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Let B be the open unit ball of a complex Hilbert space 5. Let 5# @ C be
the Hilbert space direct sum of # and C, with inner product (, ), and let a
be the continuous hermitian sesquilinear form defined by a(p, ¢) = (Jp, q),
where p,qe # @ C, J is the operator J=I® (—1) and I is the identity
on #.

‘The group Aut B of all holomorphic automorphisms of B has a faithful
representation as a quotient of the group G, of all continuous invertible
linear operators in 5 @ C leaving the sesquilinear form a invariant; ie.,
there is a homomorphism ¢, of G, onto Aut B whose kernel is the center of
G, (cf. [2, Chap VI] also for bibliographical references).

If o has infinite dimension, @, extends naturally to a homomorphism ¢
of the semigroup G of all continuous linear operators in s @ C leaving the
form a invariant onto the semigroup Iso B of all holomorphic maps B— B
which are isometries for the hyperbolic differential metric of B [2]. .

The homomorphism ¢, and the composition rule in G, define in Aut B a
Lie group structure whose underlying topology—in accordance with a
general result of Vigué [10]—is that of local uniform convergence in B.

The continuous one-parameter groups in the Lie group Aut B corres-
pond (Theorem IIT) to one-parameter linear uniformly continuous groups
in Gy, ie., to homomorphisms R — G, which are continuous for the norm-
topology in the Banach space Z(s# @ C) of all bounded linear operators
in #@C.

In Sections 2 and 5 the strongly continuous linear semigroups R, — G
are characterized in terms of their infinitesimal generators. The image by ¢
of such a semigroup T defines a semigroup T: R, — Iso B of holomorphic
isometries of B. Some results on fixed points of holomorphic isometries of
B (established by Hayden and Suffridge in [3] for Aut B and extended to
Iso Bin [2]) are instrumental in describing in Sections 6-8 the structure of
the spectrum of the infinitesimal generator X of 7. These results yield a
characterization of the case in which T'is the restriction to R of a strongly
continuous grop R — G, thus providing an extension to the Minkowski
form a of the classical theorem of M. H. Stone on one-parameter unitary
groups in a complex Hilbert space.
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If n=dim¢ # < 0, the group structure of U(n, 1) is not the underlying
real structure of a complex Lie group. This classical result holds in general
for G, and G in the infinite-dimensional case, as follows from properties of

-holomorphic families of bounded linear operators in # @ C.  According to .

these results—which are established in Section 4— no non-trivial strongly
continuous semigroup in # @ C leaving the form a invariant can be
extended holomorphically to an open neighborhood of the positive real
axis. Similar questions for families of holomorphic isometries in B have
been investigated in [9].

The Cauchy problem associated with the infinitesimal generator X of the
semigroup T:R, — G defines, via the homomorphism ¢, a Riccati-type
equation in B. Uniqueness of the solution provided by the semigroup 1 is
discussed in Section 9.

1

If D and D’ are open sets in complex Banach spaces, Hol(D, D’) will be

‘the set of all holomorphic maps of D into D’; AutD will be the

group—contained in the semigroup Hol(D, D)—of all biholomorphic
automorphisms of D.

Let 5 be a complex Hilbert space with inner product ( | ) and norm
|l I, and let B be the open unit ball of 5.

For any xeB, let {, }, be the continuous positive-definite inner
product on # defined for v,, v, in 3 by

1 2
{v1, Uz}x=mw (w0 [ X)0x [ o2) + (L= Ix[*) vy | 2). - (L1)

The corresponding norm | |, is equivalent to | || and the map x| |,
is a differential metric which is contracted by all holomorphic maps of B
into B, in the sense that, for every fe Hol(B, B) and all xe B, ve i,

|df(x) vlf(x)< lle‘
In particular, if fe Aut B then
|df (x) vlf(x) = o[,

for all xe B, ve .

The differential metric x> | |, coincides with the Carathéodory and the
Kobayashi metrics on B [2, pp.153-154] and is called the hyperbolic
metric on B. In fact, (1.1) shows that if 2 =C and if B=4 the open unit
disc in C, then x| |, is the Poincaré metric on 4.
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Let Iso B be the semigroup of all holomorphic isometries for the hyper-
bolic metric,

Iso B= { fe Hol(B, B): |df (x) v|,= |v|, for all x € B, veH}.

A faithful representation of Iso B will now be described.
Let # @ C be the Hilbert space direct sum of # and C, with inner

product (p,, p,)=(x; | x,)+7,%,, where pi=(x;,1;), x;€#, 7,€C,

j=12.
Let J be the self-adjoint unitary operator on # @ C defined by the

matrix
I 0
J=<0 _1> (1.2)

where? .I =1, is the identity operator on 4. Let a be the continuous
hermitian sesquilinear form defined by

a(p1r 23) = (Ups, pa). - (13)

Let G be the semigroup of all linear maps S: # @ C — # @ C which
leave a invariant,

a(Spy, Spy) = a(py, ps) forallp,, p,in # @ C.

It turns out that every S€G is continuous [2, Theorem VL3.3, p. 169:]."

-Hence, denoting by S* the adjoint operator of S, Se G if, and only if,
S*JS=1J. |

. Equivalently, a continuous linear operator S on # @ C is contained in G
if, and only if, S has a matrix representation

A ¢
S= 1 , (1.4)

. —A*é) a

a
whose elements 4 € Z(H#), (e #, acC satisfy the conditions
4 1

»A*A=I+EZ—|—2(‘IA*5)A*5, (1.5)
la|>—&)1*=1 (1.6)

[2, Lemma VL3.1, p. 166].
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Condition (1.5) reads [[4x]%= || x||>+ (1/|a|?) |(4x | &)|* for all xe #, so
that, in view of (1.6) and of the Schwarz inequality,

(1 + 1IN (14x)? = Il‘xllz) =[(dx | &)< [ 4x|? 1E)3,
whence
14l < (T+ 1%

or, equivalently in view of (1.6),

—AH<1. (1.7)

Let G, be the group of all invertible elements of G. Then Se G, if, and
only if, Se G is bijective, or, equivalently, if and only if, 4 maps s bijec-
tively onto s [2, Theorem VI.3.3, p. 169].

Conditions (1.5) and (1.6) imply [2, pp. 176-177] that, if Se€ G, there
exists a neighbourhood U of the closure B of B such that

1
(x ZA*E>+a;éO forallxe U.
Let 'S e Hol(B, s#) be defined by

1
T (x| (a) A¥E) +a

8(x) (Ax+¢&) (x € B).
Conditions (1.5) and (1.6) imply [2, pp. 171-172] that S(B) < B, and the
following theorem holds [2, Theorem VI, 4.1, pp. 174-175].

TueoreM. The function S+ S is a surjective homomorphism of G onto
Iso B, mapping G, onto Aut B, whose kernel is the center of G.

The group Aut B (sometimes called the Mobius group of B) acts trans-
itively on B (cf, e.g., [2, Proposition VI.1.5, pp. 148-1491).

Let S be the continuous extension of S to B, for SeG. Then S is con-
tinuous for the weak topology on B [2, Theorem VI.4.5, p. 178]. Thus by
the Banach-Alaoglu and the Schauder-Tychonoff theorems S has at least
one fixed point in B, ie.,

Fix S={zeB:Sz=z}#{. (1.8)

Let Fix §={zeB:8z=z}. If zeB is a fixed point of §, the point
p={(z,1) is an eigenvector of S with eigenvalue x5 0. Note that (Jp, D)=
lz]|>—1<0, and (Jp, p) <0 if, and only if, ze B, ie, zeFix S.
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Vice versa, if p=(x, t)#0 is an eigenvector of S with eigenvalue p+#0,
and if (Jp, p)<O, then z=(1/r) xeFix S, and zeFix § if, and only if,
(/p, p)<0.

Let Fix S+# . Since Aut B acts transitively on B, there exists S, G,

such that, setting S"=S,0 S+ S5 !, then $'(0)=0, ie., S is represented by-

the matrix

40
S"(O a/)’

where A’ is a linear isometry of # and a’ € C with |a| = 1. Since
Fix §'={xeB: A'x=a'x}={xeB: §"(x, 1) =a'"(x, 1)},
then
Fix S={yeB: S;'(y, 1) eKer(a'lp 5 c — S')}.
This proves
PROPOSITION 1.1. If Fix S# (J there exists an eigenvalue u of S, with

lul =1, such that, denoting by F < # @ C the corresponding eigenspace,
then F & # @ {0} and

Fix §={xeB: (x,1)e F}.

COROLLARY 1.2. If Fix S+# (J there exists a closed affine subspace
Y < # such that Fix S=Bn%.

_ Now let Fix S= . In [3] Hayden and Suffridge have shown that, if
S e Aut B, then Fix S contains at most two points. Their proof was shown

in [2, pp.179-181] to hold if Selso B also. Here is a slightly different

argument yielding some supplementary information which will be useful
later on. '

Let Fix §= (4. If x and y are two distinct points of Fix S, then x € 9B,
ye0B. Furthermore the eigenvalues (" and ¢ of S corresponding to the
eigenvectors p=(x, 1) and g=(y, 1) are distinct, because otherwise every
point in the (non-empty) intersection of B with the affine line joining x and
y would be contained in Fix S.

If (Jp, p)=(Jq, g)=0, then

(J(p+4q), p+9)=2Re(Jp, q).

Thus, if (Jp,¢)=0, then (J(p+gq),p+q)=0, ie, [x+yl|*=4, or
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Re(x|y)=1. Hence, by the Schwarz inequality, Re(x|y)=|x| ||y,
implying immediately that x=y. Thus (Jp,q) #0, and equality

{6(Jp, q)= (ISp, Sq)= (Jp, q)
implies
{6=1. (1.9)

If ze 0B is a fixed point of S, different from x, and if  is the eigenvalue
of § corresponding to the eigenvector (z, 1), then {i=1, and (1.9) yields
u=o0. That proves

PRrOPOSITION 1.3. If Fix S= (&, then Fix S consists of two points of 0B
at most.

Furthermore (1.9) yields

Lemma 14. If FixS=¢ and if Fix$S contains two points, the

corresponding eigenvalues { and o of S, which are related by (1.9), are not
contained in the unit circle.

2
Let-L be a bounded operator on a complex Hilbert space 24" Let
T:t— T(z) (120) be a linear strongly continuous (ie., C,) semigroup on
A’ The infinitesimal generator of 7" is a closed linear operator X whose

domain Z(X) is dense in 4.

THEOREM, I.  The semigroup T satisfies condition

TW)* LT(t)=L  forallt>0 (2.1)
if, and only if,
‘ LI(X) = D(X*) (2.2)
and
X*L+LX=0 on 9(X). (2.3)

Proof. 1If (2.1) holds, then for p, g in

(T()* LT(2) p, ) = (LT(2) p, T(2) g) = (L(T(t) = D) p, (T(2) — 1) q)
+ (L(T() =D p. )+ (Lp, (T(t) — 1) q) + (Lp, ),
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whence
(L(T() = D) p, (T(1)—I) q) + (L(T() = D) p, ) + (Lp, (T(t)— 1) g) = 0.

Thus, for p and ¢ in 2(X), since
. (1 . (1
im (2w -np)=xp,  1m(+T0-Dg)=xq
1o \1? rlo \ 't

then
(LXp, q) + (Lp, Xq)=0.

Hence the linear form g+ (Xg, Lp) is continuous on Z(X). Therefore
Lpe 2(X*) for all pe 2(X), and

(LX+X*L)p,q)=0

for all ge 2(X). Thus (LX+ X*L) p=0 for all pe Z(X).
Vice versa, if (2.2) and (2.3) hold, since T(¢) 2(X) < 2(X) for all =0,
and since

d
5 T p=T(1) Xp=XT(1) p
for all pe 2(X) and all >0, then, for p and ¢ in 2(X) and t =0,

. .
gt (T()* LT() p, ) = (LT(1) p, T(t) q) = (LXT(t) p, T(1) q)

+ (LT(2) p, XT(2) q)
=((LX+X*L) T(t) p, T(t) ) = 0.

Hence (d/dt)(T(t)* LT(¢)p)=0 for pe2(X) and for all =0,
ie, T(e)*LT(r)p is independent of ¢>=0. Thus T(6)* LT(¢:)p=
T(0)* LT(0) p=Lp for all >0 and all p € 2(X). Hence T(¢)* LT(t)= L for
t=20on 9(X), and the;efore on A also. Q.E.D.

For a linear operator X, the resolvent set, the spectrum, the point spec-
trum and the residual spectrum of X will be denoted by r(X), o(X), po(X)
and ro(X), respectively.

If the bounded operator L in Theorem I is self-adjoint and such that

L?=1 (2.4)

(I=1,) then L is a continuous isomorphism of the Hilbert space % .
Conditions (2.2) and (2.3) amount to saying that the closed operator iLX
is symmetric.
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Real constants M > 1 and a exist such that:
[ T(2)ll < Me® for t>0; the half-plane {{eC:Re{>a} is contained in
r(X), and moreover

IEI=X)"" | < M(E—a)™™

for all real £>0 and m=1, 2,....

Assume now that LZ(X)=2(X*) and that (2.3) and (2.4) hold. By (2.3)
(LX)*= —LX, ie., iLX is self-adjoint. ¢(X™*) is the image of ¢(X) by the
map {— —{. On the other hand {er(X) if, and only if, {er(X*), and
moreover

(UI—X*) "' =({T-x)~"".
Hence
I—x)"V=(I+LXxL)~! =L{{I+X)"'L,
and therefore
|(CI+X)~") = |LT—X)="" L] = | ({T— %)~
==X <M —a)~™,

for all real {>a and m=1, 2,....
Thus, if LZ2(X) =2(X*), —X generates a strongly continuous
semigroup S:t+— S(¢) (1=0) on A, such that

S()* LS(t)=L for all 1> 0.
In conclusion X generates the strongly continuous group R: R — £ (X")
defined by R(t)=T1(z) for t =0, R(t)=S(—1t) for 1<0. Hence
R(t)* LR(t)=L  forallreR. (2.5)

Vice versa, if X is the generator of a strongly continuous group, then
there is a > 0 such that {{eC: |Re {|>a} < r(X).

If L9(X) g 2(X*) and if (24) and (2.3) hold, then X* is a proper
extension of the closed operator Y= — LXL, with domain 2(Y) =J2(X).
Therefore [4, p. 56]

{teC:Re{< —a}cr(Y)cpo(X*)c {{eC:{ea(X)}
c{(eC:|Re{|<a},

and this is absurd. This proves
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THEOREM II. If L sc{tisﬁes (2.4) and if the generator X of a strongly
continuous semigroup satisfies (2.2) and (2.3), then X generates a strongly
continuous one-parameter group R if, and only if, L9 (X)=D(X*). For the
group R (2.5) holds.
3

Throughout the following T: R, - ¥ (s @ C) will be a strongly con-

tinuous (ie., C,) semigroup of bounded linear operators in the complex

Hilbert space A =# @ C considered in Section 1, and henceforth the
operator L in. Theorem I will be the bounded self-adjoint operator J
expressed by the matrix (1.2). Note that J> =1, ¢ ¢.

The semigroup 7 leaves the hermitian sesquilinear form a invariant, ie.,
it satisfies

T()* JT(t)=J  forallt>0 (3.1)

if, and only if, T(z) is represented by a matrix

A(2) &(z)

o (| s ) a0

(3.2)

whose elements a(¢)eC, &(t)es#, A(t)e L(H) satisfy the conditions
(similar to (1.5) and (1.6))

la(t)i* — [£(2)|1* =1 o (33)

* — ; R * . *
A(t)* A(r) = +|a(1)|2( | A(2)* (1)) A(2)* £(2)

If these conditions are fulfilled then the #-valued function 7(¢) defined
on the open unit ball Bc # by

forall £>0. (3.4)

(A@) x+E(1) (3.5

~ 1
1O =T Wa) 400 €0) + a0
is holomorphic on B, and in fact 7T(¢) e Iso B.
The function T:¢— T(¢) is thus a one-parameter semigroup of
holomorphic isometries of B, which is continuous in the sense that, for
every x e B, t— T(t)(x) is a continuous map of R, into B, or equivalently
a(t) and () depend continuously on >0, and ¢+ A(¢) is continuous for
the strong operator topology. Actually 7(z) has a (unique) continuous
extension T(z): B— B and ¢t T(t)(x) is continuous on R for every x € B.
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By a theorem of Vigué [10, 2] Hol(B, B) and Aut B are a topological
semigroup and a topological group for the topology of local uniform
convergence on B.

Let the semigroup T satisfy condition (3.1). Setting

1
50 CO=— 4w,

the differential d7(¢)(0) of T(z) at 0 is given by
dT(2)(0) v=C(t) v— (C(2) v | 1(2)) n(2)

n(t)=—=

(ve #), (3.6)

and the power series expansion of 7(¢) in B is expressed by

+ 0

T()(x)=n(2)+ Z
By (1.7)

—(CO) x () dT(1)(0)x  (xeB). (37)

[CHII<1. (3.8)

TueoreM III. The C, semigroup T satisfying (3.1) is uniformly con-
tinuous if, and only if, T: R — Iso B is continuous for the topology of local
uniform convergence on B.

The basic ingredient in the proof of the theorem is the following

Lemma 3.1. If T is continuous for the topology of local uniform con-

vergence then
lim [|A(z) -1l =
t]0
Proof. First, it will be shown that

lim | C(1)~ 1] =0 (3.9)

If this is not the case, there exist some &¢>0 and two sequences {¢,} and
{x,} of positive numbers ¢, converging to 0 and of points x, € B, such that
1C(2,) x,—x,|| =¢ for v=1,2,.. (3.10)

On the other hand, since 7(z,) converges to the identity map for the
topology of local uniform convergence as v — + oo, then [5, 1.5 Theorem ]

lim 147 (2,)(0) — 1] =

vV —




282 ‘ EDOARDO VESENTINI
whence, by (3.6),
i 1C(@) %, = (C(1) x, | n(e,) n(t,) = x|

< lim ()= (C()- () n(2,) =1l =0.

Because the continuous linear form (C(z)- | 5(z)) has norm

ICC@) - 1 ()] = 1C@O)* n(D < NC)*|| In(2)

= [COI n(OI < [n(2) (3.11)

by (3.8), and because
lim 5() =1im T(£) 0=0,
t“.LO 110
then
Jim (€)%, ) )l < Tm ()| =o0.
Hence

lim |C(z,)x,—x,|

V= + 0

< _I}Ifw 1C(,) x, — (C(2,) x, | n(2,)) n(2,) = x,]

+ lm () x, () n(e)] =0,
contradicting (3.10) and thereby proving (3.9).
Because lim, o a(¢) =1, and
4() =1l < la() 1C(6) = I + |a(t) — 1],
(3.9) yields the conclusion. Q.ED.

Proof of Theorem III. (a) Let T be continuous for the topology of
local uniform convergence on B.
For p=(x, 1) (xe s, 1€C),

T(r)p—p=((A(r)—1)x+r:< ) (A(r)x

—(—)f(t)> (at)—1) r),
‘ (3.12)

whence
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(T() — I o c) PI* <2 {II(A(I)—I) x|2+ 122 1)

#|(40x| e +1at0 -1 107}
2 (a0 -7+ (L0 o))

DI+ ) - 1) 1r|2}

14(2)]
la(2)|

12+ la(t) 1!2} 1212

<2 max {l[A(t)—I||2+< llé(t)H)

Since
lim &(z) =0, (3.13)
tl0
lima(t)=1 (3.14)
t}0
and |4 (t)ll |a(t)|, Lemma 3.1 implies then
ltiﬁ} 1T(t) = Lr o cl =0, (3.15)

showing that the semigroup T is uniformly continuous.
(b) Now let the semigroup 7 be uniformly continuous, ie., let (3.15)

hold. To prove that the homomorphism 7: R, — Iso B is continuous for’

the topology of local uniform convergence on B, it suffices to show that
T(t) tends to the identity map for the latter topology as ¢ ] 0.
By (3.11), (3.13) and (3.14), .

ltilrg I(C@) - [ (N =0. (3.16)

Choosing p = (x, 0) (x € B), (3.12) yields
| A(2) = 1N = sup{[|(A(£) = 1) x| *: || x] < 1}
<sup{]|(4() = I) x[|* + [(4(2) x | n(2)|*: x| <1}
=sup{[[(T(t) = Ly o c)(x, O)|*: Ilx] <1}
<sup{[(T() — I o c) 4ll*: llgl <1}
=T(t)~ Legell®
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Hence, because

ICt) -1 S —— ,

14— 1| +‘

1
@ (z)| an?

(3.14) and (3.15) imply -
lim || C(z) - I|| =
t]0

ie., by (3.6) and (3.16),
lim 147(2)(0) ~ 1 =O0. (3.17)

Since, by (3.6), (3.8) and (3.11),

14T O) < IC@) + 1 (C(2) - | () n(D < 1+ [In()]%,

then by (3.16) every summand of degree » > 1 on the right-hand side of the
power series expansion (3.7) tends to zero for the norm topology as ¢ 0.
Thus (3.12) and (3.17) imply that, given any r with 0<r<1,

lim 7(¢) x =1lim () + lim d7(£)(0) x = x
t]0 t}0 t]0

uniformly for x| <r. Q. E D

In view of Theorem III, if condition (3.1) is satisfied, T is continuous for
the topology of local uniform convergence on B if, and only if, the
1nﬁn1te31mal generator X of the semigroup 7 is a bounded linear operator
on # @C. If that is the case, then T (2)=exp tX. By consequence T(t) is
invertible; therefore 7(¢)e Aut B and T is the restriction to R. of a con-
tinuous homomorphism R — Aut B.

4

There are no non-constant holomorphic families of holomorphic
isometries for the hyperbolic metric of B< 4. This fact—which was
established in [9]—implies that there are no nomn-trivial holomorphic
semigroups of holomorphic isometries of B.

This section is devoted to showing— independently of [9]—that there
are no non-constant holomorphic families of linear operators in # @ C
leaving the form a invariant.

Let 5 and 5% be two complex Hilbert spaces and let F; and F, be
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two holomorphic maps of a domain DcC, into #(#) and Z(4),
respectively. Let Fe Hol(D, & (# @ #4)) be defined by the matrices

_(Fi(2) 0
F”"( 0 Fz(z)> (z&D)

Denoting by I, and 7, the identities in £(#]) and L (#5), let J,, be the
matrix
I, 0
(s )

F(zY* J, F(z)=J,, forallze D, (4.1)

ProposiTION 4.1. If

then the functions F, and F, are constant.

Proof. If Fi(z)=27%(z—20)" F,;, (F;,€ £(#), j=1,2) is the power
series expansion of F; in a neighborhood V of z, in D, F(z)* J,F(z) is
represented in ¥ by the expansion

F(z)* Jx F(z) = Z (z=20)" (Z=20)" Fopa

mnz=0

(F 7€ L(H#, @D 7)), whose coefficient Fi; is

F“= FT,IFI,I 0
1 0 F%.F,,)

Condition (4.1) yields Fi;=0, ie.,, F;;=0, F,,=0, showmg that the
differentials of F, and F, at any z, € D vanish. Q.E.D.

Choosing s, = 3¢, #, =C, the above proposmon yields

COROLLARY 4.2. Let T be a C, semigroup leaving the sesquilinear form a
invariant. The function t+— T(t) cannot be extended to a non-constant
holomorphic map T of a neighborhood U of the posztwe real axis into
L(# ®C) such that T(z)* JT(z)=J for all ze U.

This statement is also a consequence of the following maximum prin-
ciple, which may be independently interesting.

PROPOSITION 4.3. Let feHol(D, #®C) and let zoe D be a relative
maximum  point of the function zwa(f(z),f(z)) (zeD). If
a(f(z0),f(20)) <0, f is constant.
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Proof. Let g(z) and h(z) be the components of f(z) in # a'led C, and let
(D)= 5% (2~ 20) 8n (g€ H#) and h(2) =T/ hy(z—Zo)" (k€ C) be
the power series expansions of the functions ge€ Hol(D, #) and
" heHol(D, C) in a circular neighborhood ¥ of z, in D.

For any ze V,

a(f(2),f(2))
= lgoll*— |hol® +2 Re[((g: | g0) — h1ho)(z —20)]
+ (g2 = 1hy1?) 12— 20> + 2 ReL (&2, go)— halio)(z — 20)°]
+ 0(|z —zo|?)- (4.2)

The fact that z, is a relative maximum for the function z — a(f(z), f(2))
implies that

(g1lgo)-hlﬁo=0, (43)
whence, by the Schwarz inequality,

\hohy) < Nl goll 181l

But then, because 0> a(f(zo), f(z0)) =l goll> — [hol?, either g, =0, A, =0or
| | il < g1l . (48)

Setting z — zo = pe” (p=0) for z€ V, (4.2) becomes, in view of (4.3),

a(f(2), f(2)) = 1 goll> = hol* + {lg.l>—1hl?
+ 2 Re[€®((g2 | go) —h2Po)1} P* + o(p®). (45)
Choosing 0 in such a way that
 Re[e®((g2 | g)—hai0) 130,

(4.4) and (4.5) imply that thefe is p’ >0 so that whenever O<p<p’
a(f(2), £(2))> 1 goll = 1ol = a(f(20): f(Z0)); (4.6)

contradicting the fact that zo is 2 maximum point.
Assume inductively that

qimga= - =gm=0  hi=hy= =hy=0
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for some m > 1. Then

a(f(2), £(2)) =l goll* — Aol
m+1

+ 2 Z Re[ei(n+M)9((gn+m | gO)—hn+mEO)] pn+m

n=1
+ {1 gms1lI> = s |* +2 Re[e2m+ P
X ((82m+2 | 80) = hams2ho)1} p¥7 2+ 0(p™2).
The fact that z, is a relative maximum point yields
(Znom| 80)—Pusmho=0  for n=1,..,m+1, 4.7)
so that '
a(f(2) £ ()= | 80l = Vol + {1 g 112 = [ sl?
+ 2Re[e®* (g3 5 | £0) = ham+2h0)1}
x p¥T2 L O(pPmt?). (4.8)
For n=1, condition (4.7) and the Schwarz inequality imply
A ihol <1 8m1ll 1180lls
whence—because a(f(z,), f(2o)) < O—either g,,,,=0, 4, =0 or
s 1] <18l
In the latter case, choosing 6 such that
Re[e (g2 80) = ham 1 2F0) 120,
(4.8) shows that there is p” >0 so that, whenever 0 <p <p”, (4.6) bolds.

That contradicts the fact that the function z+— a(f(z), f(z)) has a relative
maximum for z = z,. Q.ED.

COROLLARY 4.3. Let feHol(D, # @ C) be such that a(f(z),f(z))=k
for some real constant 'k and all ze D. If k<O, f is constant.

THEOREM IV. Let T be a map of D into the set of all linear maps of
HDC into #DC such that for every pe # ®C with a(p, p)<O0 the
function zv+> T(z) p is holomorphic on D, and

a(T(z) p, T(z) p)<a(p,p)  forallzeD.
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If for every pe # @ C with a(p, p) <O there exists some z(p)e D such that
a(T(z(p)) p, T(z(p)) p) = a(p, p), (4.9)

then T(z) is independent of z and is continuous on # @ C leaving the form a
invariant. :

Proof. For pe#®C with a(p,p)<0 let f,eHol(D, #®C) be
defined by f,(z) = T(z) p (ze D). By Proposition 4.3, /, is independent of z
for all p such that a(p, p)<0. Since for any p=(x,t)e # D C (xe#,
1€ C) there is ¢ € C such that for g=(x, o) one has a(qg, ¢) <0, it is readily
seen that 7(z) p is independent of z for all pe # @ C. Setting T' (z)=T° to
prove that the operator 7° is continuous on # @ C, let

IO=<T11 T12>
‘ T21 T22

be the matrix representation of 7°, where T, maps linearly # into #,
T,eH, T,,eC, and T, is a linear form on #.

Let p=(x,7)e # DC (xe#,teC) with a(p, p)= || x]|*— |7]®><0. Con-
dition (4.9) reads :

“Tnx”Z— |T21x|2— ||x||2+2 Re[T((Tyyx | T15)— T22T21x)]

+ 1t (I Tl = | Tl + 1) =0, (4.10)

and holds for all xe s, e C such that || x|| < |t]. Thus
I Ty %)% = | Tay xI? + |1 %117,
(T, x| T)=T5Tyx,

for all xe #, and

| To? = Tpo)* + 1.

By the Schwarz inequality, these identities yield

[ Toy x| < || Tooll x|

for all x € #, implying that the linear form T, is continuous. Thus the first
identity shows that T, € £ ().

Because condition (4.10) is identically satisfied, (4.9) holds for all
pe#X®C. Q.ED.
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5

This section is devoted to characterizing the infinitesimal generator X of

" a strongly continuous linear semigroup T on the Hilbert space # =# @ C

satisfying (3.1), where J is expressed by (1.2).

By Theorem I, J2(X)<2(X*), and condition (2.3) holds with L=/,
ie., iJX is a symmetric operator.

Let P: A —»#, P,=4 —>C be the linear maps defined by the
orthogonal projectors #@C > # @ {0}xH#, #HC—{0}@C=C.

Then 2 = P,(2(X)) is a dense linear manifold in 4. It will be shown
that

DIX)=2@C, : (5.1)

ie, {0} ®Cc2(X).

Assume that that is not the case, ie., that {0} @ C ¢ 2(X). Then, for
every xe @, there is a unique {eC such that (x,{)e2(X). The map
A:x—{ is a linear form on &.

LeMMA 5.1. - Let & be a dense linear manifold in 5#, and let J. be a linear
form on @. The set A= {(x, A(x)): xe D} is dense in # @ C if, and only if,
A is not continuous. :

Proof. Let A be discontiuous on & and let (y,7) L A (ye#,1eC),
ie.,

(x| y)+Ax)T=0 forall xe 2.

Then, because A is discontinuous, t =0 and therefore y 1 &, whence y =0.

If A is continuous on 2, then A is the restriction to & of a continuous
linear form 7 on #. The set {(x,{)e # @ C:{=1(x)} is a closed proper
linear subspace of # @ C. Its complement is open and non-empty. A for-

tiori thé complement of 4 in # @ C contains a non-empty open set.
Q.ED.

Because the domain 2(X) is dense, Lemma 5.1 implies that the linear
form A: x+>( is discontinuous.

Let X,:9—>#, X,:2—-C be the linear operators defined by
X, x=PoX(x, Ax)), Xyx=PyoX(x, A(x)) for xe D Let ¥,: D(X*) > #,
Y,: 9(X*) - C be the linear maps defined by ¥, =P ;o X*, ¥Y,=PcX*
For pe #(X), ge D(X*), let x=P, p, y=P,q, 1= P,q. Equality

(Xp, 9)=(p, X*q) (52)
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can be written
(X1x | y)+TXox= (x| Y,q)+ A(x) Yaq. (5.3)

Since J2(X) < 2(X*), then (x, —A(x)) € 2(X*) for all xe 2. Choosing
geZ(X), then ye 2, Jge P(X*) and (2.3) with L=J yields

YoJg+X,y=0, Y,odg—X,y=0.
Replacing g by Jg in (5.3) one has
(X1x| y)—2A(p) Xox=— (x| X y)+Ax) X,y forallx, yin 2. (5.4)

If A(x)=0, then (x,0) is invariant by J, and therefore (x, 0) e Z(X*), ie.,
the linear form

ye= (X(ya /l(y)), (xa O))= (X1y] .X)

is continuous on 2. Hence, by (5.4), if A(x)=0 and X,x#0, y— A(p) is
continuous on 2. This contradiction proves that A(x)=0 implies X,x=0,
1e., X, =cl for some ceC. Thus X is represented by the matrix

< ” c) (55)
on the domain 2(X)= {(x, A(x)): xe 2}. |

Since X is the infinitesimal generator of a strongly continuous
semigroup, the operator on Z(X) represented by the matrix

(¢ o)
0 o/

which is obtained from X by the bounded perturbation

o )

also generates a strongly continuous semigroup. Hence there exists be R
such that

Re{>b={er(X,). (5.6)

Let X” be the operator represented by the matrix (5.5) on the domain
2 @ C. The point spectrum po(X"’) is expressed by

po(X')= {c} upo(X)). (5.7)

SEMIGROUPS OF HOLOMORPHIC ISOMETRIES 291

On the other hand, X’ is a proper extension of the closed operator X,
and therefore r(X) < pa(X’). Thus, by (5.7) and in view of the fact that X is
the infinitesimal generator of a strongly ontinuous semigroup, there is ae R

. such that, if Re{>a, {epo(X,). This contradicts (5.6) and thereby

proves (5.1).
Hence X is represented by a matrix

Xll X12>
X= , 5.8
<X_u X G4

where X, is a linear operator on # with domain 2(X;)=9; X, €;
X,,eC and X, is a linear form on Z.

LeMMA 5.2. The operator X, is closed.

Proof. Let {x,} be a sequence in & converging to x € # and such that
{X,;x,} converges to y € #. Setting p, = (x,, 0) then Xp, = (X, x,, X5, X,)-

If lim,_ .o | Xax,l=+00, let z,=(1/X5x,)x, for v>0. Then
lim, , . 2z,=0 and lim, ., X;;z,=0. Therefore, setting g,=(z,,0),
lim, , .o Xg,=lim,_, , o(X;2,,1)=(0,1). Because X is closed, then
X0=(0, 1). This contradiction shows that there is a sequence of indices
0<v,<v,< --- such that {X, x,} converges to some pueC. Hence {Xp, }
converges to (y, u). Because the operator X is closed, then (x, 0)e Z(X),
ie, xe2, and X(x, 0)=(y, u), whence y = X, x. Q.ED.

Condition J(2 ® C) = 2(X*) implies that 2 @ C = 2(X*), and therefore

X is represented by a matrix

X*=<Yu Yn) | (59)

where Y,, is a linear operator on # with dense domain Z(Y)=
P, 9(X*)>D, YieH#, Yy,eC, and Y,, is a linear form on 2(Y;,). The
same argument as that in Lemma 5.2 shows that Y, is closed.

For xe 9(X,,), ye2(Y,,), { and 7 in C, setting p=(x,{), ¢=(, ),
condition (5.2) now reads, in view of (5.8) and (5.9),

(X x| y) + LU X2 | )+ Xou(x) T+ TX5
= (x| Yupy)+7(x| Yip)+{Yu(y)+ Y
for all £, = in C. This condition is equivalent to

(Xyux|y)=(x|Yyuy) forall xe 2(Xy,), ye 2(Yy,), (5.10)
(| X12)=Y5(») forallye 2(Y ), (5.11)
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Xy(x)=(x| Y) forall xe 2(X,,), ‘ (5.12)
Xy =Y. ‘ (5.13)

' By (5.12) and (5.11), X,, and Y,, are restrictions to & of the continuous
linear forms (- | ¥,,) and (- | Xy,). Furthermore y e 2(Y,,) if, and only if,
(y,0)e 2(X*), ie., if, and only if, the linear form

(x, O = (X(x,0), (5, 0)) = (Xyyx | )+ {(Xp | p)

is continuous on 2(X). Thus ye 2(Y,,) if, and only if, the lineér form
x> (X x | y)is continuous on 2 = P(X,,), ie, if, and only if, YED(XE).
This shows that

Yy =X%. (5.14)

. Conditions (5.1) and J2(X) = 2(X*) imply that 2(X,,) < D(XF), while
(2.3) (with L=1J), (5.14), and (5.13) yield

X11+Xik1=0 On@=@(X11),
XIZ_Y12=O’ RCX22=0.
Summing up, the following proposition holds.
PROPOSITION 5.3. Let X be the infinitesimal generator of a strongly con-

tinuous semigroup T. Then T leaves the sesquilinear form a invariant if, and
only if, the following two conditions are fulfilled: '

(1) there exists a dense linear manifold 9 in # for which (5.1) holds;
(2) the operator X is represented by the matrix

Xy Xy, y
X=
<( | X12) X5 ’ (5-13)

’ where X5, € R, X, € # and iX,, is a closed symmetric operator with domain
2(X,,)=9.

If conditions (1) and (2) hold, the operator X* is represented by the
matrix ‘

x5 X
X*=< 11 12 >
(] X)) —iXy,

The operator X expressed by (5.15) and the operator

X' =
5 ) (5.16)

SEMIGROUPS OF HOLOMORPHIC ISOMETRIES 293

with domain 2(X), differ by the bounded perturbation

'K=<(_|(3Y12)‘ )i)“) | _ (5.17)

Thus X is the infinitesimal generator of a strongly continuous semigroup
if, and only if, X" is the infinitesimal generator of a strongly continuous
semigroup.

Let I7,={{eC:Re (<0}, [I,={{eC:Re {>0}.

If iX,, is closed and symmetric, X’ generates a strongly continuous
semigroup (which turns out to be a semigroup of contractions of # ®C
provided that X,, € R) if, and only if 17, < r(X ;).

Since the norm of the operator (5.17) is equal to | X[, the following

- theorem summarizes the results obtained so far.

TueoreM V. Let X be a linear operator on H# ®C. Then X is the
infinitesimal generator of a strongly continuous linear semigroup T on
H @ C, leaving the sesquilinear form a invariant if, and only if, there is a
dense linear manifold 9 in H# such that (5.1) holds and X is represented by
(5.15), where X, and X , are arbitrarily chosen in # and R, and where iX,
is any closed symmetric operator on ¥ with domain 9, such that
rX,)> {{eC:Re (>0} '

The semigroup T satisfies the estimate

| T()| <e'™ 2" forallt>0. (5.18)

The following theorem is a -consequence of Theorems IT and V.

-

THEOREM V1. The linear operator X expressed by (5.15) is the
infinitesimal generator of a strongly continuous group leaving the sesquilinear
form a invariant if, and only if, iX,, is self-adjoint and X5, € R.

6

In Sections 6-8 the spectral structure of the infinitesimal generator X of a
strongly continuous semigroup T leaving the form a invariant will be
investigated.

Following the notations of Section 5, 2(X) and X will be represented by
(5.1) and by the matrix (5.15), where iX,, is a closed symmetry operator
with domain 2(X,,)=2 and resolvent set #(X;;) > I1,, X ;€ #, X, €R.
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For { e r(X) the linear continuous operator ({/— X)~! is represented on
# @ C by a matrix

z=z@=w-0-=( 75 7%)

(1 2Zy) Zy

where Z,,=Z,,({)eC, Z,,=2Z5({), Z,; = Z,,({) are contained in # and
Z,=Z,{)eZ(#).

Denoting by Ran(X) the range of an operator X, condition
Ran ({I—X)~'=9(X) is equivalent to Ran Z,, = 9, and Z,€9. More
specifically

U-X)oZ=Ipee onH®DC

if, and only if, Ran(Z,,) = @, Z,,€ 92, and

((~X1)oZu—( | Z) Xp=1  onit, (6.1)
=X )Z)—Zn X1, =0, (6.2)
—(Zyy | X))+ ((—iX) (- | Zy)=0 on #, (6.3)
~(Zyp | Xp)+((—iXp) Zyp=1. (6.4)

Similarly
Zo((I-X)=Ipgc on Z2(X)
if, and only if,

Zyo(lI—=X )= (| X)) Z =1 on %, (6.5)

—Z1(Xp)+((—iXy) Z,,=0, (6.6)
((UI=X11)" 1 Z31) = Zys(- | X15)=0 on %, (6.7)

— (X Zy)+((—iXp) Zyp=1. (6.8)
If {er(X)nr(X,,), (6.2) yields | '
Zyy=Zp(lI-X,)" Xy, (6.9)
and therefore (6.4) becomes
Zp[l—iXp— (UI-X)" X1 | X)) =1 (6.10)
Let ¢ be the holomorphic function on r(X;,) > II, defined by

¢(C)=C"iX22—((U—X11)_1 X12 | X12)-
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For (er(X,) let Y,=Y,(()e? be the vector defined by
Y,=(I-X,)"' X,,. Since for {er(X,,;) and Re { #0

ICI—X) 7 I <IRe |7 ' (6.11)

s

then : ‘

(7@l <Rell=" Xy (Cer(Xy), Re{#0) (6.12)

Let C be the zero set of ,
C={ler(X,): ¢({)=0}. (6.13)
Since for { e r(Xll)
¢ ==Y (O = iXos + (Y12 0) | X1y Y12(0))
=(1—-11Y(0]*) Re
+ AL+ 1 Y107 Im { = Xp — i( Y12(0) | (X1, Y12(£))]

(where, because (Y 5({) | X1, Y1,({))€iR, the summand in square brackets
is real), then { e C is purely imaginary unless || Y,,(¢)| = 1, in which case, in
view of (6.12), ‘

IRe {| < | X2l
Hence

Cc{leC:[Rel|<Xpl}. - (6.14)

Since the closed symmetric operator iX,; is the generator of a C,
semigroup, either »(Xy,)=1I, or r(X;)> {{eC:Re {#0}. Hence, (6.14)
implies that ¢ is not constant on any connected component of r(Xy,), and
therefore C is a discrete set in r(X,).

It will be shown later that the part of C not contained in iR contains two
points at most.

For {¢0(X,,)u C define Z,, by (6.10) and then Z,, by (6.9). Define
then Z;; and (‘]|Z,) by (6.5) and by (6.7), obtaining, for all
{¢o(Xy)UC,

Zyp=0()", (6.15)
le=(¢(§)(U—X11))_1X12> » (6.16)
Zn=(U_X11)_1+((U_X11)_1 ‘| X12) Z12s (6.17)
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and (- | Z,,)=Z,(({I— X,;)~" - |X},), which is equivalent to
Zy=Zp(lI-Xt) ' X, (6.18)

A direct computation shows that Z,,, Z,,, Z,,, Z,, as defined by (6.15),
(6.16), (6.17), and (6.18) satisfy (6.1), (6.2), (6.3), (6.4), (6.6), and (6.8) for
all {¢o(X,;)UC. Thus the latter condition implies that {er(X), and
consequently o(X)\o(X;;)cC. On the other hand, by (6.10), if
{er(X)nr(Xy,) then { ¢ C. Thus, by (6.10), if {e C then {eo(X), and in
conclusion

o(X)N\o(Xy,)=C. (6.19)

Since C is discrete in r(X;,), every {, € C has a neighborhood U in r(X,)

such that Un C={{,} and such that, if U is sufficiently small, for every -

{el,

¢(C)=C—inz—(((C—€o) I+COI_X11)_1X12 | X12)
={—iXp— (({ =)Ll =X 1) "+ D7 oI — X)) " X | X1,)

=({- Co){l'f‘ Z o—0) (Col X))~ ("+2)X12|X12)}

By (6.15)—(6.18), this proves that {, is an isolated pole of ({I— X) 7}, i.e

LEMMA 6.1. Every point of C is an isolated point of o(X), at which
({I—X)~" has a pole.

Let {eC and let p=(x,7)eP(X)\{0} (xes#, t1eC) be such that

Xp={p. Since 2(X)=2D(X,,)® C=JD(X) = Z(X*), then Jpe 2(X*) and,
by (2.3) (with L=J),

2 Re {(Jp, p) = ({+)(Jp, p) = (Jip, p) + (Jp, {p)
= (JXp, p) + (Jp, Xp) = (JX + X*J) p, p) =0.

Thus, if Re { #0, then (Jp, p)= ||x|*— |t|*=0. Because T(t)p=e"p for
all 120 [4, Theorem 16.7.2, pp. 4674697, then for any ¢>0 the pomt
z=(1/r) x € 0B is an isolated fixed pont of the continuous extension 7(¢) of
T(t)eTso B.

Proposition 1.3, Lemma 1.4, and (1.9) yield

PROPOSITION 6.2. The set C'=C\iR of points of C outside the
imaginary axis is either empty or comsists of two points at most. In the latter
case the two points are symmetric with respect to the imaginary axis.
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The second part of the above proposition can be established also by
noting that, if iX,, is self-adjoint and if { e r(X;;), then

$(—0)=—0—iXp— (={I—Xx;)~! X12 | X12) = —=6(0).

7

Further information on the spectrum ¢(X) of X depends on the structure
of the set of fixed points of the semigroup 7.

Let u' and u” be two eigenvalues of X and let &)< 2(X),

E(1")= 2(X) be the corresponding eigenspaces. If u +,u”;é0 then for

peé), pled(u),

(Jp',p")=

1 _
— (W +u")(Jp', p")
U

1
=—— ((JXD', p") + (Jp', Xp"))
K tu

1
———— (UX+X*])p, p") =0,
Bt p

proving thereby

LeMa 7.1 If @/ + 7 #0 then a(6(), E(u")) = (JE(W), £(u")) = {0}.

The map Tt T(z) (:1=0) is a semigroup of continuous mappings
T(t): B- B.

If Fix T(z) indicates the set of fixed points of 7(¢),.

Fix 7(t)= {ze B: T(1) 2=z}, Fix T(1) n B is the set Fix T(z).
By Corollary 1.2, Fix 7(¢), if not empty, is the intersection of B with a
closed affine subspace of 5.

For every t>0, Fix T(¢) and Fix T(¢) are invariant subsets of T(s) and

T(s) for all s> 0. The restrictions of the semigroups 7 and 7" to Fix 7(¢)
and to Fix TY(¢) are periodic with period 1.

Let Fix T={zeB: T(t) z=z for all >0}, Fix T= - {ze B: T(t)z=z for
all 1 >0}, be the set of fixed points of the semigroups T and T, respectively.

If ze B (z€ B) then the point p=1(z, 1)e # @ C is such that (Jp,p)<0
((Jp, p) <0, respectively). Vice versa, if p=(x,1)e D C, p+#0, is such
that (Jp, p) <0, ((Jp, p) <0), then the point z=(1/7) x is contalned in B
(in B, respectively).

Thus looking for fixed points of T(z) or of T (t) is the same as looking for
eigenvectors p of T(¢) corresponding to non-vanishing eigenvalues and such
that (Jp, p) <0 or (Jp, p) <0, respectively.
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Since by (1.8), Fix T(¢)# & for all >0, then, given ¢>0 there exist
ueC, pe # @®C such that p#0, (Jp, p) <0, and

T(t) p=e*p. (7.1)

There is some ke Z such that u, = p+ 2kni/t e po(X), and p is contained
in the closed linear extension of the linearly independent closed subspaces
Ker(u,I— X) for all y, € po(X)

peV{Ker(uI—X): keZ, p,epo(X)} (7.2)

[4, Theorem 16.7.2, pp. 467-469]. This proves

LemMa 7.2.  The point spectrum of X is non-empty.
In view of (7.2) let p, e Ker(u,I— X) be such that

P=Zpk- (7.3)

By Lemma 7.1

(Jp, p) =Y (Jpi, P1)- (7.4)

Since (Jp, p) <0, there is some ke Z, such that u, € po(X), p, #0, and
(Jpi, i) <0. If moreover (Jp, p) <0, then (Jp,, p,) <O. Since

T(s) pr=e"p, - foralls>0, (7.3)
then
Fix T'# &, (7.6)

and furthermore the following proposition holds.

ProposITION 7.3. If Fix T(z) # & for some t>0, then Fix T # (.

If Fix T(1)= & for some t>0, then Fix T(s)= for all s>0. By
Proposition 1.3, Fix T(z) consists of one or two points contained in 8B. If z
is one of them, setting p=(z, 1), there is ueC satisfying (7.1). Since
Fix T(s)= J for all s>0, all eigenvectors p, appearing in (7.4) are such
that (Jpg, pe)=0. Because, on the other hand, (Jp,p)=0, then
(Jpe»> i) =0 for all p, appearing in (7.4). Since for all p, = (x,, 7,) #0 in
(714), z, = (1/t,) x, € B, and eigenvectors p, # 0 corresponding to different
k are linearly independent, then the fact that the cardinality of Fix 77(¢) is
at most two implies that there are at most two integral values of &
corresponding to z, e Fix T(z). If there are two such integers, k;, ks,
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k, %kz, the affine complex line joining the two distinct points z,, and z,,
has a non-empty intersection with B. Since by (7.5) this intersection con-
sists of fixed points of 7(¢), that contradicts the hypothesis Fix T(t)= .

- Hence the right-hand side of (7.3) reduces to one summand p,=p, and

(7.5) becomes
T(s)p=e*p forall s >0,
This proves

ProposiTioN 7.4. If Fix T(t) = & for some t>0, then, for every s> 0,
Fix T(s) =Fix T(t) and the latter set consists of one or two points contained
in 0B.

8

To give a more detailed description of ¢(X) the two cases in which iX,;
is self-adjoint or is symmetric but not self-adjoint will now be considered
separately.

Assume first that iX,, is symmetric but not self-adjoint. Then
HO,=r(X,) If Re{<0, { and { are contained in r(—X,;). Because
Xf=—X,,0on 2(X,,)=2 and X, is closed, then { € pa(X¥},), ie., there is
some x € Z(Xt)\ {0} for which

({I-X%)x=0. (8.1)
Suppose now that Re { <0 and that { e r(X). Then (6.1) yields
(Zyuy | U=XT)x) = (¥ | Z2)(X 12 | x)=(y, x)
for all ye #, ie., by (8.1),
(x| X)) (Zy | ¥)+(x]y)=0 forall ye 57,

whence
(x| Xy,) Zy +x=0, (8.2)
implying ’
(x| X;5)#0 (8.3)
and

0#£2Z, € @(XTI):
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so that, by (8.2) and (8.3), Z,, is an eigenvector of X% with eigenvalue .
Thus, by (6.7) \

Zy( | X15)=0 on Z(Xy,),

and therefore either Z,, =0 or (because 2(X,) is dense in #) X, =0. But
this would contradict (8.3). Hence '

222=0 (8.4)

and therefore, by (6.2),
((I—=X,)(Z,,)=0. ' (8.5)

Because { € pa(XF,), either { € pa(X,,) or { is contained in the residual
spectrum ra(X ;) of X, [8, Theorem 4.15, p. 1437]. But the first possibility

cannot occur because po(X;;)ciR [8, Theorem 4.13, p.143]. Hence

{era(Xy,), and therefore (8.5) yields Z,, =0, which, together with (8.4),
contradicts (6.4). In view of (6.19) and of Proposition 6.2 the following
proposition has been proved.

ProposITION 8.1. If iX,, is symmetric but not self-adjoint, one of the
Jollowing two cases necessarily occurs:

(1) C=F and o(X)=11,;

(2) C' consists of one point, c, whzch is an eigenvalue of X, and
o(X)=T,0 {c}.

Let E be either T, or IT)\ { — ¢} according to whether case (1) or case (2)
occurs.
LemMa 8.2. If iXy, is symetric but not self-adjoint E is contained in the

residual spectrum of X.

Proof. By Proposition 8.1, Eco(X). If {€II, is contained in po(X),
there is a some pe Z(X)\ {0} satisfying the equation Xp={p, which is.
equivalent to JXJJp={Jp, ie.,

X*Jp= —{Jp.

Because the operator X is closed, r(X*) is the image of r(X) by the reflec-
tiop on the real axis. Hence, because —{ is an eigenvalue of X*, then
—led(X)nIl,=CnII,=C' Thus

Enpo(X)=. (8.6)
Now, if { € E, then —{er(X), that is, { e r(—JXJ).
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Since X* is a proper extension of the closed operator —JXJ, then
{epo(X*), and consequently [8, Theorem 4.15, p. 1437 either { € pa(X) or

{ero(X), and (8.6) yields the conclusion. Q.E.D.

Proposition 8.1 gives a characterlzanon of the case in Wthh T(z,) is a
compact operator for some ?,>0. Indeed, as a . consequence of

Theorem 2.20 in [1, p. 47], (i) o(X) consists of a countable discrete set of
eigenvalues each of finite multiplicity, and (ii) if the space # is infinite-

dimensional, then
o(T(t)) = {0} U &™),
Let o be infinite-dimensional. In view of (i), Proposition 8.1 implies that

iJX is self-adjoint. But then, by Theorem II, T(¢) is invertible in
L(H @ C), contradicting (ii). This proves

PROPOSITION 8.3. If there exists ty>0 such that T(t,) is a compact
operator, then n=dime # < oo, and T is (the restriction to R of) a

‘continuous one-parameter subgroup of the classical group U(n, 1).

Before considering the case in which iX, is self-adjoint, it will be useful
to note that the function ¢ is closely related to a Weinstein—Aronszajn
determinant.

The operator X'is a perturbatlon of the closed operator X’, with domain
2(X')=2(X), given by (5.16), by the degenerate operator K expressed by
(5.17), whose range (if X, #0) is the two-dimensional complex subspace
CX,®C of #@C. For any {er(X)=r(X;)\ {iX5,} the operator

1
{—iXy

((U—X11)_1'|X_12) 0

0 X5

K(I-X)"'=

also has range CX;,®C. Hence the Weinstein—Aronszajn determinant
w(¢, X7, K) associated to X’ and X (i.e., the determinant of the restriction of
Ipoc—KUI—X)""to CX,,®C), is given, for {er(X},), {#iX5, by

(U-Xu) " X | X))

>X,’K =1- . = . .
@l ) {—iXs {—iXyp

Now let iX;, be self-adjoint, or equivalently, let iJX be self-adjoint. First,
Proposition 6.2 implies that C is symmetric with respect to the imaginary
axis. Therefore o(X) is also symmetric with respect to the imaginary axis.
Proposition 6.2 then implies
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ProposITION 8.4. If iXy, is self-adjoint, one of the following two cases
necessarily occurs:

(1) C'=¢ and o(X)<iR;
(2) there exists one point c € IT, such that 6(X)\iR= {¢, —C}.
The fact that X=X’ + K, where K is compact, implies that X and X’
have the same essential spectrum. Since X’ is self-adjoint, any {ea(X’)

belongs to the essential spectrum of X” unless { is an isolated eigenvalue of
a(X") of finite multiplicity.

By Proposition 8.3, further investigation of the structure of ¢(X) can be

restricted to the imaginary axis and carried out by direct inspection of the
Weinstein—Aronszajn formula [6, Theorem 6.2, p. 247].

9

Let X be the infinitesimal generator of a strongly continuous linear
semigroup T leaving the hermitian sesquilinear form a invariant, ie.,
satisfying condition (3.1).

For p,€ 2(X) the initial value problem

@(—’)=Xp(z) (t>0) 9.1
dt
p(0)=p

for a continuously differentiable function p: R, — Z(X) has a unique
solution, expressed by

p(t)=T(t) po | (5.2)

for t>0. If iJX is self-adjoint, the strongly continuous group T generated
by X defines, by means of (9.2), the unique solution of the initial value
problem (9.1) for all reR.

Setting p(t) = (x(2), ©(£)), Po= (X0, 7o) (x(1), xo€H# 1(t),70€C) then
1+ x(t) and t+—>t(¢) are continuously differentiable maps R, — 5,
R, — C. By Theorem V, X is expressed by (5.15), where X, e R, X;,€ 5,
and iX,, is a closed symmetric operator on 3 whose resolvent set
r(X,,) > IT,. The initial value problem (9.1) is expressed by

dx(?)
dt

=X, x(1)+1(2) X1, 19.3)

dr(t)

7 = (x(t) | X12) +it(2) Xo2s x(0)=xy, 7(0)=1,. (94)
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If T(z) is represented by (3.2) then (9.2) becomes for >0

x() = A(1) X0 + 70 &(2),

| (9.5)
(t)= (xo 20 A(2)* é(t)) + 7a(t).
The dense space 2(X)=2(X,;)®C is complete for the norm
p=llpl + 1 Xpll. (9:6)

Moreover T(t) 2(X) < 2(X) for all >0, and the restriction of T to 2(X)

is a C, semigroup for the norm (9.6).
Similarly the dense space 2(X,,) = # is complete for the norm

Lixil = lxl + 1 X xl (xe 2(X1)).

Since 7+ x(¢) is continuously differentiable on R, and ¢~ 1(7) is con-
tinuous, given #,>0 and ¢>0 there exists §>0 such that if £>0 and
|t —to] <6, then by (9.3)

X711 (e(2) — x(20)) + (2(2) — 7(20)) Xl <
and
I(z(2) = ©(t0)) Xiall = [(2) = 7(20) | [ X 12|l <.
Hence for t>0 and |1 —1,| <6
1X 13 (e(2) — X () < 11X 3 (x(2) = x(20)) + (2(2) — ©(t0)) X o
+ 1) = 7(20)) X1all <28,

and this proves

LeMMA 9.1. For all xoe 2(X 1), roeC,. the function x: t+> x(t) defined
by (9.5) for t=0 maps R, into D(X ;) and is continuous for the norm

NS

The a-invariance of T yields
Ix(2)[|2 = |2 (6)|> = [Ixol|* — 70> for ¢>0.

Hence, if [xo] <|tol, then [x(z)| <|z(z)] for all z>0. Setting
zo=(1/1¢) Xo, 2(t) = (1/2(2)) x(¢), then 206 BN D(X,,) and z: t—2(2) is a
continuous map R, — BN 2(X;,;) such that

z(0)=z,. (9.7)
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Equations (9.3) and (9 4) imply that z is a continuously differentiable
map of R, into # and satisfies the Riccati equation

dz(t
‘7(2‘—)=X112(f)“'((z(t) | X12) +1X2) 2(2) + X1s. (9.8)
The function z is expressed by
2(t)=1(2) 2, (9.9)
for 1> 0, where 7(z) is given by (3.5).

Because for 7,0 and >0

[ X11(2(2) — z(20)) | l2(t0) X 12 (x(2) — x(2,))

1
(D) w(10)]
+ (T(to)—f(t)) X x(to)ll
< )~ x(t)
LA
(1) (t)

the vact that ¢t~ 1/¢(z) is a continuous map of R, into C\{0} and
Lemma 9.1 imply

X1y x(20)l,

LeMMA 9.2. For zoe B the function z2R,. > Bn D(X,,) expressed by
(9.9) for t 20 is a solution of the Riccati equation (9.8) with initial condition
(9.7), which is continuous for the norm | | | |.

It will be shown now that z is the unique solution of the initial value
problem (9.8), (9.9) which is continuous for the norm | || | |.
More exactly the following theorem holds.

TaEOREM VIL.  For any y>0 and any choice of zye B D(X,,) the
Sunction z: [0, y] - D(X,,) defined by (9.9) for 0<t<7y is the unique con-
tinuously differentiable map of [0, y] into #, with z([0, y]) = D(Xy,) which
Is continuous for the norm | | | | and satisfies the Riccati equation (9.8) with
initial condition (9.7).

Proof. Let u: [0, ]—»9(X 11) be a solution of (9.8) satisfying all the
requirements stated in the theorem. The function y:[0,7]— 2(X,,)

defined by y(¢) = () u(z) is continuous for the norm | | | |. Moreover, yis
a map of class C' of [0, 7] into 5, and satisfies the equation
dy(z)

7 =X+ ((X(t) V() | Xip) u(t) +1(2) X1, (9.10)
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with initial condition
y(0) =x(0) = x,.

The function w: ¢ w(¢)=y(¢)—x(¢) is a map of [0,7] into 2(Xy)
which is continuous for the norm | || | |. Furthermore w is a map of class
C! of [0,v] into #, and satisfies the evolution equation

aw(1)

— = =ZB)w() (9.11)

with initial condition
w(0)=0, 9.12)

where the linear operator Z(¢)=X;,+ (-|X;)u(¢), with domain
D(Z(1))=2(X,,) is a perturbation of X, by the bounded operator
(] X;5) u(t), whose norm is

1C 1 X1) w() = [ X pall (D) < 1 X1l max{Ju(z)]: 0< <y}

Since X, generates a C, semigroup of contractions, and therefore defines
a stable family of generators, then [7, Theorem2.3, p.132]
{Z(t):0< 1<y} is a stable family of generators of C, semigroups, with
stability comstants 1 and &= ||X,| max{|ju(?)]:0<r<y}. Because
u: [0, y] = # is continuously differentiable, for any xe€ 2(X,,) t— Z(¢) x
is a continuously differentiable map of [0,y] into . Hence [7,
Theorems 4.8, 4.3, pp. 145, 1417 there exists a unique evolution system
{U(t,5):0<s<r<y} such that

1Tz, s)| <e =9 for 0<s<t<y;
.

O Uty )0 1iee=2Z(s) 0

- for ve2(X,), 0<s<y;
t

—;—U(t, syv=—U(t,s) Z(s) v for ve2(Xy;), 0<s<r<y;'
s

U, s) 2(X1,) = D(Xy;)  for 0<s<t<y;

for ve%(X,,), t—V(s,s)v is continuous in Z(X,,) for
0<s<t<y with respect to the norm | || | |;?

for every ve 2(Xy,), w(t)=U(t, s)v is the unique solution of
(9.11) on [s, y] with initial condition w(s)=wv, which is con-
tinuous for the norm | || || | on 2(X,).

1 The right derivative 8*/8¢ and the derivative §/0s are in the strong sense in .
2 The norm which appears in Theorems 4.8 and 4.3 of [7]isnot || | | but ||| +[Z(0)¢].
However, these two norms are equivalent.
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Hence w =0 is the unique solution of (9.11) with initial condition (9.12)

which is a continuously differentiable map of [0, y] into #, whose values
belong to 2(X,,) and which is continuous for the norm [l II'|. Hence
y(t)=x(¢) for all te [0, y]. Q.E.D.
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