +1)( J, )_—(”;"—'—*‘-_]-—)(g,Ah)
n(n +1)
=m(9: R),
(9.) =0.

8.5. Affine Connection

We shall approach the problem of affine connection this way. We seek
the weakest structure with which we can endow a manifold so that parallel
displacement of vectors along curves is possible. Considerably less than a
Riemannian structure is required.

Let M be a manifold. An affine frame (or simply frame) on a neighborhood
U of M consists of # vector fields e;,---, e, on U which are linearly
independent at each point of U. Thus at each point P of U the vectors
(e)p, ", (e,)p furnish a basis of the tangent space T at P. There is a
dual basis ¢, - - -, 6" of one-forms on U so we may write

dP= Zaie‘

as we did for the Riemannian case in Section 8.3.

We now want to associate with each vector field v on M a vector field dv
with one-form coefficients. We must be able to do this for the vector fields
e; of the basis, so we require

de, =) w/e;,

where the w,;/ are one-forms on the neighborhood U. There are certain
consistency conditions which guarantee that the computation of dv will be
independent of any frame.

Locally we may describe an affine connection as follows. We are given
U, the affine frame e,, - - -, e,, and the dual basis ¢', - - -, ¢” of one-forms.
An affine connection consists of n% one-forms w;/ subject to no constraints
whatever.

We shall develop some of the local geometry of an affine connection before
attacking the crucial problem of finding proper consistency conditions which
make the definition of an affine connection over a whole manifold possible.

By introducing matrix notation:

€, Wiy """ Wy,
e=|:}), oe=(- 0" Q={: ,
en wnl“'wnn
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we may write our basic structure equations:
dP = ge, de = Qe.

We shall quickly point out the relation to the customary tensor formulation
of an affine connection. First we expand each w,’ in the basis ¢*:

o/ =} Thd,
defining the connection coefficients I'/,. In the usual tensor formulation,
the frame e, , -+ -, e, stems from local coordinates:
ool
ou

and correspondingly, ¢'=du’. The I'jJ, =T/ (u!,- -, u") are then =3

arbitrary functions assigned on U.
We derive relations by differentiating the structure equations several
times. First

d?P = (do)e — ode = (do — aQ)e = te.
Here
t=(t, -, ") =de — oQ.

The two-forms 1 are the torsion forms. We may write
=3y Ti0' Ao, Tih+ Thy=0,
defining the torsion coefficients T';,. Next,

d2e = (dQ)e — Qde = (dQ — Q?)e = Oe.
Here
©=dQ-Q* =6/

is the matrix of curvature forms 8. The curvature tensor R/,, is obtained

from )
911 = %Z R‘J,‘,a-“ Ad, R+ Rijlk =0.

Integrability conditions are obtained by applying the exterior derivative to
the equations T = do — 0Q and © = dQ — Q?*:

dt = (—de)Q + adQ
= —(t+oQ)Q + o(O + Q?),

dt =00 — 1Q,
and
de = (—dQ)Q + QdQ

=—~(0 +Q)Q+ QO + Q?),
d® = QO — OQ.
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If v is a vector field, then
v=Yf'e,=Fe, F=(f',---,f"),
where the f* are scalars; we have
dv = (dF)e + F(de) = (dF + FQ)e.

Suppose the vector field v is defined over a submanifold. It is said to move
by parallel displacement if dv = 0, i.e.,

dF + FQ =0.

If P = P(t) is a smooth curve on U defined over an interval {, <t < ¢, of
the ¢ axis, if v, is a tangent vector at Py, = P(t;), then there exists a unique
assignment of a tangent vector v(f) at P(t) for each value of ¢t such that
v(ty) = ¥4 and v(t) moves by parallel displacement.

For we write v=) f'e,. Along the curve the conditions for parallel

displacement become
df” i wij
— 4 z f (_) =

a first order linear system which taken with the initial data determines the

f! uniquely.
Now we tackle the global situation. We have a manifold M in front of
us and we must consider each conceivable moving affine frame e, -, e,

together with its neighborhood of definition U. With each one of these e
we have an affine connection, i.e., an » x » matrix Q of one-forms on U.
We want these to “fit together” whenever two such neighborhoods overlap.

Thus let (U, e, 6, Q) be one such system and (0, &, 7, 0) another, where
we assume the neighborhoods U and O overlap. The basic thing we require
is that for any vector field v defined on the intersection of U and O, the
computation for dv in either connection must yield the same result.

On the overlap, where we shall always operate in what follows,

&= Ade
where 4 = ||la/|| is a nonsingular matrix of functions. Since
dP = gé = ge,
we have
GAe = ce,
G=0d""
Now

dé =d(4e) = (d4) e + A(de)
=(d4 + AQ)e
=(d4 + AQ) A" '@
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But also dé = (3@, so we have the transformation law for Q:
Q=447 4+ (d4)A™.

This is quite different from the transformation law for ¢ which is forced
by the very definition of manifold and frame. It tells us how the various
matrices () we are associating with the various moving frames e must be
related if we are to define an affine connection on M as a whole.

From these formulas one can derive the transformation laws for r and ©@:

T=14"1,
©=404"".
Ifv = Fé = Feisa vector field, then F = FA 1,
dF + FQ)e
=@FA ' ~FA 'dAA ") de + (FA ') AQA ' + dAA ') e
= (dF + FQ)e,

8o that dv is the same, either way it is computed. (We have used the rule
d(A™)= —A4"YdA)A™", as we shall several times.)

We shall now have a second look, only in our present context, at the
considerations of Section 4.3. This will provide us with another way of
looking at affine connection. What we shall do fits into a general pattern:
quantities subject to a transformation law become absolute tnvariants when
considered on a suitably extended space.

We begin with a manifold M of n dimensions. We form a new manifold
F of dimension (n + n2). This frame manifold consists of all frames at all
points of M. Precisely, at each point P of M consider all possible bases
e,, -, e, of the tangent space T, at P, and do this for all P.

We obtain coordinates on F this way. First let U be a local coordinate
neighborhood on M with coordinates u!,-:-,u". Pick a moving frame
e;, --,e,onF. Thus at each point P of U, (e,)p, -, (e,)p is one basis
of the tangent space Tp at P. The most general basis of T stems from this
given one by applying an arbitrary nonsingular transformation. It is
f,,---. f,where

fi= Z bii'(ej)p
with ||b,/| an arbitrary n x n nonsingular matrix. It is clear from this
that the (n + n?) independent variables

serve as a coordinate system for the neighborhood in F consisting of all
frames at all points P of U.
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With the moving frame e,, -, e, on U goes the dual basis ¢', - -, 6"
of one-forms on U. The forms &', - - -, " defined by

&=0B"!,
where
a’=(0’1,"‘,0'”), 3'=(51,“',5"), B=-"blj||’

are one-forms on the part of F lying over U. More precisely, the values of
the forms !, - - - at the point f of F given by

f,= Z bij(ej)P

a'lt = (G'IP)B—I-

are

Now suppose that O is a second coordinate neighborhood, & a moving
frame on O, etc.. Suppose that P lies both in U and in 0. We have

é=Ae
where A is a matrix of functions,

6=04A"",

™

all worked out above. If the point f of F has coordinates B with respect to e
and B with respect to &, then

Be = B& = BAe,

B=1BA.
Thus
6 =06B"'=(3A)BA)" ' =B .

This implies that the one-forms G, - -, 6" are defined on all of F and are
completely independent of the particular local coordinate neighborhoods and
moving frames used in their definitions.

This is of first importance. We began with an n-manifold M. We
constructed over it a new manifold F. On this new manifold we auto-
matically have, free of charge, the » (linearly independent) one-forms
Gl , 6.

Now suppose an affine connection is given on M. Thus to the neighbor-
hood U with a definite affine frame e is given a matrix Q = |w,/|| of one-
forms. The matrix { corresponding to the frame & on O is related to Q
(on the overlap of U and O) by a certain transformation law. This trans-
formation law means nothing more nor less than that the n? one-forms &/
defined by

Q= |a/| = BQB™! + (dB)B™!,

apparently defined only on the part of F lying over U, are defined on all of
F, are completely independent of e and its U.
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This statement may be verified by a calculation. According to the nota-
tion above, one must prove the formula

BQB~' + (dB)B~' = BOB! + (dB) B-*.

We leave the details to the reader, but point out that the result can be
motivated by a symbolic calculation:

f= Be,
df = (dB)e + B(de) = (dB + BQ)e
= (dB + BQ)B~'f,
similarly
df = (dB + BQ) B~ 'f,
hence

(@B + BQ)B~' = (dB + BQ)B~ .

From the one-forms &', -+, @/ on F, one constructs two-forms 7', §/
according to
T=(, ) =dg — a0,

O =0/ =dfs — 2.

These are the general torsion and curvature forms respectively.

8.6. Problems
1. Let £ be a closed convex surface with constant mean curvature H.

Prove that X is a sphere.
2. A surface I is given in the Monge form z = f(x, y), defined for all z, .
We suppose this surface is convex from below. Show that this means that

r 8
()
is positive semidefinite.
3. (Continuation.) Show that the mapping

(©y)—(=+p,y+9

increases distance and hence is one-one.

4. A point of a hypersurface is an umbilic if the transformation 4 at that
point has all of its characteristic roots (principal curvatures) equal. Let M
be a hypersurface all of whose points are umbilics. Prove that M is a

portion of a hyperplane or sphere.
5. Suppose on a Riemannian manifold M there is a scalar K such that

0”= —KO"/\ o'j-

Prove that K is a constant.
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6. Let M be a manifold with an affine connection given. Show that
the two-form « defined locally by

=) 8/ =trace®

is actually defined on all of M, independent of local frames. Show also that
da = 0. Itis even true that there exists a one-form A on M such that o = dA,
but this is difficult to establish.

7. (Continuation.) Prove

de"=QO" - 0"'Q
and that
d[trace (@")] = 0.

8. Let M be a manifold with affine connection. Given an affine frame
e, '+, e, with corresponding connection coefficients I" and torsion co-
efficients 7', define a new connection by specifying the new connection
coefficients I'*:

=T/ + 3T

Show that this indeed defines a connection on all of M and that this con-
nection is symmetric (no torsion). Investigate the meaning of ‘‘symmetric”
for a local coordinate frame.

9. Consider the flat torus T" which consists of all points (z,,:-, x,)
where each z; is taken modulo one. That is, (z,, -, ,)=(y,, ", ¥,
if z, —y, =integer (i =1,---,n). The flat metric is given by the ortho-

normal basis
o, =dzx,, ", g, =dzx,

of one-forms. (In older notation, [ds]? =[dz,]* + - - + [dx,]2.) Find all
harmonic differentials of all degrees.



IX

Applications to
Group Theory

9.1. Lie Groups
A Lie group consists of a smooth manifold G which has a group structure

(zr .’l) — Y.
We suppose that this group operation, which may be considered as a mapping
G X G— G,

is smooth and also that the map x — z~! on G — G is smooth.
With each element = in G, there is associated a transformation L, of
G, called left translation :

L,(y) = zy.
A differential p-form o is called left invariant provided

L*w=0
for all z in G.

Let e denote the unit element of G. The left translation L,~'=L,_,
sends z toe. If w is left invariant, @ = L}, w is completely determined at =
by its value w, at e. If w, is any given p-form at e, then a left invariant
form @ is defined by

Wy = L:'i Wo -

These remarks serve to determine the existence of left invariant forms.
Let us begin with one-forms. We let # be the dimension of G. Since the
space of one-forms at e is an n-dimensional linear space, there are exactly »
linearly independent left invariant one-forms on G. Let

0.1,...’0,0-

be such a system. Any other left invariant one-form is a linear combination
of these with constant coefficients.
More generally, if @ is any left invariant p-form on G,

o=y cyof,
150
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where the c, are constants and ¢¥ = ¢g" ---g". Any p-form ® can be
expanded in this way and the coefficients ¢, will, in general, be scalars on G.
Supposing o left invariant forces each of these scalars to be left invariant.
This means that each ¢y takes the same value at each point of G, hence is
constant.

Next, if w is left invariant, so is dw, since
L *dw) = d(L.*w) =dw.

It follows that there are constants of structure ¢'j, such that

de' =1y c'poic*, cp+chy=0.
Substituting this into the relations d(ds’) = 0 eventually yields

Y (€ s + €l el + ¢Hpch,) = 0.
Particularly important is the n-form
ol g"

which defines a left invariant volume element on G. It is clear from this
that G is orientable.
The right translation R, associated to a group element z is the mapping

y— Ry=yz
on G to G. From the associative law

z(yz) = (zy)z
we deduce that
L..R,=R,.L,,
hence
R*.,L*=LpX*.R*

Suppose w is a left invariant p-form. Then for each z and z,
L*R*w)=R*L*w) =R *w,

hence R, * w is also a left invariant p-form.

9.2. Examples of Lie Groups

Example 1. n=1. We shall determine the local structure of all one-
dimensional groups. Let ¢ be a parameter on G, chosen so that ¢ = 0 is the
identity e. Let o be a nontrivial left invariant one-form; locally,

o = f(t)dt, never zero.

We integrate ¢ to get a new parameter for G,

‘[ fit)de.
(]



152 IX. APPLICATIONS TO GROUP THEORY

Thus we may assume we have started with a parameterization of a neighbor-
hood of e by a single variable ¢ such that

o=dt
is a left invariant form.

We next express the group product analytically. The product of the
point with coordinate s with that of coordinate ¢ will have coordinate u
given by

u = p(s, t)
with
p(s,0)=s, p0,¢8) =t
according to ze = z, ey = y. In coordinates,

L t— u=mp(st).
The left invariance of ¢, L* 6 = o, means

Op

dt = -é-t-dt,
hence
0
a_I; =1, p(81 t) =t+ ¢(8)
Setting ¢ = 0:
s =p(s, 0) = §(s),
and so

p(s,t) = s +t.

It follows that the group operation corresponds to nothing more than ordinary
addition of coordinates. As a corollary, G is abelian (commutative).

Example 2. G is a group for which the constants of structure ¢’;, all vanish.
Thus

In a small neighborhood of e,
o' =du’,

taken so that (0,0, --:,0) «——e. The product of points with coordinates
u, v, respectively, is a point with coordinates w given by

w' = pi(u, v)
with
p(u,0) =4, pi0,v)=12"

The invariance of ¢ under the left translation

v—w, w=plu,v)
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is expressed analytically by

{
dvi=Yy -Z%j (u, v)dv’/

op'
|55~
ap'
o

which implies

(u,v) =46},

pi(u, v) =o' + ¢'(u).
Setting v = 0 yields
u' = ¢'(u),
hence
pi(u, v) = ul + 7',

If P(u) denotes the point with coordinates u, this says
P(u)-P(v) = P(u + v)
so that locally the group looks like a neighborhood of 0 in E".
Corollary. G is abelian.

9.3. Matrix Groups

Now we shall consider a group G which is a smooth subgroup of the group
GL(m) of m x m nonsingular matrices. (The notation stems from the
common name, general linear group.)

Suppose u!, « - -, u" is a coordinate systemon G in some neighborhood of I,
theidentity matrix, and that X = X(u!, - -, u") is a typical point in this
neighborhood. The matrix dX of one-forms certainly contains n linearly
independent one-forms because the n-dimensional group G is smoothly
imbedded in GL(m). Consequently the matrix

Q=X"1dX
of one-forms contains n linearly independent ones. But each element of Q
is left invariant. For if A is any fixed element of G, the left translation
by A is given by
X — AX,
while
(AX) 'd(AX) = (X147 ')(4dX) = X~ 1dX.
This allows us to make explicit calculations in many important groups.
Next we note an important geometric interpretation of Q. We interpret
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each element X of G as a linear transformation on the space E" of row
vectors v = (vy,*-+,v,). Thus

v— w=vX.

We ask, how does dw grow out of w under the group action? Here v is
fixed and X varies over G. We have

dw = vdX = (wX~1)dX,
dw = wQ.

This means Q can be interpreted as an “infinitesimal group element.”
(Cf. Section 4.2.)

One final remark. The constants of structure can often be explicitly
obtained from these considerations:

Q=X"14X
iX = XQ,
0 =d(dX)=dXQ + XdQ

= (XQ)Q + X dQ.
Hence,
dQ +Q?=0.

9.4. Examples of Matrix Groups

o[l 3>

the proper affine group on the line. One easily sees the isomorphism between
G and the transformation group

Example 3.

t—at +y.

z y _ 1/1 —y
X = , X 1=- ,
6 ) )
Q- 1(1 —y)(dz dy) _lfdz dy
“2\0 z/\o 0] =z\0 0)'
Hence ¢! = dz/x, 62 = dy/x are left invariant. The left invariant volume
element is

Here

]

1/\a'z=d—xd—y.

[}
z2
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Since do! = 0, do? = —dxdy/z* = —a' A 62, the only significant constant
of structure is
¢}y =—c} = -1
If we seek right invariant forms, we find them in

l/dx dy - lfdx —ydz+ zdy
X = -
(@X)X" (0 0)( x) x(O 0 )'

50 a basis is
—ydr + zdy
. .

dx
al=o’l=——, azz
x

The right invariant volume element is

1 2

dod
d/\a=xy,

x

very different from the left invariant one. Also

dxd
do? = Yoot Ad
x

We shall compute the effect on g2 of the right translation R,, where

a b
A=(O 1)-
We have

_ _(* y\fa b\ _ f[ax bz +y
wan-xa- (3 )6 8- (5 )

d(b bdr 1d; b 1
RA*O’Z _M—__+__y=_o-1 + - g2,
ax ax ax a a

Example 4. The step transformation group of all matrices

X=(ac y), z> 0.

0 =z
1 /x dx dy 1 (zdx zdy —ydx
=X"1dX = — .
Q=X""d x"(O )(0 dx) 2( 0 zdx )
We may take
d dy — yd
ol = o = d(Inz), o2 = iyz—yx = d(g).
x x z
The choice of new coordinates
% =lIngz, v o= y
x

follows the procedure in Example 2.
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Thus
e’ ve* L1 ov
x=(o %)=+ 3)

1 b
Ad=e (0 1)
is another, then
1 640
— patu
AX =¢ (O 1 )

The invariant volume element is dx dy/x? = dudv.

Example 5. G =GL(n), the general linear group of all nonsingular n x =
matrices. The general element is X = ||z;/| where the z,/ are independent

variables (subject to the inequality A = det (z;/) # 0). Set

1
Y =cofX, X '=-_7Y.
o A

We have
Q=X"'dX = o},
where

1
ok = Zz yldxk.

The n? left invariant forms ¢* are necessarily linearly independent.

compute the volume element
t=[]of
ik

in two steps:

1 ; .
Fota e agt = (uidsf) A - A (Tudds))

1
= Z,-.det (y/)dz,* - - - dz k.
From XY = Al we have det (X)det (Y) = A", hence
det (Y)=A""1,
x _ 1. % k
v =Zd:t:l <o dt,

1

— 11 dz* - - dz.b).
Ank ( 1 d.l’,,)

—s

T =

1

We
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It is clear from this that the right invariant volume element will also be 7,
which is an unusual feature of this group since it is highly non-abelian.

Example 6. G = SL(n), the special linear or unimodular group of all n x n
matrices of determinant one. The special feature we shall note is

trace (Q) = 0.

This follows from a general formula for a matrix function X of any number
of variables. Set A = det(X). The formula is

dXA = trace (X ~'dX).

This is proved as follows. Denote by

z,!

the jth column of X and consider
A =det(ct, -+, c")

as a function of the columns. Then

dA = i A(Cl, IR c’“,dcf, cj*l’ e ,C")
j=1

= 5 3 yda/ = trace[(cof X)dX]
=1 =1

= trace[AX ~'dX] = Atrace (X ~!dX).
For G =SL(n) we have A =1, dA =0, hence trace(Q) =0. For n=2we

have
=(* Y = v — YU =
X = (u v)’ A=zv—gyu=1,
ety _ [ v —y\({dx dy
Q=X""dX = (-u x)(du dv)

_( vdz—ydu  vdy—ydv\ (o' o
T \—udz+ zdu —udy+zxdv]  \6® o*)
Differentiating A = 1 yields

zdy + vdr — ydu — udy = 0, o' +6*=0.
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For the left invariant volume element we may take
1=0' A d® A 0% =dxdu(vdy — ydv)
=vdzdudy — ydxdudv.

Example 7. G = 0%(n), the proper orthogonal group of all » x n matrices
X for which
X=X  det(X)= +1.

Here the superscript ¢ denotes transpose. The essential feature about ( is
that it is a skew-symmetric matrix,

Q+'Q=0.

Because the group G hag dimension n(n — 1)/2, it follows that the elements
above the main diagonal in Q form a basis for left invariant one-forms and
their product is the left invariant volume element. We establish this
property of Q as follows:

X'X=1, (X)X +X'dX)=0,
X~ 1dX +'(dX)'X"! =0,
X~ 14X +4X-1dX)=0, Q+'Q=0.

For n = 2,
cosf sinf
X= (—sinO cosO)’
_y_1gy _ [cos8 —sinf\[—sinf cosf), [ 0 1
Q=X dX_(sinO coso)(—oose _aing)® = {1 0)%

For n > 2 the calculation becomes complicated and hinges on explicit
parametrizations of G. The cases of even and odd # are rather different.

9.5. Bi-invariant Forms

We take a Lie group G with identity element e. Because G is a manifold,
there is a coordinate neighborhood U of e with a local coordinate system such

that the coordinates of e are (0,0, ---,0). Suppose z and y are very near
toe and in U. Then z=2xy is in U. If the coordinates of these three
points are (z!, -+, 2", (y!, .-+, ¥"), (2%, -+, 2"), respectively, we may write

=zl -2yl ).
Since xze = z and ey = y, we have
2, e, 20,00 ,0) =g,
z'(O,-n,O,y',---,y"):y",
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and because of these facts,
2' = 2! + y' + (higher order terms in the 2/ and ¥¥).
In particular, if y = ™, then z = ¢, and
0 = 2' + y' + (higher order terms).

We apply these simple remarks as follows. Let ) denote the mapping
Y(z) =271,

v: G—G.
If we write
Y =y(),
yi = yi(xl’ e .'l?"),
then by the relation just discussed,
oy’ .
—| = -4
), = %
This means that

y' = —z' + (higher order terms in the 2).
We may also express this another way:
y: (2, -+, 2")— — (2!, -+, 2") + (higher order terms).

Since (e) = e~ ! = ¢, the induced mapping y* takes each differential form
at ¢ to another form at e. Evidently we have

’ Y*(da') = —dz'  (ate),
. Y*(da' - - daP) = (=1)P(dx' - - - daP) (at e).
Thus if w, ts any p-form at e, then
YA, = (- 1Yo,.

For each y in G, the right translation R, was defined by
B(x) = zy.

A form w is called right invariant if
R*o=ow

for each y in G.  Qur first application of the map y is the following:
A form w ts left invariant of and only if Yy* w is right invariant.
For

Y(Ry(@) =y(zy) = (xy) "' =y~ 'z}
= L, (@ ") = L,-i(y(2),
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hence
l/l o Ry= Ly—lo l/l,
BXoy*=y*o L,o*
If w is left invariant, then for each y in G
BX*y*w) = y*(L,-* o) =y*o,

hence y* w is right invariant. Similarly, if @ is right invariant then y*w is
left invariant. Since (z7!)"'==z, Y.y =1 and so Y*Y*w)=w. It
follows that if y* w is right invariant then w is left invariant.

Next we shall see that using right invariant forms instead of left invariant
ones does not give additional constants of structure. For let ¢!, -+, 6" be a
basis of the left invariant one-forms. Then the corresponding constants of
structure are read from the equations

do' =143 c'yol A dk.

The forms t! = y*g', -+ -, t" = |y* 0" are now a basis for the right invariant
one-forms. But y* applied to our equation yields, since the ¢’s are constants,

Y*(do') =} 3 o' y(ol A o),
dy*a’) = 1 Y ¢’ uly* of) A (Y*o*),

dit =3y c'pt/ A Tt

Now we pass on to the study of bi-invariant forms, i.e., forms which are
both left and right invariant. We derive one important result.
Let @ be a bi-invariant p-form. Then

dw = 0.

For y*w is left invariant since @ is right invariant. We know from our
calculation on the previous page that at the point e,

l/I"‘(‘De) = (_ l)pwe .

But @ and y*(w) are both left invariant, hence what is true at e is true
everywhere,
Y* o) = (-1)o.

On the other hand, dw is a (p + 1)-form, also bi-invariant, so the same

conclusion applies:
Y*do) = (-1 do.

But,
Y*do) = dy* ) = d[(-1)’w] = (-1)’do.

From these equations follows dw = 0.
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We apply this to the case in which G is a commutative group. Then the
left and right translations are the same thing so that each left invariant form
is bi-invariant. In particular if ¢!, - -+, 6" is a basis of left invariant one-
forms, each do’ = 0; the constants of structure all vanish. In Example 2
of Section 9.2 we showed that any group with vanishing structure constants
has the local structure of Euclidean space (and incidentally is commutative).

Here is one more result on bi-invariant forms which goes in a different
direction.

Let G be an n-dimensional closed (compact) Lie group and let @ be a left
invariant n-form on G.  Then w is bi-invariant.

For each z in G, R * w is also left invariant. Assuming w # 0, we have
R *w = f(x)w, where f(z) is a real number, since the space of left invariant
n-forms has dimension one. Because R.,*. B *= R, * we have f(xy)
= f(z)f(y). (Real numbers commute!) Now f(z) never vanishes since
1 = f(e) = f(x)f(x~!). Thus f maps G into the reals R with 0 removed.
Since G is compact the image of G under f is a bounded interval in R,
bounded away from zero. It is also a subgroup of the multiplicative group
of positive reals since f preserves multiplication. [Positive because the
image f(G) of the manifold is an interval and it contains 1 = f(e).] If f(G)
contains any real number a # 1, then a" — o0 or a" — 0, both impossible,
since a" must remain in the interval f(G) which is closed under multiplication.
Hence f(G) consists of 1 alone, f(x) =1 for each 2 in G, R*w =0, w is
bi-invariant as asserted.(We have used the fact that G is a manifold, hence
connected, to conclude that f(G) is an interval.)

9.6. Problems

1. Let C* denote the multiplicative group of nonzero complex numbers.
Find the invariant volume (area) element.
2. Consider the 4-dimensional group of all matrices

G %)

where z and w are complex numbers, z # 0. Determine constants of struc-
ture. Show that the left invariant volume element is

—(dz A dZ A dw A dw)/2]*.

Here dz = dx — idy if dz = dx + idy.

3. Discuss other groups of complex matrices analogous to the examples
of Section 9,3. For example, discuss the relation between unitary matrices
and skew-hermitian ones.

4. Extend the coordinate considerations of Section 9.5 by showing that

Z=az'+y' + Y a'; 2/ y* + (terms of order three and higher).



162 IX. APPLICATIONS TO GROUP THEORY
Show also that
(a"jk - a"h )
are the constants of structure for a suitable basis of left invariant one-forms.
Compare zy and yz.
5. We know that each left invariant p-form can be expressed in terms of

left invariant one-forms. Does a corresponding result hold for bi-invariant
forms?

6. Letc! & be constants of structure of a group and set
9n= Z cijkckil .
ik
Show that g;, is a symmetric tensor. Now set
Cijk = Zl: c,ijgtk .

Show that c,; is a skew-symmetric tensor.
7. Let z be a p-cycle on G. Show that for each closed p-form w and

each g in G,
ja) =fL,*m.
z z

(We must assume that G is connected, i.e., consists of one piece only.)



Applications to
Physics

10.1. Phase and State Space

We propose to study a holonomic mechanical system with a finite number
of degrees of freedom, avoiding collision phenomena. In this section we
formulate the geometry of such a system.

The position space is simply an n-dimensional manifold M.

We next define the phase space attached to M. This is the space of all
covariant vectors at all points of M. To make this precise, we consider a
coordinate patch U on M with local coordinates

ql, cee, q"
At a point P of U, a covariant vector is simply a one-form at P, hence is
given by its components
Pi, 5 Pas  Pyreal

(where the one-form itselfis ) p,dg’).
If

¢
=1

g, .7
is another local coordinate system valid at P, then the components of the
same covariant vector with respect to the §' are

_ og’
?1=Epj5&‘;-

The totality of all such covariant vectors at all points of M constitutes the
(2n)-dimensional phase space P. To each coordinate neighborhood U on M
with local coordinates ¢', - - -, ¢" corresponds the coordinate neighborhood
U X E" with local coordinates

ql’.._ »qn!pl"“!pn'
It follows that the one-form

o=} pdg'
is a one-form on P, entirely independent of local coordinates. We have
da =Y dp;dg’

163
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80 that the phase density (see Section 2.3)

dp, - dp,dg' - - dg"

is a 2n-form on P, never zero, defined by

+(da)" = (n!)(dp, - - - dp,dg" - --dq"),

and serves us as a volume element on P.
We shall derive some useful relations from the transformation of co-
ordinates .
¢=q@, .
o’ (i=1,---,m)
=2 p; a—qi

valid on the overlap of local coordinate neighborhoods U and 0.
We set
p,
a=(¢, =, q) and p=| :
b,
and define @ and p similarly. Then §=q(q) implies

dg=dqA, A = (-(:ij) =A(q).
Since a=dq p=dq p, we have
p=Ap, that is, p=Ap,
where A = A~ is also a Jacobean matrix. From
dp=dAp + Adp and dq=d§d
we deduce first that (3p,/0p;) = A= (3¢i/8q"). _
To continue, we note two relations. From A=A’ we have
dA=—-A-1dA A-'=-A dA A.
From d§=dqA we have 0=dq dA, which easily implies

da', _ 9d
g o
Now
dp=dAp+Adp=—AdAA p+Adp
=—AdAp+ Adp.
Also

dp=d(Ap) =dAp+Adp. '

Thus 8,/3¢* is the coefficient of dg* in the i-th row of —A dA p and 3p,/9§’
is the coefficient of dg’ in the k-th row of dA p. Now
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dda = (Zal—dq )
ag*

(55 )- (5
(575)

Therefore the coefficient of dg* in the i-th row of — AdAp and the coeffi-
cient of dg* in the k-th row of dAp are respeetively

9p. N 3 aa';
l]: = dli_l‘:i)l an _&{ = al _l;pl
dq z : aq dq; : : aq

We conclude that dp,/d¢* = — dp*/a§’, so we have proved

and

B _ _ 0’
o g
o _ og
Op; B o'

Finally, the state space is the product

S=P X E!
a (2n + 1) dimensional space. We think of E' as the time axis. Local
coordinates for S are

ql’...’q"’ pl,.--’p”, t.

10.2. Hamiltonian Systems

We wish to consider a dynamical system in Hamiltonian form. We begin
by tracing the evolution of this from Lagrange’s equations of motion, which
in Euclidean coordinates reduce to Newton’s law of motion. We deal only
with conservative holonomic systems.

The treatment first of all is local. We deal with a coordinate patch in

g', -+, q" space. For each instant of time, there is a point (position)

(ql(t)r tt 9"(3))

which represents the trajectory of the system. As is customary, we set
4 =du/dt. The kinetic energy is a function

T(ql"“’q,’q.ls"'!q.”)
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which is supposed to be a positive definite quadratic form in the variables ¢,
The poteniial energy is a function

V=V(q19""q":t)

and the Lagrangian function, or kinetic potential, is

L=T-7V.
The differential equations of motion are then
d (0L oL
—(=) -== =1, m).
ala) -z ¢ "
For the first term we have
d (0L ’L L L
(a7) =5 et

so that the Lagrange equations are a system of » second order ordinary
equations for the unknowns ¢!, - -+, ¢". We now convert these to a system
of 2n first order equations in 2n unknowns.

We introduce the generalized momentum components

pl"“’pn
by

oL T

‘o o

Because the quadratic form 7' is definite, the transformation of variables
(¢ g ) e— g Py, D))

is a smooth one both ways.

To reach the Hamilton form, we shall follow tradition and use a rather
confusing notation. The matter was better expressed in Section 3.5.

The function 7' is always considered as a function of the 2n variables

ql,"-,q",q'l,"',q"'.
The function ¥V which involves the ¢° (and ¢) alone may be considered as a
function on the space of variables ¢*, - - - , ¢, ¢!, - - -, ¢", ¢ or on the space of
variables ¢, -+, ¢", Py, Dy b
We introduce the Hamiltonian

H=H(q1,---,q",pl,'-',p“,t)=2piq'i—L,

always considered as a function on the space of variables

ql’°'°’q'!pl:"',pu’t-
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Since 7' is homogeneous quadratic in the ¢ we have

2T =3¢ q =X p.d"
hence H =27 — L =27 — (T — V),
H=T47V,
and so H represents tofal energy.
From
27 =} pi¢*
we have
2dT =Y p;dg' + Y ¢'dp;.
But
iT =Y ( Pk aT )
=S ddt g
Subtracting,
orT . ; 8
From this,
an-orar 3 (- B D S
= —qu—tdq‘ + X d'dp,.
Thus
OH oL _ d (aL) ,
o¢ 8¢ dt\og’ Po
oH _
op; ¢
This gives us the equations of motion in Hamilton, or canonical, form:
i = oH
p;
(1‘ = ]-! T n)
o0H
Di= = 5
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We next check what functions H qualify as Hamiltonians. We write

T=1Y ay9)'¢
where [la,;(¢)| is & symmetric positive definite matrix function of the position
variables ¢. It is convenient to set
15%@) = llay@)l
also symmetric, positive definite. Then

oT .
b= 6_q‘ = z auqf >
which we invert to
q" = Z b*p, .
This gives us
T=1% Z a”b"‘ b'“Ph?l
=% Z bjlpjpl .
From this,
H(q’ », t) = % Z bu(q)plpj + V(Q» ‘)'
This shows us the form of any Hamiltonian function.

We now wish to formulate Hamiltonian mechanics globally. To discover
the correct approach, we compare two Hamiltonian systems

[H=T-V 7 (H=T7-7 ]
T =13 tMapw, T =133 5@ 55,
V="Vt V="t
q’i = a—H Ql = a_ﬁ_

op, 0p;
. oH oH

Py == 0_q' B =— 6—9'

which are supposed to be defined on intersecting regions U, U and be
equivalent on the common part U n O of U and 0. The coordinate
transformation

@.p,0) — (4, B, 1)
is given as in Section 10.1:
Q' = qi(ql’ o d)

0
1-’1-'21’/%;-
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We have
oH oG
6“’- = — = ‘= —
DL
_v'H o7,
Z aql ap Z% b* 1
Hence
T= izptsupj iZﬁi b Py
= %zp,‘b"'p, =
and so
T="1
on the common part of U and O, hence also
H-H=V7-V.
Using the symmetry relation,
apl 0pk
o =+ = a7 =0,

derived in the last section, and the remaining equations of motion:

oH op op
~ ==L+ 5

aq’
_ 3])/ 0H z aqk ﬁ
- 6@ o, o' og*
o0H
g’
oH ?E
aqi a-q-f

From this,
2 .
a—q‘(V—V)=0 (1«=1;"')n)'
1t follows that ¥ — V is a function of ¢ alone,
V="V+f),

H=H + f(t),
this taking place on the intersection of U and o.
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Having this, we can formulate what we mean by a global Hamiltonian
system.

We begin with a position space M and form its derived spaces, phase
space P, and state space S. We are give a function 7' on P such that over
any local coordinate neighborhood U on M with coordinates ¢*, - - -, ¢" we
have

T=14%Y b%gpp;,

a positive definite quadratic form. Here (¢', -, ¢", p;, ", P,) are the
derived coordinates on the neighborhood U X E" of P lying over U.

Now let U,, U,, - -+ denote the various local coordinate neighborhoods
on M. For each one of these U, we have a function

Ve="V.gt)

U, X E'.

Whenever U, overlaps U,, then on the common part U, n U, we have
V.— Vﬂ =faﬁ(t)r

a function of ¢ alone. (Clearly f,, + f;, = 0, and

Jap +foy +[ra=0 on UnY,nu,)
On the part of state space S lying over U,, ie., on U, X E" X E!, set

H,=T+7V,.

The equations of motion are given by

defined on

¢=2
op,

., 0H

D aqg

on U, ) E" X E', where (¢') are local coordinates on U,. These are
independent of the local coordinate systems (consistent) and define a motion
(or flow) on all of S, always moving forward in the £, or time, direction.

Remark. It is customary in mechanics to exhibit the potential function
so we have set down the functions ¥, in our formulation. Actually the
equations of motion merely require the gradient of the potential which is an
intrinsic quantity on S. Precisely, there is a differential form w on § so
that locally

0

Ve i «d
e

Ve
7, dp; .

w=3
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We can free ourselves altogether of reference to the functions ¥, by requiring
that there be given a one-form w on S satisfying

(1) o is free of dt,
2) do =0.

By the converse of the Poincaré Lemma (Sections 3.6 and 3.7, especially the
last remark on p. 31) this implies the existence of the functions V.

A trajectory of the motion is any particular solution of this system of
differential equations. From the theory of ordinary differential equations
we know that there is a unique trajectory through each point, so that state
space S is smoothly filled with these curves. Along each one, ¢ steadily
increases, but not necessarily to arbitrarily large values. (For example, a
particle may run off to infinity in finite time.)

Finally we note the energy law:
Along any trajectory,
dH oH
a et
For
dH . o0H , 0H  0H
E=H=Z‘a—ng +25-p_‘pi+—at—

., 4. | OH
=Y (—pd)+2 4D + r

_oH
T oot

Remark. Whether or not the functions f,4(f) can be removed altogether
by redefining each ¥, so that there will be a single potential function V on all
of M X E' depends on two things, the manner in which the applied forces
vary with time, and the topology of M.

The topological difficulties are easily seen from the standard example of
the steady magnetic field in the manifold M, which consists of E* minus the
z-axis, due to a steady electric current in the z-axis. The trouble is that
there are closed loops in M which are not boundaries of surfaces. (Cf. the
situation in De Rham’s theorems, Section 5.9.)

10.3. Integral-invariants
Over a local coordinate neighborhood U =U, in position space M we
consider the one-form

w:wa=§:pldq'—Hdt.
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This is defined on the portion U X E" ) E! of state space which lies over
U. These forms @, do not necessarily fit together to make a one-form on §
because on an intersection U, n U, we have

H,—Hy=V,— Vy=f,lt).

If the ¥V, can be chosen so that all f,,(t) = 0, then we do have such a one-form
onall of S. This is exactly the case for a globally conservative system, the
case in which the external forces are derived from a single potential function
V. While this cannot be expected in general, we do see that

do = dw, =Y dp,dg' — dH dt

is a 2-form on all of S, independent of local coordinates. This simply means
that
dw, = dw,

on U, n U,, which is true because
dHydt = d(H, — [ dt = (dH, — [,z dt)dt = dH  dt.

We shall call this 2-form dw, even though there is no one-form w on all of §
which it is the “d” of.

Suppose we have on some portion of § an r-parameter family of solutions
of the equations of motion. Let us denote by z,, -+, x, the parameters.
What this means is that we have a mapping ¢ on a region W of (¢, x) space
of the sort indicated, a cylinder in the ¢ direction with top and bottom

curved r-chains,
¢: W—S

> {
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where in local coordinates

qi=fi(t1z1)“"zr)
¢: pi=gi(ti‘tl»"°»xr)
t=1¢.

For each (x;), this represents a trajectory, hence

6f‘_uH

L
ot
The mapping ¢ is supposed smooth and one-to-one, so that an (r+1)-dimen-

sional region in S is evenly filled up by these trajectories.
Now we compute ¢* (dw). We have

o0H
- —(f, g10).
aq,( g1

do =} dp,dg' ~ Zaq.dfd‘ Z dp‘

- -E(w+ )(@'-%'d‘)
or(a - Ga) = (Fa vz ae) - Fams Lo
and similarly
o (imi+ G ) =3 3
so that

ag;
¢* (dw) = i‘z a((ii f ) dxjdxk

= z Alx(x, t) dz;dx,

which establishes our first point, ¢* (dw) 1s independent of dt.
Since d(dw) = 0, we have d[¢* (dw)] =0. But

Jjk
d[¢* (dw)]) = ¥ 2‘;7- dtdx,;dz, + (terms in dx,dz,;dz,) = 0.

We conclude that
04

ot ’



174 X. APPLICATIONS TO PHYSICS
each A% = A7%(x) is independent of t, and we may write
¢* (dw) = ¥, A (x)dz,dz, .

A differential form a of degree s on the state space S is called an (absolute)
integral-invariant (historical terminology) if for each r-parameter family of
trajectories given by such a mapping ¢, ¢* («) is an s-form on the x-space
alone (no ¢ nor dt terms) and if in addition da = 0.

Each of the forms
dw, dw)?, -+, [do)"

is an integral-invariant. For
d(dw)* =0
and
¢* ([do) = [¢* @do)F = [}, 4% (x)dz;dz,}’

is independent of ¢ and dt.

P
A

<2

— e

q

Consider in state space S a small piece ¢, of surface which is filled by a
one-parameter family of trajectories. We may describe ¢, analytically by

{q" =gt y)
i =pi(t, y)
a(y) <t < b(y)
{ YoSYSy -

Our reasoning above shows that the two-form we get by substituting these
expressions for p and ¢ in dw is a two-form in y and dy only, hence vanishes.
This means in particular
I dw = 0.
<2
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Next, suppose one has a piece of volume, or three-chain ¢; in S which is
the span of a two-parameter family of trajectories:

{Z‘ =4't,9,2)

1 =292

a(y,2) St S b(y, 2)

{ (v, z) in a domain D.
b 4

£, Z

= {

P

Then
6C3=21 —zo+c2
where I,, £, are the terminal and initial surfaces respectively and where the

lateral surface c, is spanned by a one-parameter family of trajectories
corresponding to the parameter point (y, z) on 6D. Now

oc3
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f dw =0,
IM=jm
) 1% Eo

We have established the very striking property of the form dew:
If X is any 2-chain in S transversal to the trajectories, and if one displaces
each point of L, any amount along its trajectory to form a new surface T, , then

[ o

It should be clear that we have not used any special properties of dw in
proving this result so that any integral-invariant satisfies a corresponding
property.

Let o be an integral-invariant of degree r on S. Let ¢, be any r-chain on S
transversal to the trajectories. Let €', be a second such r-chain so that the points
of ¢, and ¢, may be put into one-one correspondence with corresponding points
on the same trajectory. Then

[o-] =
<, [

It is possible to reverse our steps to prove that the property expressed in
this result actually characterizes integral-invariants. This is done in E.
Cartan [8].

We pass on to relative integral-invariants.

An r-form « on S is a relative integral-invariant provided de is an integral-
invariant. The basic result about relative integral-invariants is this.

and we showed above that

hence

r
Cret — \\
\ cr'+l
b /
r / b;
P {




10.3. INTEGRAL-INVARIANTS 177

Let a be a relative integral-invariant of degree r. Let b, and b’, be two
r-dimensional boundaries which are in one-one correspondence in such a way
that corresponding points are on the same trajectory. Then

IR

To prove this, we select (r + 1)-chains ¢, ,,, ¢/,,, 50 that
b, =0¢,.y, b, =dc 4,

and do this in such a way that ¢,,, and ¢, ., correspond one-one with
corresponding points on the same trajectory. Then

J.a=J‘ a=I da=j dd=J- a=J.a:
b, 8€Crey Crey Crey [ b,

The differential form
w= Z p,dg' — Hdt,

which is defined locally, is a relative integral-invariant of degree one where
it is defined. Consequently so are the forms

wdw, wdw)?, -, odo)
since
dlw(dw)] = (do)™!.
We shall specialize by considering chains which exist at a single instance

of time. Let o be any differential r-form and ¢ an r-chain in § lying in a
hyperplane ¢ = constant. Then clearly

Ia =J.°‘|a:=o-
c [
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Let us apply this to dw in particular. We have
dw|¢r=o = Z dp,dq‘,
which leads to this result:
Let £, be a 2-chain in S at t = t, and I, the 2-chain obtained by moving each
pownt of T, along its trajectory totimet = ¢, . Then

Lo Y. dpdg’ = L Y dp,dg’.

In this result we may think of £, and £, as 2-chains in phase space.
If we apply the procedure to the (2r)-form
(dw)" = + nl(dp, - -~ dp,dq’ - - - dg") + Adt
which gives us the phase density

u=dp, - dp,dg" ---dg’
we have the

LiovvniiE THEOREM. If a 2n-dimensional region D, in phase space at
time t, moves to a region D, at time t, , then

Jor = for

We shall close this section with a result which will be needed in Section
10.5. It shows that the integral-invariant dw completely determines the
equations of motion, in itself an important mechanical principle.

Let

[d’ =4t q,p)
P; = Byt q, p)
be a system of equations on a region of state space S which has
do =Y dp,dg' — dHdt

as an integral-invariant. Then

op; oq

For let
qi=f'(t,z1,---,z2")
1 =g, 2y, 0, Zgy)

be a general solution, so that dw must be expressible in the terms of dz,
alone. From this, and the differential equations

of’ i agl_
{at 4 =B
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we deduce
dg' = Aldt + M}, dp; = B,dt + y,,

where A/, u, are one-forms in the dz ; alone, and so

=Y dp,dg' — dH dt

oH oH

= (T A%~ Y B+ 3 pidt — (z T ie ,4,) d.

Since dw is free of di,

ZA‘m-ZB:A‘-Z—A‘ Z u,=0,
) (A‘ - Z—H)u: ¥ (B‘ + %)A‘ =0,
2 (A' - g;,)(d?' ~ Bydt) - ( —)(dq' Ald) =

i
Z(A‘—%)@, (B,+g—)dq'+( )dt =

We conclude that

oH oH
A'—a"o B‘+aT!i=0

as asserted.

10.4. Brackets

In the transformation theory of classical mechanics one uses the bracket
expressions of Poisson and Lagrange. In this section we shall show how
these expressions relate to differential forms.

Before doing this, it is a good idea to digress on the subject of Lie brackets.
We take any differentiable manifold N and recall the definition in Section
5.3 of tangent vector and the definition of vector field at the end of that
section. We may consider a vector field v on N as an operator which takes
each function on N to another function on N:

v: FO(N) — F°(N).
If 2!, -- -, 2" is a local coordinate system in which v has the representation
i)
= i3)
v =) al(x) =
then

g
v(f) =} a'(x) a—;f,
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shows, locally, what v does to a function f. One sees from this formula, or
from the very definition of v as the assignment of a tangent vector (directional
differentiation) at P to each point P of N, that

v(f-9) =v(f)g+ f-v(9)
for any two functions f and g on N. If v and w are two vector fields on N,
we define the Lie bracket of v and w by

[v.W]=vow—-—wov,
This is another vector field on N. If in local coordinates
=Tl w=3¥l,
then a computation shows that
fv,wl=Y (Za‘%i—i - Zb‘g—:;) 6%
(The main point to notice is that the second partials cancel each other.)
The following algebraic identities are easily established:
(i) [v,v]=0.
(i) [w, v]+[v,w]=0.
(i) [vy + vy, Wl={[v,, W]+ [v,, w].
(iv) [[w, v], w]+[[v, w], u] +[[w,ul, v]=0  (Jacobi identity).

Now we return to mechanical systems. As before, let P be the phase
space associated to a position space M. We denote by « the differential form

o= 2 p,dq’
on P so that
do =Y dp,dg’
as in Section 10.1.

PorssoN Brackers. To each pair f, g of real functions on phase space P
we associate a new function (f, g) defined by

n(dfdg) A (de)"~! = (f, 9)(d)".
In local coordinates

N
(da)"~! =[(n = DI Y (dpy dg") - (dpidg") - - - (dp, dg’)
and
(da)" = (n!)dp, dg* - - - dp,dg",
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from which we deduce the local expression for (f, g):

af, 9)
(f,9)= .
f ) Z a(p i qi)
From the definition one derives these relations:

® (hf)=0.
i) (f9)+@f)=0.
(i) (f, 91 +92) = (f,91) + ([, 92)
Using (df)d(g.192) = 91(dfdg,) + g,(dfdg,), one has
(iv) (9192 =91 ([, 92) + 92" (f, 9)).
The identities (iii) and (iv) taken together may be expressed by saying that
for fixed f,

is a vector field v, on P:

vil9) = (£, 9)
The basic connection between the Lie and Poisson brackets is given by
(V) V.0 =0 V)
One has
v([, ,)(h) = ((f’ g), h’)

[vss Vg](h) = V[V (k)] — v,[v(R)]
= v,((g: 1)) = v((, )
=(f .M~ (9 (/W)
- (g, B, f) ~((h. ). 9)
so that (v) is equivalent to Jacobi's relation
(vi) ((f,9).5) + (g, ), f) + ((h, f), g) = O.

One proves this relation [(v) or (vi)] either by a lengthy direct calculation,
or by the following more sophisticated argument based on the fact that a
vector field is completely determined locally by its effect on each member of a
local coordinate system.

and

]

First of all,
w oy hd) | o
(. 4) z:6(10,,9’) 2 ap; o',

0 &

—
(£, 4 —6p,’
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which may be interpreted as

0
Vg = — 5]-;‘ .
Similarly
of 0
(fip) = — i and v, = @-
Because of these relations (vi) easily follows when both g and & are taken from
the set of coordinate functions {¢, - -+, p,}. This means that

AT A AN

when z is one of these coordinate functions since the vector fields on both
sides agree when applied to any coordinate function ¢’ or p;. Hence for

any h,
((f, x), h) + ((x, h),f) + ((h,f), z) =0.

This is now established for any functions f and & and any coordinate function
z. But this may be interpreted as saying

Vo, 1% = [y, vj]:c
so that the vector fields

A and vy, v/]
must agree since they agree on all of the coordinate functions. Hence
Y, 0 9) = [y, volg

for all f, g, k. This completes the proof of (v) and (vi).
One applies brackets to a pair of functions on the state space S by simply

treating ¢ as a parameter.
A function f on S is called a first integral of the equations of motion if it
is constant on each trajectory. If this is the case, then

df of . of
Z "‘25;";171"‘_

o
ooH . of oH o
Zaq i op, 26—1557!—‘ at
(Hf)+"f

so that the partial differential equation for first integrals is

= (f, H).
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LAGRANGE BRACKETS. Let
¢: E2—P,

where E? is the Euclidean plane with rectangular coordinates %, v. Then
¢* (dz) is a 2-form on E? (where as before du =) dp,dg’) and we write

¢* (do) = [u, v]ldudv
defining the Lagrange brackets which have the local expression

a(p;, q')
(v, 0] =% a(«:, 3) :

10.5. Contact Transformations

Here we can but touch briefly on an extensive topic. For simplicity we
shall only treat the local problem and shall look on contact transformations
as coordinate changes.

First we take the case of a time independent change. As usual, let ¢', p,
denote local coordinates in phase space P. We consider new coordinates
qi’ i’l’ ’

7'=3@" " P, P
=i’i(q ,“',q",pl,"',p,.)

which are unrelated to the old except for one requirement. We set
=Y pde, a=Ypdf
di = do.

and require

This defines what we shall call a homogeneous contact transformation.
Since d(% — «) = 0 and we are only working locally, the condition may be
expressed as

g=a+do
where ¢ is a real function on P. In the relation d& = du,
Z dp;dg' = Z dp, dg’,
one replaces dj; and dj' by their expressions in terms of dp; and dg* to obtain
B, 7)) _ (B, 7)) B 1) }
0, —=0 = di}.
{Z WD " Lan. 23w
(These relations may be expressed in terms of Lagrange brackets.)

Similarly, {Z i Lo ¢ Z ) aql _ %}
pta =P; aq’ Pi 6p, ap,
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If we have equations of motion

B op,
, 0H
D= — ﬁ
we shall show that they transform into equations of the same type. For

suppose after changing the coordinates according to our contact transforma-
tion we arrive at

7=

#i=—-B
80 that
03' 0H o7' 6H
4' = —
L3 aq’ ap; ~L3, op; o’

5 ap, 0H 5 p, 0H

If we multiply the first by
. op 0p
a= L pidd + L5
and the second by d7' similarly and sum, we find after some simplification

) . woH oH
Y A'dp, + Y B,dg =Za—q;dqj+25d4’k

=dH — QI dt.
Hence
0H oH
Al=——, B, =—
o, og

so that the equations of motion in the new coordinates are precisely

_O0H
aPt

0H
b= af'( .
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Now we pass to the general situation. We begin with a mechanical
system

on the state space S and consider a coordinate change on §:
qi=q‘(t’qli ,9",1’1, v 1pn)

i’i=ﬁl(t»ql""’q"p1, Ctt L Da)
t.

L)
i

We set
w=Y pd¢— Hdt

as usual. The coordinate change is called a confact transformation if there is a
function H and a function ¢ so that if

o=Yp,df — H dt,
then

b =w+dp,
or what is the same thing,
o = do.

The first basic result is that the equations of motion in the new coordinates
are precisely

. _0H

=%
oH

ﬁ:——a—q,-

For whatever the new equations of motion are, they admit

@ =Y dp,dg' — dH dt
as an integral-invariant. But the final result in Section 10.3 tells us that
the only equations with this integral-invariant are the stated ones. (Com-

pare this slick proof with a direct computation!)
A particular type of contact transformation is obtained as follows. Let

¢(t,xl»"',l",yl"",y")
be a function of 2n 4 1 variables satisfying the independence condition
¢

W#O‘
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Set¢=¢(t,ql»"'yqn,ﬂl,"',_")»

0¢ - 09
P b= — 2.
7 0q
For fixed ¢ and p, the § are determined by the first set of equations (since

the determinant above does not vanish) and then the  are determined by
the second set of equations.

D=

We have
- ¢ iy
0 . .
=a—fdt+zpad<1‘—2ﬁ:di',
—@=—(L5dq - Hat) + (T pidg’ - Har)
=+d¢-aa_‘fdt+17dz-11dt,
and so
D=w—do
provided we set
H= H+a¢

The most important case is that in which ¢ is a solution of the Hamilton-
Jacobi equation

$ ta.d A
—aT(t,q,q)+H(¢,q, el )_0.

In this situation H = 0 and the new equations of motion are simply
{q.. _ 0
$;=0

with solutions
§' = constant,  $, = constant.

The original system is said to be transformed to equilibrium.

One other point we shall notice is this. If a contact transformation is
stationary, i.e., independent of time, then it is equivalent to a homogeneous
contact transformation. For suppose

7'=q'(q, p)

Pi = Pilg, P)
and

(Y p:dg' — Hde) = (¥ pidg’ — Hdt) + dop.
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Equating coefficients:

_ o3t 0¢
Zp.-;a;j—pﬁa—q,
_0f°  0¢
< P or oy
o¢

H=H-—_.
ot

Since ¢, p, §, p are independent of ¢, we deduce from the first two equations
that

¢ _ *¢ -0

oo’ T odtop,
Hence d¢/dt is a function of ¢ alone. This evidently implies

o, g, p) = (&) + ¥lg, p)

and so
X547 =} pidg’ +dy
which means we have a homogeneous contact transformation as asserted.
Let us briefly examine what are called infinitesimal contact transformations.

We ask when

T=q+¢

D =D+ &g;
is a contact transformation up to first order termsine. We restrict attention
to the homogeneous (stationary) case. We have

Y 5,dg — Y pdg’ = edg,
Y (2 + eg)(dq’ + edf) — Y pdg’ = edg,
S(Z g9.dq' + Zp,df‘) =¢gdo,

8o the condition is
Zyidq" + Zptdf‘ =do.
If we set
y=¢- Z P:.fi
this becomes
Z 9,dg’ — Zf‘dp, =dy,
or
Y . oy

=—a?’ f'=-———-

gi ap' .
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We finally have

oy
G=qg—g ¥
=9 o,
_ oy
p,=p,+85&—,-

Here ¢ is called a generating function for the infinitesimal contact trans-
formation.

10.6. Fluid Mechanics

We consider a fluid moving in a region of E3. The position vector as
usual is

X = (r, 9, 2) = (', 2%, 2%).
At each time ¢, the velocity at x is v,
v =v(t, X) = (u, v, w) = (v, v?, v%).
The density of the fluid is a scalar
p = p(t, ).
In this section we shall denote the vectorial area element of a surface by ¢,
o = (dydz, dzdz, dzdy).

(See Section 4.5, p. 43.)
If ¢, is a three-dimensional region which is fixed in space, the change in
mass at each point x of c; per unit time is

z—’; dxdydz

and so the total time derivative of mass in ¢ is
d
f P iz dydz.
c, 0t

We assume conservation of matter, so this must result from flux of fluid over

the boundary, hence
f iedxdydz= —J. pv-o.
€3 at o€y

By Gauss’ theorem,

j pv-a=f div (pv)dzdydz.
o€y €3
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By taking c; arbitrary we deduce from the equality of these integrals the
continuity equation

%t’—) + div (pv) =0,
a necessary condition the flow must satisfy. We shall deduce some con-
sequences of this. We set
Q = p(dx! — v dt)(dx? — v? dt)(dx® — v db).
To compute dQ, we set
B = (dx! — v' dit)(dx? — v? dt)(dx® — v3dt)

so that
ov' 1 2 ot , 19,2 o 3
dp = — 5 dx' dtdz? dx® + dx! (——a 5 dx dt) dz® — dz' dzx (—6x3 dx dt)

= (div v) dt dz' dx? dx3,
dQ=d(pB)=dp A S+ pdp

(g’: dt + Z op —dz ) A B + p(div v)(dt da' da? dr®)

[6p + ¥ o 6 - Py p(div v)] (dtdx! da? dx®).

Thus the continuity equation is equivalent to the relation
aQ =0.

Suppose we express the flow in terms of initial conditions (or other
parameters) by
x=x(tal, -, o)
so that the a' are the parameters and
ox

—_=V.

ot
Thus

i
(' — vidt) = (a d¢+z )—v‘dt

o’
= e dyd
Zaafd“
8o that
o', 2, 2%y o,
R Torory he

= A(t, a)da' do® do®.
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Since dQ = 0, we deduce that dA4/dt = 0,

Q = A(a) do* do® du®.
This means that Q is an integral-invariant for the flow as explained in
Section 10.3. We consequently have the following result.

Let €5, c'3 be three-chains in the four-dimensional (t, X) space which are in
one-one correspondence in such a way that corresponding points lie on the same
trajectory of the flow. Then

f Q =J- Q.
<3 c’s

In particular, if all the points of ¢, exist simultaneously, ie., at a fixed

time £, , then
J‘ Q=J~ Q=4 =I pdzxdydz.
€3 €3 c3

Thus if we take a region ¢;(* at time ¢, and follow it to ¢;*) at time ¢, , we
have

J pd:cdydz:J. pdzdydz
€3 e

which says that mass is preserved in the flow, another form of the conserva-
tion of mass.

We now proceed to the dynamic situation. We suppose our fluid is
nonviscous so that the pressure is a force per unit area at each point acting
normal to any surface element through the point, always with the same
magnitude. Let

P = p(t, X) = pressure
F = F(t, x) = body force per unit mass.

Let ¢, be a fixed region in space. The total acceleration of all matter in
cy is

dv
— dxdydz.
L,p ) Y
At the instant of time in question, this must equal the total force on the
matter in ¢; which is
J‘ pFdzdydz —j pe.
c3 acy

By a variant} of Gauss’ theorem,
j pa =J‘ (grad p) dzdy dz,
ocy [+

t The usual simple proof is to dot both sides into a constant vector a and apply Gauss’
theorem plus the fact that
div (pa) = (grad p)-a.
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hence
av
(p — —pF+ gradp) dzdydz = 0.
C3 dt
We conclude that

= F—Lgrad
dt— pgr »,

the Euler equation of motion.
Here the interpretation is

dv _ov +3 ov
p dt ot o
Let us suppose that the body force F is conservative,
F=—gradV
where
V="V, x)

is the force potential.
We shall add the hypothesis that p and p are functionally related, i.e.,

dp Adp=0,

as is the case, for example, with an isothermal motion. In this case we
can define a function ¢ = ¢(t, x) by

0 P
so that
dp
dg ==L
P
The equations of motion may be written
d
5= —ersd(V +9)
‘or
du a
E = - 5; (V +q): ete.,
ie.,
ou ou ou ou b7}
— — — — = -V , te.
PRl vl vl MU U
We set

E=3vv)+V+g
=3u*+v2+w)+V+g,
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the energy per unit mass. Finally we define the vorticity

ov du dw v Ou
: (6!’71() (ay 'a;r 'a';—a, a_x—.a!—/).

We compute
3E+a_“-ua—“+(v@+ 6w)+6 (V+)
ox = ot Ox 6t e
_ (vav+w6w) (vau_'_wau)
T\ o ox dy 0z
= vl —wny
and similarly
0E  ou _ -
6—x+6_t—v wn
0E v
4ay a =)
6E+6w__u vE
oz ot 1 .

(These are equivalent to the vector formula
gradE+%;=vx¢.)

Now we consider the differential form
o =udr + vdy + wdz — Edt.

We have
= (¢dydz + ndzdx + {dxdy)

+dt (u,dx + v, dy + w,dz)
—(E,dx + E dy + E,dz)dt,
= (¢(dydz + ndzdx + {dxdy)
+ di[(v{ — wn)dx + (W& — ul) dy + (un — v€)dz]

Actually, dw is an integral-invariant so that w is a relative integral-invariant
One sees this indirectly by making a comparison to Hamiltonian systems
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For if one thinks for the moment of z, y, 2, , v, w, f as independent variables,
the equations of motion are

&= 1l=—-€-(V+q)
ox

142
; . 7

t=w u——E(V+q)

or

%= 0E|ou = —0E|0x
y = 3dE/ov v = —0E|[dy

2= 0E|ow w= —J¢E|[0z
which makes our assertion clear. It follows that if ¢,, €', are two-chains in
(£, x) space which are in one-one correspondence so that corresponding points
are on the same trajectory, then

J‘ dw =f do.
[ c'2

In particular if €,? is a 2-chain in E? at time ¢, and it moves to ¢, at
time ¢, according to the motion, then

J‘ (Edydz + ndzdz + {dxdy) = I (Edydz + ndzdx + {dzdy).
< )

2(0)
This is the Helmholtz theorem on conservation of wvorticity. In the first
integral we must understand ¢ = £(¢,, x), ete., and in the second, & = (¢, , x),
etc. Animportant consequence is this further result of Helmholtz. Suppose
at a fixed time t,, the vorticity vanishes identically. Then it always vanishes.
For by the formula above,

I (Edydz + ---) =0
()

for each 2.chain ¢,") at each time ¢,, which evidently means that the
integrand must vanish.

/

10.7. Problems
1. On p. 54 and again on pp. 179-180 we defined a vector field v on a
manifold M as a mapping which takes each function f on M to another
function v(f) and satisfies the rules
v(f+g)=v(f)+ v(9)
v(fg) =f-v(g) + v(f)9.
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We know that locally

V=Za‘(x)—a%.

We have alluded several times to the duality between vector fields and one-
forms. (CE. pp. 127, 143 for example.) Now we shall make this more
explicit by associating with each vector field v and each one-form ¢ on M
a scalar (g, v). Locally, if v has the representation above and
o =) bx)de,
then we set
(0, v) = ) a(z)by(x).
Show that
(614 0;,¥)=(0,,V) +(6,,V),

(0, vy + V3) = (0, vy) + (0, V,),
(90', V) = g'(ar V) = (0’, gV)

for each scalar g. Show also that this operation has the intrinsic characteri-
zation

(dg, v) = v(g).

2. Show similarly that two-forms may be paired with two-vectors by

(61,v1) (64,V))
(Gll\az,leVZ)-_— .
(62,V¥y) (05,V3)

3. Now prove the formula
(o, v A W) + (0, [v, w]) = ¥{(0, W)} — w{(0, V)},

which relates all these things to the Lie bracket.

4. Combine this with the Frobenius integration theorem (Section 7.3) to
establish this result: Let v, ---, v, be vector fields on a neighborhood of
0 in E" which are linearly independent at each point. Suppose that for each
t and j, [v;, v;] is a linear combination of v,, -, v,. Then there is a
coordinate system z!, - - - , 2" of some neighborhood of 0 such that

roo. 0 .
v, =j§la,-’(x) o t=1--+,r)

5. Letv,,---,v, be vector fields on a neighborhood of 0 in E" which are
linearly independent at each point. Suppose that each bracket [v;, v;]
vanishes. Prove that there exists a local coordinate system z!,:--,z"
such that
_ 3@

Vi ox!
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6. Letu,,:--,u, be functions of !, - - - , 2" and set

J = ||ou,joz’),

the Jacobian matrix. Write J = 4 + B where 4 is symmetric and B is
skew so that 4 = flagl, B =51

_ (0w, Ou, _1(0u, Ou,
Gy = 5(@ + ’a‘) by = é(a_x' - a—)

(i) Suppose B=0. Prove there is a function f satisfying df = } w,dz".
(ii) Suppose 4 =0. Prove that J is constant so that the u; are linear
functions of ', - - -, 2*. (This comes up in the theory of strain.)
7. Let a;; be n? functions of z',---,2". Show that the integrability
conditions
0%y, d%ay, d%a;  d%ay

o 0 or  oPor  ox ox

are necessary and sufficient for the existence of functions u,,---,u,
satisfying
U 2\oal T 0a')

Investigate n = 3 and » =2. (Due to Saint-Venant. See Love [18, p. 49].)
8. Let v be a vector field in E3. Show that there exists a function ¢ and
a vector field w with div (w) = 0 so that

v = grad (¢) + curl (w).

(Htnt: use the mechanism of harmonic differentials. Assume that if g is
any function in E3, the equation Lap (f) = ¢ has a solution. See Abraham-
Becker [1, pp. 37-38] and Love [18, p. 47].)

9. Consider the transformation

ql'—"qi(ql’ ")

The problem is to give a new proof of the relation

0p; , Op,

Lk _ 0

oo
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derived in Section 10.1. Set

Aj = dpj - Z‘—-dﬁi
and prove
(i) YA adgd=0
(ii) Aj = zgjkqu
from which you conclude that g; = g,;. Show that this is equivalent to the
desired relations.
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Glossary of Notation

This is a list of special terminology, definitions, and symbols, especially
from the early chapters.

A. Spaces
E" Euclidean n-space.
R The set of real numbers, also considered as E!, the Euclidean line.

U, V, -+ Open sets (in E", or on a manifold).
L, M, --- Vector spaces.

PL  The space of p-vectors on L.
M, N, --- Manifolds.

F?(U) The collection of all p-forms on U.
Cartesian product. If S and T are arbitrary sets (collections of objects),
their cartesian product is the set

sXT
consisting of all ordered pairs (s, t) where s belongs to § and
tto T.
Y ?$ This is the cartesian product $ ) S of S with itself. Similarly

X3s=sXs XS, et
S N T This is the intersection of the sets S and T. For example, if
$={1,2,5,71and T=1{2,3,7,9}, then S n T = {2,7}.
I The unit interval 0 £t < 1.

B. Functions

Mapping. A mapping is a smooth function ¢ from one space M to another

N. We write
¢: M— N.

Composite mapping. If ¢: M— N and y: N -— P, then we may
form the composite mapping y o ¢: M — P. It is defined
by

¥ o ¢)(@) = Y[¢(2)] for zin M.
See pp. 3, 22, ff.
201



202 GLOSSARY OF NOTATION

Linear functional. A linear transformation on a linear space L to the one-
dimensional space R of real numbers.

Jacobian. Ifw!=w!(x!, -+, 2")(i=1, -, n), the Jacobian of this mapping
is the determinant

| du'foa |.

¢* The mapping on differential forms induced by the mapping ¢
between spaces, p. 23, ff.

¢» The mapping on chains induced by the mapping ¢ between
spaces, p. 71, ff.

C. Special symbols

‘A The transpose of the matrix A, obtained from 4 by inter-
changing rows and columns.
|4} The determinant of the linear transformation (matrix) 4, p. 21, ff.
dim L The dimension of the linear space L.
o Here H=1{h,,---,h,}, aset of indices in increasing order,

1Shy<h,<:+<h,<n, and od¥=c"Ad"A - Ad".

H' This is the complementary set of indices. For example, if
n=28and H=1{2,3,5,6}, then H' ={1,4,7, 8}.
sgnn If n is a permutation on {1,2, -+, n}, then sgnz =1 if 7 is
effected by an even number of interchanges (of two numbers)
and sgnn = —1 if 7 is effected by an odd number of inter-
changes.
* The star operator, p. 15.
(o, B) The inner product, p. 12, ff.
0 The boundary operator, p. 58.

N\
dxt A oo Ad2P A o Ad2" meansdal A o Ade'T AdZITI A -0 A d2

The circumflex indicates omission.
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Beltrami operator, 44

Bianchi identity, 131
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Boundary of a simplex, 58
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Closed form, 67
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Completely integrable system, 96
Complex projective space, 73
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Constants of structure, 151
Contact transformation, 183 ff, 185
Continuity equation (fluids), 189
Convex surface, 112
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Cycle, 63
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De Rham’s theorems, 66 ff
Dirichlet integral, 83

E
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Euler equation of motion, 191
Exact form, 67

Exterior derivative, 20 ff
Exterior multiplication, 8 ff

F

Faraday’s law, 45

First integral, 107, 182
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Flat Riemannian manifold, 135
Fluid mechanics, 188 ff

Flux, 43

Frame manifold, 146

Frenet formulas, 122

Frobenius, G., 4

Frobenius integration theorem, 92 ff

G

Gallissot, F., 198
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Gaussian curvature, 42, 118, 126
General linear group, 156
Geodesic, 119, 134

Goldberg, 8. I., 198

Golomb, M., 198

203



204

Goursat, E., 4, 26, 198
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H
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Heat equation, 90 ff
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Hopf invariant, 79
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Integral-invariant, 174
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J
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Jordan-Brouwer theorem, 77

K

Kahler, E., 4

Kinetic potential, 166
Klein bottle, 71
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L

Lagrange brackets, 183
Lagrangian, 166

Lamb, H., 198

Laplace expansion (determinant), 10
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Last multiplier, 107

Left invariant, form, 160
Left translation, 150

Lie, 8., third theorem of, 108
Lie bracket, 180

Lie group, 150 ff
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88
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M
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Monge notation, 126
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N
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o

Ordinary differential equations, 106 ff
Orientable manifold, 51
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Orthogonal coordinates, 39
Orthogonal group, 158

Orthonormal basis, 13 ff

P

Parabolic equation, 90

Parallel displacement, 119, 133, 146
Parallel surface, 113

Periods, 66 ff
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Poincaré lemma, 2, 4, 27 ff
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Poisson brackets, 180

Poisson integral formula, 87
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Potential theory, 82 ff
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