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Abstract

We establish closed formulas for all strongly continuous one-parameter semigroups of
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1. Introduction

Throughout this work H denotes a fixed complex Hilbert space with scalar product
⟨x| y⟩ which is linear (i.e. C-linear) in x and antilinear in y and we shall write ∥x∥ :=
⟨x|x⟩1/2 for the canonical norm. We use the notations B := {x ∈ H : ∥x∥ < 1},
a∗ := [x 7→ ⟨x|a⟩] for the open unit ball, and the adjoint representation of bounded linear
functionals, respectively. We regard the elements h, h∗ (h ∈ H) as column resp. row
matrices and, given a linear map A : S → H on some linear submanifold of H, we apply
the canonical H ⊕ C-split matrix identifications x ⊕ ξ ≡

[
x
ξ

]
resp.

[
A b
c∗ d

]
≡

[
x ⊕ ξ 7→

(Ax + b) ⊕ (c∗x + d)
]
with x ∈ S, b, c ∈ H and ξ, d ∈ C. This gives rise to the familiar

linear representation of fractional linear maps on H:

F
([A b

c∗ d

])
:=

[
x 7→ (c∗x+ d)−1(Ax+ b)

]
.

Our object of chief interest will be the semigroup Iso(dB) of all holomorphic isometries
of B with respect to the Carathéodory metric dB. Recall [3, 4] that all its elements are
fractional linear maps, namely they are compositions of Möbius transformations1 with
linear isometries of H (restricted to B). In 1987, in his pioneering work [12], Vesentini
established that the correspondence

F# :
[
U t : t∈R+

]
7→

[
F(U t)|B : t∈R+

]
Email address: stacho@math.u-szeged.hu (L.L. Stachó)

1Fractional linear transformations mapping B injectively onto itself.
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maps the family C0S
(
Iso(H)

)
of all strongly continuous one-parameter semigroups of

linear isometries of the indefinite norm ∥x∥2−|ξ|2 on H⊕C into the family C0S
(
Iso(dB)

)
of all strongly continuous one-parameter semigroups [Ψt : t∈R+]⊂ Iso(dB).

2 According
to [12, Th.VII], given [U t : t∈R+]∈S with the infinitesimal generator A = d

dt

∣∣
t=0+

U t,

for the corresponding non-linear objects Ψt := F(U t)
∣∣B we have

{
p ∈ B : t 7→ Ψt(p)

is differentiable
}
=

{
x ∈B : x⊕1 ∈ dom(A)

}
, and the latter set is dense in the ball

B. It is well known [12, 5] that here we can identify the linear operator A (which is
densely defined in H⊕C) with an H⊕C-split matrix if and only if the orbit t 7→ Ψt(0)
is differentiable. This happens if and only if the generator A has the form

A =
[iA+ ν b

b∗ ν

]
, ν∈C, b∈H, A∈Hers(H) (1.1)

with dom(A) = dom(A) ⊕ C where Hers(H) stands for the family of all unbounded
H-hermitian operators (maximal symmetric closed linear operators with dense domain
in H). Even the cases with non-differentiable 0-orbit can be treated by passing to a
semigroup [Φt : t ∈ R+] of the form Θ−1 ◦ Ψt ◦ Θ with any Möbius transformation
Θ such that Θ(0) ∈ dom(Γ). Since the Möbius group is transitive on B, hence any
strongly continuous one-parameter semigroup [Ψt : t ∈ R+] ∈ C0

(
Iso(dB)

)
is equivalent

up to a Möbius transformation (Möbius equivalent for short in the sequel) to a semigroup
[Φt : t ∈ R+] ∈ C0

(
Iso(dB)

)
whose infinitesimal generator [8, 9] has the form

Γ(x) =
d

dt

∣∣∣
t=0+

Φt = b−
⟨
x
∣∣b⟩x+ iAx, x ∈ dom(R) ∩B (1.2)

with some maximal symmetric operator A defined densely on H and some vector b ∈ H.
Also conversely, if iA is the infinitesimal generator for some strongly continuous one-
parameter subsemigroup of L(H) then, for any b ∈ H, the vector field (1.2) is the
infinitesimal generator of a strongly continuous one-parameter subsemigroup of Iso(dB).
It is worth noticing that Kaup [6, 7] achieved a far-reaching Jordan-theoretical analog
of (1.2) describing the complete holomorphic vector fields of the unit ball of JB*-triple
and integrated them for the case A = 0 resulting in a fractional linear type formula for
generalized Möbius transformations. However, strong continuity destroys such an elegant
setting. In [13, 5] these considerations were extended to semigroups of fractional linear
transformations arising from a strongly continuous one-parameter semigroup applied to
the solutions of Ricatti type equations ẋ = Γ(x) with vector fields analogous to (1.2) in
reflexive Hilbert C∗-modules, but without providing explicit algebraic formulas.

2. Results

Henceforth, for short, C0-semigroup [resp. C0-group ] will mean strongly continuous

one-parameter semigroup [-group]. We shall write gen[U t : t ∈ R+] or gen[Ũ
t : t ∈ R] for

2It seems that so far no argument appeared in the literature concerning the plausible surjectivity of

the map F#
. The question is rather harmless in our setting: in the case of the unit ball of a Hilbert

space an argument with joint fixed points (Lemma 3.1) furnishes a positive answer. However, e.g. in

the case of the unit ball of L(H), the surjectivity of the respective F#
seems to be open and highly

non-trivial.

2



the infinitesimal generator of the C0-semigroup [U t : t ∈ R+] or C0-group [Ũ t : t ∈ R],
respectively. Given a closed subspace K in the Hilbert spaces H or Ce ⊕H, let PK be
the orthogonal projection onto K (without danger of confusion).

In this paper we develop a triangularization method leading to explicit algebraic
formulas for a C0-semigroup generated by a vector field (1.2). This will be done in
terms of fixed points of Γ and quadratures of a C0-semigroup formed by complex linear
isometries of a suitable 1-codimensional subspace of H. As a consequence we conclude
that any C0-semigroup of holomorphic Carathéodory isometries of B admits a dilation
to a C0-group of surjective holomorphic Carathéodory isometries of the unit ball of
some covering Hilbert space. Our fixed-point approach seems to be new even in finite
dimensions (with uniformly continuous one-parameter groups).

Recall [3] that any Carathéodory isometry Ψ ∈ Iso(dB) admits a continuous extension
Ψ to the closed unit ball B. Given a C0-semigroup Ψ = [Ψt : t ∈ R+] ⊂ Iso(dB),
the extensions Ψ := [Ψt : t ∈R+] form also a C0-semigroup (see [10] in a more general
setting). According to [12, Section 7]Ψ admits common fixed points whose family Fix(Ψ)
consists of one or two boundary points or it is the intersection of B with some closed
complex-affine submanifold containing points from B. In the latter case Ψ is simply
Möbius equivalent to a C0-semigroup of linear isometries of H restricted to B.

Our main goal is the following classification of the remaining cases with explicit
formulas up to Möbius equivalence.

Theorem 2.1. Suppose the vector field (1.2) is the infinitesimal generator of a C0-
semigroup Φ := [Φt : t ∈ R+] ⊂ Iso(dB) having a common boundary fixed point e ∈
Fix(Φ) ∩ ∂B. Then for all points x0 + ξe ∈ B with x0 ⊥ e we have

PCe Φ
t(ξe+x0)=

[
1− (1− ξ)e−2λt

/
φλ,µ(t, x0, ξ)

]
e ,

PH0Φ
t(ξe+x0)=

[
(1−ξ)e−2λt

(∫ t

0
eλsV s

0 ds
)
b0+e

−λtV t
0 x0

]/
φλ,µ(t, x0, ξ)

(2.2)

where H0 := H ⊖ Ce, λ := Re⟨e|b⟩, µ := Im⟨e|b⟩, b0 := PH0b and [V t
0 : t ∈ R+] is the

C0-semigroup of all linear H0-isometries generated by the skew-H0-hermitian operator
iPH0(A− µ)

∣∣H0 and

φλ,µ(t, x0, ξ) := 1 + (1− ξ)
⟨(∫ t

0
e−2λs

∫ s

0
eλrV r

0 dr ds
)
b0

∣∣∣ b0⟩−
− (1− ξ)(λ+ iµ)

∫ t

0
e−2λsds+

⟨(∫ t

0
e−λsV s

0 ds
)
x0

∣∣∣ b0⟩. (2.3)

Remark 2.4. The following converse can be recovered from the proofs later on (see
Remark 3.13). Given any couple of vectors e, b0 ∈ H such that ∥e∥ = 1 and b0 ⊥ e along
with any C0-semigroup [V t

0 : t ∈ R+] of linear isometries of H0 = H⊖ (Ce) and two real
constants λ, µ, the maps (2.2) form a C0-semigroup in Iso(dB).

Remark 2.5. In case of λ ̸=0, one can express the integrated operators in (2.2) in terms
of the resolvent R(±λ, iS0) of the H0-hermitian operator S0 := i−1gen[V t

0 : t ∈ R+].

Namely we have
∫ t

0
e−λτV τ

0 dτ =
(
1 − e−λtV t

0

)
R(λ, iS0),

∫ t

0
e−2λτ

∫ τ

0
eλσV σ

0 dσ dτ =
1
2λ (1−e

−2λt)R(−λ, iS0)−
(
1−e−λtV t

0

)
R(λ, iS0)R(−λ, iS0).
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Theorem 2.6. Let Ψ := [Ψt : t ∈ R+] ⊂ Iso(dB) be a C0-semigroup with e ∈ Fix(Ψ) ⊂
∂B. Then, with the notations of Theorem 2.1, we have the following alternatives:

(i) Fix(Ψ) consists of two points and Ψ is Möbius equivalent to some C0-semigroup
[Φt : t ∈ R+] ⊂ Iso(dB) of the form

Φt(ξe+ x0) =
ξ + tanh(λt)

1 + ξ tanh(λt)
e+

e−λt

cosh(λt) + ξ sinh(λt)
V t
0 x0 ; (2.7)

(ii) {e} = Fix(Ψ), there is a Ψ-invariant disc of the form ∅ ≠ (e+ Cv) ∩B and Ψ is
Möbius equivalent to a C0-semigroup [Φt : t ∈ R+] of the form

Φt(ξe+ x0) =
1 + iµt

1− iµt

ξ − iµt/(1 + iµt)

1 + iµtξ/(1− iµt)
e+

1

1− iµt(1− ξ)
V t
0 x0 ; (2.8)

(iii) there is no Ψ-invariant disc of the form ∅ ̸= (e+Cv)∩B and Ψ is Möbius equivalent
to a C0-semigroup [Φt : t ∈ R+] of the form (2.2) with λ = 0.

Remark 2.9. In the setting of Theorem 2.1, a non-empty disc (e+Cv) ∩B is [Φt : t ∈
R+]-invariant if and only if e ̸⊥ v ∈ dom(A) and (iA + ⟨e| b⟩)v ∈ Ce as established in
Lemma 4.1. Hence, only cases (i) or (ii) may appear in finite dimensions. Example 4.2,
with possible independent interest for physics or stochastic processes, shows that case
(iii) is not void.

Recall that, as an implicit simple special case3 of [1, Main Theorem], every C0-
semigroup [U t : t∈R+] of H-isometries admits a unitary group dilation in the following

sense: there exists a Hilbert space Ĥ containing H as a subspace along with a C0-group
[Û t : t∈R] of unitary operators of Ĥ such that U t= Û t

∣∣H (t∈R+). Applying a unitary

dilation [V̂ t
0 : r∈R] of the isometry semigroup [V t

0 : t∈R+] in (2.2), we readily obtain the
following result with non-linear dilations.

Corollary 2.10. Given any C0-semigroup [Ψt : t ∈ R+] of holomorphic Carathéodory

isometries of B, there is a C0-group [Ψ̂t : t ∈ R+] of surjective holomorphic Carathéodory

isometries of the unit ball B̂ of some Hilbert space Ĥ containing H as a subspace such
that Ψt = Ψ̂t

∣∣B (t ∈ R+).

By means of the functional calculus of the skew self-adjoint generator iŜ0 of the
dilation group [V̂ t

0 : t ∈ R] of the C0-semigroup [V t
0 : t ∈ R+], we get the following

conclusion in the setting of Theorem 2.1.

Corollary 2.11. In (2.2) we can write

φλ,µ(t,x0,ξ)=
⟨
x0

∣∣∣f1(t, λ, Ŝ0)b0

⟩
+(1−ξ)

[⟨
f2(t, λ, Ŝ0)b0

∣∣∣b0⟩− (λ+ iµ)
∫ t

0
e−2λsds

]
+1,

PH0Φ
t(x) = φλ,µ(t, x0, ξ)

−1
[
e−λt exp(itŜ0)x0 + (1− ξ)e−2λtf1(t, λ, Ŝ0)b0

]
3We begin Section 4 with an elementary proof in a Banach space setting.
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with the bounded analytic functions fj(t, λ, ·) : R → C (j = 1, 2; λ, t ∈ R) defined by

f1(t, λ, σ) :=
1− e−t(λ+iσ)

λ+ iσ
=

∞∑
n=1

(−1)n−1(λ+ iσ)n−1 t
n

n!
, f2(t, λ, σ) :=

:=
e−2λt

2λ(λ+iσ)
+

1

2λ(λ−iσ)
− e−t(λ−iσ)

λ2+σ2
=

∞∑
n=2

[ (−2λ)n

2λ(λ+ iσ)
− (−λ+ iσ)n

λ2 + σ2

] tn
n!
.

3. Triangularization with boundary fixed points

Lemma 3.1. Assume Ψ = [Ψt : t ∈ R+] ⊂ Iso(dB) is a C0-semigroup where Ψt =
F(Ut)

∣∣B with Ut ∈ L(H ⊕ C) (t ∈ R+). Then there is a family [µt : t ∈ R+] ⊂ C \ {0}
such that

[
µtUt : t ∈ R+

]
is a C0-semigroup in L(H⊕ C).

Proof. Let o be a common fixed point of the transformations Ψt = F(Ut)
∣∣B (t∈R+).

We are going to show that the choice µt :=
[
Ut(o⊕1)

]−1

C entailing µtUt(o⊕1) = o⊕1 suits
our requirements. Consider the matrices Vt := µtUt. Clearly F(Vt) = F(Ut) (t∈R+). The
map U 7→ F(U)

∣∣B is a homomorphism with respect to compositions, and its preimages

are unique up to non-zero factors. Therefore we have F(Vt+s)
∣∣B = Ψt+s = Ψt ◦ Ψs =

F(VtVs)
∣∣B and hence Vt+s = dt,sVtVs (t, s ∈ R) with suitable constants dt,s ̸= 0. The

fixed point property
Vt(e⊕ 1) = e⊕ 1 (t ∈ R+) (3.2)

ensures that dt,s ≡ 1, that is, the family [Vt : t ∈ R+] is a one-parameter matrix
semigroup. To see its strong continuity, recall [3, Ch. VI] that the Möbius shifts

Θa := FMa, Ma :=
[
Qa a
a∗ 1

]
, Qa := PCa +

√
1−∥a∥2(1− PCa) (a∈B) (3.3)

act transitively on B. Thus, since every element of Iso(dB) keeping the origin fixed is a
restriction of a linear isometry of H, we can write Ψt = Θat ◦ Ut where at := Ψt(0) and
Ut is a suitable linear isometry of H. Since Ut = F

[
Ut 0
0 1

]
, with suitable constants δt ̸= 0,

we have

Vt := δtMat

[
Ut 0
0 1

]
= δt

[
QatUt at
[U∗

t at]
∗ 1

]
(t∈R+).

The value of δt is determined unambiguously by (3.2): δt =
[
1 + ⟨Ute|at⟩

]−1
. Thus

to complete the proof, it suffices to see the continuity of the functions t 7→ at, t 7→
[Utx,Qatx] (x ∈ H). It is an immediate consequence of [2, Appendix A6] that the
product t 7→ AtBt is strongly continuous for any couple of uniformly bounded strongly
continuous operator-valued functions t 7→ At ∈ L(X1,X2), t 7→ Bt ∈ L(X2,X3) in case
of normed spaces Xk. By assumption, the orbit t 7→ at = Ψt(0) is a norm-continuous
map R+ → B implying the norm continuity of the function t 7→ Qat . We deduce the
strong continuity of the H-isometry-valued function t 7→ Ut as follows. Consider any
vector x ∈ H. We may assume x ∈ B without loss of generality. Then, by the aid of the
Möbius shifts (3.3), we can write

Utx =
[
Θ−1

at
◦Ψt

]
(x) = Θ−at

(
Ψ(x)

)
(t∈R+)

whence the continuity of t 7→ Utx = (1− ⟨x|at⟩)−1[Qatx− at] is immediate.
5



3.4. Standard notations, assumptions. Henceforth, for the proofs for Section 2, we
assume without loss of generality the following facts.

(i) Ψ := [Ψt: t∈R+] is an arbitrarily given C0-semigroup of holomorphic Carathéodory
isometries of B without common fixed point inside B;

(ii) Φt := Θ ◦Ψt ◦Θ−1 (t ∈ R+) with a suitable Möbius transformation Θ;

(iii) the orbit t 7→ Φt(0) is differentiable and Φt = F#U t
∣∣B with some C0-semigroup

[U t : t∈R+] of linear H-isometries,

A := gen[U t : t∈R+] =
[iA b
b∗ 0

]
, b∈H, iA = gen[U t : t ∈ R+];

(iv) e ∈ ∂B is a joint boundary fixed point of the maps Φt, and we write

H0 := H⊖ Ce, P := PCe, P0 := PH0 = 1−P, T : x 7→x+e, T :=
[idH e

0 1

]
.

Proposition 3.5. We have e∈dom(A) with A(e ⊕1) = ν(e ⊕1) and b = (ν−iA)e for
some ν∈C. The possibly unbounded operator A0 := P0A

∣∣H0 ∩ dom(A) is H0-hermitian
and, in terms of (Ce⊕H0 ⊕ C)-matrices, we have

T −1AT =

−ν 0 0
−b0 iA0 0
ν b∗0 ν

 where b0 := P0b, ν = ⟨e| b⟩. (3.6)

Proof. By assumption 3.4(ii), e ⊕ 1 is a joint eigenvector of the linear operators U t.
Hence U t(e⊕1) = ζt(e⊕1) (t ∈R+) with a continuous solution [t 7→ ζt] of the Cauchy
equation ζs+t = ζsζt. Thus for some ν ∈ C, ζt = eνt and we have

e⊕1 ∈ dom(A) = {z : t 7→ U tz is differentiable}, A(e⊕1) = ν(e⊕1).

As a consequence, e ∈ dom(A) = PHdom(A) and the operator

Ã0 := A− PA−AP + PAP = (1− P )A(1− P ) = P0AP0

is a bounded perturbation ranging in H0 of A ∈ Hers(H) with a self-adjoint operator
of finite rank. Hence its restriction A0 to H0 is a well-defined unbounded H0-hermitian
operator. Since A is a (Ce⊕H0)-matrix operator, we can write

A=

[
iA b
b∗ 0

]
=

 iα ia∗0 β
ia0 iA0 b0
β b∗0 0

, b0 :=P0b, β :=⟨b|e⟩, a0 :=P0Ae, αv :=⟨Ae|e⟩

in terms of (Ce⊕H0 ⊕C)-matrices. The eigenvector equation A(e⊕1) = ν(e⊕1) means
that we have iAe+ b = νe with ⟨e| b⟩ = ν implying iα+β = ν, ia0+ b0 = 0, β = ν. Since

T =

1 0 1
0 1 0
0 0 1

 , T −1 =

1 0 −1
0 1 0
0 0 1

 ,
in (Ce⊕H0⊕C)-matrix form, hence (3.6) is immediate.
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Notation 3.7. Henceforth [U t
0 : t ∈ R+] denotes the C0-semigroup of H0-isometries

generated by the operator iA0 := P0A
∣∣H0 ∩ dom(A).

Lemma 3.8. Let E1,E2 be Banach spaces, G :=
[
G1 0
H G2

]
with H ∈ L(E1,E2) and

Gk=gen[W t
k : t∈R+] for some C0-semigroup [W t

k : t∈R+]⊂L(Ek). Then the family

St :=

[
W t

1 0∫ t

0
W t−s

2 HW s
1 ds W t

2

]
(t ∈ R+)

is a C0-semigroup in L(E1 ⊕E2) such that gen[St : t ∈ R+] = G.

Proof. The family W := [Wt : t ∈ R+] where Wt :=W t
1⊕W t

2 is a C0-semigroup in
E1⊕E2 and G is a bounded perturbation of gen(W) = G1⊕G2(≡

[
G1 0
0 G2

]
) with dom(G)=

dom(G1)⊕dom(G2) by the operator H :=
[
0 0
H 0

]
. According to [2, Thm. III.1.10], for

every fixed z=x⊕y∈dom(G) we have

Stz =

∞∑
n=0

Sn(t) where S0(t) := Wtz, Sn+1(t) =
t∫
0

Wt−sHS(k)
n (s) ds.

Since H is an off-diagonal 2×2 triangular operator matrix, Sn(t) = 0 for n > 1.

3.9. Proof of Theorem 2.1
Since T is a bounded invertible H⊕C-operator and A = gen[U t : t ∈ R+], we have

T −1AT = gen
[
Vt : t ∈ R+

]
for Vt := T −1U tT .

Since Φt = F(U t)
∣∣B (t ∈ R+), in terms of the translation Tx := x+ e, we can regard the

C0-semigroup [Vt : t ∈ R+] as the linear representation by means of F of the semigroup
[T−1 ◦ Φt ◦ T : t ∈ R+] which consists of holomorphic isometries of the shifted ball
B−e whose continuous extensions leave the origin fixed. Due to the projective identities
F
(
T −1VT

)
= T−1 ◦F(V) ◦T

(
V ∈L(H⊕C)

)
, for the points x ∈ T−1B = B− e we have

F(Vt)(x) =
[
F(T −1U tT )

]
(x) = [T−1 ◦ Φ ◦ T ](x) = Φ(x+ e)− e.

Therefore
Φt(x) = F(Vt)(x− e) + e (x ∈ B).

By the aid of Lemma 3.8 and (3.6) we calculate a quadrature form for Vt as follows.
Regarding the top left 2×2-corner of the matrix T −1AT we get

[
−ν 0
−b0 iA0

]
= gen

[
V t : t ∈ R+

]
, V t =

 e−νt 0
t∫
0

U t−s
0 e−νs(−b0)ds U t

0

 . (3.10)

Another application of Lemma 3.8 to T −1AT yields

Vt =

 V t 0
t∫
0

eν(t−s)b∗V sds eνt

 (t ∈ R+). (3.11)
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As a consequence of (3.11), since Vt(x⊕1)=
[
V tx

]
⊕ eνt

[ t∫
0

⟨e−νsV τx| b⟩dτ + 1
]
, we get

Φt(x) =
e−νtV t(x− e)⟨∫ t

0
e−νsV s(x− e) ds

∣∣ b⟩+ 1
+ e (x ∈ B, t ∈ R+). (3.12)

We substitute (3.10) into (3.12) in terms of the new parametrization

λ = Re ν, µ := Im ν, V t
0 := e−iµtU t

0.

Given any vector z = z0 + ζe, z0 ∈ H0, and recalling the commutativity of convolutions,

e−νtV tz = ζe−2λt
[
e−

t∫
0

eλsV s
0 b0 ds

]
+ e−λtV t

0 z0,
t∫
0

⟨
e−νsV sz

∣∣b⟩ ds =
= ζ(λ+iµ)

1−e−2λt

2λ
− ζ

t∫
0

e−2λs
s∫
0

eλr
⟨
V r
0 b0

∣∣b0⟩ dr + t∫
0

e−λs
⟨
V s
0 z0

∣∣b0⟩ ds ds.
The statement of Theorem 2.1 is immediate from (3.12) with z := x−e=x0+(ξ−1)e.

Remark 3.13. It is discovered from the above proof that any tuple

a :=
(
H, e, [V t

0 : t∈R+], b0, λ, µ
)

with a Hilbert space H, a unit vector e ∈ H, a C0-semigroup [V t
0 : t ∈ R+] of H0(:=

H⊖Ce)-isometries, a vector b0∈H0 and two real constants gives rise to a C0-semigroup
[Φt
a : t∈R+] of holomorphic Carathéodory isometries of the open unit ball B of H ≡

Ce⊕H0 whose generator Γ(x) = d
dt

∣∣
t=0+

Φt
a(x) =

d
dt

∣∣
t=0+

F(T VtT −1)x has the form (1.2)
with

b =

[
λ− iµ

b0

]
, A =

[
2µ −ib∗0
ib0 A0

]
, iA0 = gen[V t

0 : t ∈ R+]. (3.14)

In particular we can extend [Φt
a : t ∈ R+] to a C0-group [Φt

a : t ∈ R] ⊂ Iso(dB) if and only
if [V t

0 : t ∈ R+] consists of H0-unitary operators (cf. [12, Theorem II]). Furthermore,
given any tuple

b := (H, A, e, λ)

with a densely defined maximal symmetric linear H-operator A, there is a unique C0-
semigroup [Ψt

b : t ∈ R+] ⊂ Iso(dB) whose infinitesimal generator is of the form (1.2)

with b := (ν − iA)e where ν := λ+ iµ and µ = ⟨Ae| e⟩.

4. Invariant discs

Lemma 4.1. The C0-semigroup [Φt : t ∈ R+] ⊂ Iso(dB) with generator (1.2) and joint
boundary fixed point e ∈ ∂B admits no invariant disc of the form B ∩ (e + Ce) ̸= ∅ if
and only if the operator iA+ ⟨e|b⟩ is not injective or e ∈ range(iA− ⟨e|b⟩).

Proof. Consider any vector v ∈ H such that e+ v ∈ B. The disc ∆v
e := B ∩ (e+ Cv)

is [Φt : t ∈ R+]-invariant if and only if the vector field (1.2) is tangent to it, that is, if
b − ⟨e + τv|b⟩(e + τv) + iA(e + τv) ∈ Cv whenever e + τv ∈ B. This happens if and
only if −⟨v|b⟩e + iAv = ζv for some ζ ∈ C, because we have e ∈ dom(Γ) = dom(A)
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and Γ(e) = b − ⟨e|b⟩ + iAe = 0 (due to the fact that the point e is [Φt : t ∈ R+]-
invariant). According to Proposition 3.5, here we have b = (ν − iA)e where ν = ⟨e|b⟩.
Therefore ζv = −⟨v|(ν − iA)e⟩e+ iAe = ⟨(−ν − iA)v|e⟩e+ iAe. Notice that, in general,
PCex = ⟨x|e⟩e = x − PH0x (x ∈ H). Thus the disc ∆v

e is [Φt : t ∈ R+]-invariant if and
only if −νPCev + PH0(iAv)− ζv = 0 i.e. PH0(iAv − ζv) = 0 and PCe(−ν − ζ)e = 0 for
some ζ ∈ C. By assumption ∆v

e ̸= ∅ which is possible if and only if PCev ̸= 0 implying
ζ = −ν. Hence we conclude that the [Φt : t ∈ R+]-invariance of ∆v

e is equivalent to the
relation PH0(iAv + ν)v = 0 i.e. to (iA+ ν)v ∈ Ce which completes the proof.

Example 4.2. The C0-semigroup of the type Ψb = [Ψt
b : t∈R+] in Remark 3.13 with

H := L2(R), Af := [x 7→ xf(x)
(
dom(A) :=

{
f :

∫∞
−∞ |xf(x)|2 dx < ∞

})
, λ := 0

and e := (2π)−1/2exp
(
−(x−1)2/2

)
admits no invariant 1-dimensional disc. Indeed, we

have ⟨Ae| e⟩ = (2π)−1
∫∞
−∞ x exp(−(x − 1)2) dx = (2π)1/2 ̸= 0. Thus, according to the

construction of the C0-semigroupΨb, ν= ⟨e| b⟩= iµ= i⟨Ae| e⟩/2∈ iR\{0}. The relation
(iA+ ν)v = ζe would imply v = −iζ exp(−(x− 1)2/2)/(x−µ) ∈ L2(R) which is possible
only if v = 0.

4.3. Proof of Theorem 2.6
Recall [3] that the 1-dimensional complex affine discs of the form ∆p,q :=

(
p+C(q−p)

)
∩B

(q ̸= p, q ∈ ∂B) are the ranges of complex geodesics for the Carathéodory distance dB,
and dB-isometries preserve their family. In particular, in the case when p ̸= q ∈ ∂B
are joint fixed points of the continuous extensions Ψt, the disc ∆p,q is automatically
[Ψt : t ∈ R+]-invariant. Suppose Ψt(∆p,q) = ∆p,q (t ∈ R+). Then the restricted maps
ψt
p,q := Ψt

∣∣Dp,q form a C0-semigroup of holomorphic automorphisms of a 1-dimensional

Hilbert ball, thus their continuous extensions ψt
p,q to Dp,q admit at least one fixed point

which is necessarily a joint fixed point for the maps Ψt. A 1-dimensional application of
Theorem 2.1 shows that all the orbits t 7→ ψt

p,q(x) = Ψt(x) (x ∈ ∆p,q) are automatically
real analytic. Hence, given any Möbius transformation Θ, the C0-semigroup [Φt : t ∈ R+]
with Φt := Θ ◦ Ψt ◦ Θ−1 leaves the dB-geodesic DΘ(p),Θ(q) invariant, and the orbit
t 7→ Φt(0) is differentiable. Conversely, if [Φt : t ∈ R+] is a C0-semigroup leaving the disc
∆e,−e(= {ζe : |ζ| < 1}) invariant and Φt(e) = e, Ψt = Θ−1 ◦ Φt ◦ Θ (t ∈ R+), then the

image Θ(∆e,−e) is a [Ψt : t ∈ R+]-invariant 1-dimensional affine section of B containing

a joint fixed point of [Ψt : t ∈ R+] (namely the point Θ−1(e)).
Proof of (i), (ii). It remains only to verify the possibility of the simplified repre-

sentations (2.7), (2.8) by means of an appropriate choice for the coordinatizing Möbius
transformation Θ in 3.4. By setting x0 := 0 in (2.2), it is straightforward to check that
a C0-semigroup [Φt : t ∈ R+] of the form (2.2) leaves the disc ∆e,−e invariant if and only
if b0 = 0 and Φt(ξe) = ωλ,µ(t, ξ)e (|ξ| < 1) with the function

ωλ,µ(t, ξ) := 1− 2λ(1− ξ)e−2λt

2λ− (1− ξ)(λ+ iµ)(1− e−λt)
.

It is also easy to see that the constant 1 is a joint fixed point of all functions ωλ,µ(t, ·).
Observe that, for fixed λ, µ ∈ R, the family ωλ,µ(t, ·) t ∈ R+) admits another fixed point,
namely the constant ξλ,µ := iµ−λ

iµ+λ with modulus 1, if and only if we have µ = 0. Due

to folklore 2-transitivity properties of the Möbius group (for a direct proof see [10]),
given any two couples (e1, e2), (f1, f2) ∈ [∂B]2 of distinct boundary points, there exists
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a Möbius transformation Θ(e1,f1,e2,f2) with the effect ek 7→ fk (k = 1, 2). Thus in case if
[Ψt : t ∈ R+] has only a unique fixed point p ∈ ∂B but the disc ∆p,q is [Ψt : t ∈ R+]-
invariant, we obtain (2.8) with any coordinatization Θ := Θ(p,e,q,κe) where |κ| = 1, by
substituting b0 = 0 and µ = 0 in (2.2).

If [Ψt : t ∈ R+] admits two distinct fixed points p, q ∈ ∂B, then, as we have shown, the
disc ∆p,q is automatically [Ψt : t ∈ R+]-invariant, and with the choice Θ := Θ(p,e,q,−e)

we get a formula for Φt by substituting b0 = 0 and µ = 0 in (2.2) establishing (2.7).

Proof of (iii). Suppose indirectly that 0 ̸= λ = Re⟨e|b⟩. Then the skew symmetry of
iA implies that range(iA−⟨e|b⟩) = H. By Lemma 4.1, we have a non-trivial Γ-invariant
disc and we are in the setting of (i) or (iii). By assumption, (i) is not the case. However,
in the case of (iii) we have ⟨e|b⟩ = iµ ∈ iR automatically.

4.4. Proof for Remark 2.5
The operator S0 is closed with dense domain in H0. Since S0 is also symmetric, both
±iS0 are dissipative (namely Re⟨±iSx0|x0⟩ = 0 for x0 ∈ dom(S)) with the properties
that both range(±iS0+δ) are dense in H for any δ > 0 and that the operators (iS+δ)−1 :
range(S) → H0 (0 ̸= δ ∈ R) are all bounded and densely defined.4 Given δ ∈R \ {0},
by [2, II. Lemma 1.3], for any x0 ∈ range(iS0−δ) and t > 0, we have

∫ t

0
e−δτV τ

0 x0 dτ =∫ t

0
e−δτV τ

0 (iS0−δ)[(iS0−δ)−1x0] dτ=
(
e−δtV t

0−1
)
(iS0−δ)−1x0. The boundedness of both

the operators V t and the resolvent R(δ, iS) = closure
(
(δ − iS0)

−1
)
establishes 2.5 for

t ∈ R+ and 0 ̸= λ ∈ R with integrals of strongly continuous bounded operator-valued
functions.

5. Dilation

Lemma 5.1. Let [U t : t ∈ R+] be a C0-semigroup of linear isometries of a Banach
space E. Suppose E is a subspace of another Banach space F and there is a surjective
isometry V ∈ L(F) such that U1 = V

∣∣E. Then there is a subspace E ⊂ Ê ⊂ F along

with a C0-group [Û t : t ∈ R] of surjective linear isometries of Ê such that U t = Û t
∣∣E

(t ∈ R+) with dom
(
gen[Û t : t ∈ R]

)
⊃ dom

(
gen[U t : t ∈ R]

)
.

Proof. Let Ê :=closure
(
E∞

)
in F where E∞ :=

∪∞
n=0 with En := V −nE. By assump-

tion VE = U1E ⊂ E. Hence, by induction, we conclude that the subspaces En (n ∈ Z+)
form an increasing sequence. Therefore all the operators U t

n := V −2nU t+nV n
∣∣En (t ≥

−n, n ∈Z+) are well-defined isometries En → E⌈n−t⌉. We have U t
n = U t

n+1

∣∣En for all
indices n∈Z+. Indeed, if x̂∈En and t≥−n, then

U t
n+1x̂ = V −2n−2U t+n+1V n+1x̂ = V −2n−2U t+n+1U1V nx̂ =

= V −2n−2U t+n+2V nx̂ = V −2n−2V 2U t+nV nx̂ = V −2nU t+nV nx̂ = U t
nx̂

4 Indeed, y0 ⊥ range(±iS0 + δ) means 0 = ⟨±iS0x0 − δx0|y0⟩ that is 0 = ⟨x0| ∓ iS0y0 − δy0⟩ for
(x0 ∈ dom(S)) entailing ∓iS0y0 + δy0 = 0 with δ∥y0∥2 = ±i⟨S0y0|y0⟩ ∈ iR which is possible only if
y = 0. Thus by the Lumer-Phillips theorem [2, II. Theorem 3.15], also the operator −iS0 generates a
strongly continuous contraction (actually isometry) semigroup and all the values 0 ̸= δ ∈ R belong to
the resolvent set of iS.
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since V extends U1 and we have V n+1x̂ ∈ E implying V n+1x̂ = U1V nx̂. Hence

U t
∞x̂ := lim

n→∞
U t
nx̂ =

[
U t
nx̂ : n ∈ Z+, n ≥ t

]
(x̂ ∈ E∞)

is a well-defined linear isometry of the linear manifold E∞ for any t ∈ R. Since
range(U t

n) ⊃ V −2nU⌈t⌉+nE = V ⌈t⌉−nE for t ≥ −n, we have range(U t
∞) = E∞ (t ∈ R).

Thus the operators Û t := closure(U t
∞) (t ∈ R) are well-defined surjective linear Ê-

isometries, each of which extending the respective U t. We check that they form a
C0-group as follows. Since [Û t : t ∈ R] is an equilipschitzian family, it suffices to see

that its restriction [Û t : t ∈ R] to the dense submanifold E∞ of Ê is a C0-group.

Given s, t ∈ R and x̂ ∈ Êℓ, we have Û tx̂ = V −2nU t+nV nx̂ ∈ Ê2n whenever n ≥-
tℓ and Ûs(Û tx̂) = V −2mU t+mV mÛ tx̂ whenever m ≥ max{−s, 2n}. It follows that

ÛsÛ tx̂ = Ûs+tx̂ because, with k ≥ 2(|s|+ |t|+ ℓ), we have

Ûs(Û tx̂) = V −4kUs+2kV 2kV −2kU t+kV kx̂ =

= V −4kUs+t+3kV kx̂ = V −4kUs+t+2kV 2kx̂V k = Ûs+tx̂.

To show the strong continuity, consider any vector x̂ ∈ Êℓ. Then for any integer n ≥ ℓ
the orbit (−n,∞) ∋ t 7→ Û tx̂ = V −2nU t+n(V nx̂) is continuous since V −2n is an isometry
and (V nx̂) ∈ E. Hence we can see also the required generator domain inclusion property:
with x̂ := x ∈ dom

(
gen[U t : t ∈ R+]

)
we have V nx = Unx ∈ dom

(
gen[U t : t ∈ R+]

)
entailing even the differentiability of the orbits (−n,∞) ∋ t 7→ Û tx.

In particular, since every linear isometry of a Hilbert space admits a unitary dilation
[11], in our setting of interest we conclude the following.

Corollary 5.2. If [U t : t ∈ R+] is a C0-semigroup of linear H-isometries, there exists

a Hilbert space Ĥ containing H as a subspace along with a C0-group [Û t : t ∈ R] of
Ĥ-unitary operators such that U t = Û t

∣∣H (t ∈ R+) whose generator is an extension of
gen[U t : t ∈ R+].

5.3. Proof of Corollaries 2.10-11
Given any Hilbert space Ĥ containing H as a subspace, every Möbius transformation of
H extends to a Möbius transformation of Ĥ. Hence it suffices to show only that any
C0-semigroup of the form of Theorem 2.1 admits a dilation of the same algebraic form
in a larger Hilbert space. Let [Φt : t ∈ R+] be given as in Theorem 2.1. According to
Corollary 3.13, for some tuple a :=

(
H, e, [V t

0 : t∈R+], b0, λ, µ
)
we have Φt = Φt

a = F(U t)
(t ∈ R+) with

gen[U t : t ∈ R+] =

[
iR b
b∗ 0

]
=

i(S0 + µ) −b0 b0
b∗0 2iµ λ− iµ
b∗0 λ+ iµ 0

 (5.4)

in terms of
[
H0 ⊕ (Ce) ⊕ C

]
-matrices. Let [V̂ t

0 : t ∈ R] be the dilation C0-group of

[V t
0 : t ∈ R+] consisting of unitary operators of a covering Hilbert space Ĥ0 of H0 with

the skew self-adjoint extension iŜ0 = gen[V̂ t
0 : t∈R] of iS0 guaranteed by Corollary 5.2.
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Also, by Remark 3.13, the tuple â :=
(
Ĥ, e, [V̂ t

0 : t∈R+], b0, λ, µ
)
where Ĥ := Ĥ0 ⊕ (Ce)

gives rise to a C0-group Φt
â : t ∈ R] such that Φt

â = F(Û t) (t ∈ R) whose infinitesimal

generator can be written in the form of the right-hand side of (5.4) when the entry S0 is

replaced by Ŝ0. Hence, by Theorem 2.1, the transformations Φt
a can be written in the

form (2.2) with Ŝ0 in place of S0 and V̂ t
0 in place of V t

0 . Since V̂ t
0

∣∣H0 = V t
0 (t ∈ R+), it

readily follows that Φt
â

∣∣H = Φt
a (t ∈ R+) which completes the proof of Corollary 2.10.

To prove Corollary 2.11, consider any C0-semigroup [Φt
a : t ∈ R+] with its dilation

group [Φ̂t
a : t ∈ R+] as above. By construction, the dilation C0-group [V̂ t

0 : t ∈ R] consists
of Ĥ0-unitary operators. Thus, in view of Stone’s classical theorem, we can apply the
functional calculus [11] with its skew self-adjoint generator iŜ0 when evaluating the
transformations Φt

a by means of (3.12). Actually, for any t ∈ R we have

t∫
0

e−λτ V̂ τ
0 dτ = g1,t(Ŝ0),

t∫
0

e−2λτ
τ∫
0

eλσV̂ σ
0 dσ dτ = g2,t(Ŝ0)

with the functions s 7→
∫ t

0
e−λτeiτsdτ resp. s 7→

∫ t

0
e−2λτ

∫ τ

0
eλσeiσsdσ dτ which are real

analytic R → C. Straightforward calculation establishes their algebraic form and the
Taylor series appearing in Corollary 2.11.
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