
Throughout this work H denotes an arbitrarily fixed complex Hilbert space with the scalar
product ⟨x|y⟩ which is linear in x and conjugate linear in y, giving rise to the norm
∥x∥ = ⟨x|x∥1/2. For any vector c ∈ H, we shall write c∗ := [x 7→ ⟨x|a⟩] for its associated
functional. The open ball of radius ρ > 0 and centered in 0 in H will be denoted with
ρBall(H), and we write ρBall(H)(= {x : ∥x∥ ≤ ρ}) for its closure.

Recall [3, Ch. VI] that the group of AutBall(H) all holomorphic automorphisms of Ball(H)
admits a matrix representation in the following sense: Each element Ψ of AutBall(H) has
the fractional linear form

(R) Ψ(x) =
Ax+ b

⟨x|c⟩+ d
, A ∈ L(H), b, c ∈ H, d ∈ C

and we have

Ψ1◦Ψ2(x) = Ψ1

(
Ψ2(x)

)
=

Ax+ b

⟨x|c⟩+ d
whenever

[
A b
c∗ d

]
=

[
A1 b1
c∗1 d1

] [
A2 b2
c∗2 d2

]
.

This representation is unique up to a constant, since in (R) we necessarily have[
A b
c∗ d

]
= d

[
(Pa+βPa) a

a∗ 1

][
U 0
0 1

]
where

a :=Ψ(0), β=
√
1−∥a∥2,

U= (β2Pa+ βPa)
−1Ψ′(0)

in terms of the projections Pa onto Ca resp. Pa := 1− Pa and the Fréchet derivative Ψ′.
Any automorphism Ψ ∈ AutBall(H) extends holomorphically to (1 − ∥Ψ(0)∥)−1Ball(H)
and hence admits a continuous extension Ψ to the closed unit ball Ball(H). We write
AutBall(H) := {Ψ : ψ ∈ AutBall(H)} for their collection.

Recall [3, Ch.VI] that any automorphism Ψ ∈ AutBall(H) is weakly continuous and
preserves the family Aff(Ball(H)) of all complex affine∗ closed subspaces intersected with
Ball(H). By Schauder’s fixed point theorem, Fix(Ψ) ̸= ∅, since Ball(H) is weakly compact.
Moreover we have the following alternatives:

(1) Fix(Ψ) ∈ Aff(Ball(H)), (2) Fix(Ψ) consists of two boundary points.

In case (2) from the proof of [3, Thm.VI.4.8] we see even that Ψ = Φ ◦ Θa ◦ Φ−1
with a

suitable automorphism Φ ∈ AutBall(H) and a Möbius shift

(M) Θa : x 7→ Pax+ a+ βaPax

1 + ⟨x|a⟩
, βa =

√
1− ∥a∥2

for some 0 ̸= a ∈ Ball(H) such that Fix(Θ)a = {−e, e} where e := a/∥a∥.

The next result is an infinite dimensional extension for a simple special case of a far reaching
theorem of Abate [4] established for finite dimensional uniformly convex domains. It

∗ If x =
∑2

k=1λkxk with λ1, λ2∈ C and
∑2

k=1λk = 1 then Ψ(x) =
∑2

k=1αkΨ(xk) for some

α1, α2∈C with
∑2

k=1αk=1
(
namely with αk=λk[1+⟨xk|U∗a⟩]/[1+⟨λ1x1+λ2x2|U∗a⟩]

)
.
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seems that Dineen’s bidual embedding method [5] is suitable in proving a complete infinite
dimensional analogy with uniformly convex domains in Banach spaces. Instead, below we
give a short direct proof on the basis of the special algebraic form (R).

Lemma. Abelian subsets of AutBall(H) admit common fixed points.

Proof. Assume {Ψj : j ∈ J } ⊂ AutBall(H) with Ψj ◦Ψk = Ψk ◦Ψj (j, k ∈ J ). By
weak continuity, for any index family K ⊂ J , the set

∩
k∈K Fix(Ψk) of common fixed

points is weakly compact. Thus, according to Riesz’ intersection theorem, it suffices to
see that

∩
k∈K Fix(Ψk) ̸= ∅ for finite index families K. By proceeding to contradiction, let

K = {k1, . . . , kN} be a subset of J with minimal cardinality such that
∩

k∈K Fix(Ψk) = ∅.
Necessarily N > 1 and S :=

∩N−1
n=1 Fix(Ψkn) ̸= ∅ is either a weakly compact convex

subset of Ball(H) or it consists of two boundary points. Since ΨkN commutes with all
the maps Ψkn (n < N), we have ΨkN

(S) ⊂ S. Indeed, if x ∈ S then Ψkn

(
ΨkN

(x)
)
=

ΨkN

(
Ψkn(x)

)
= ΨkN

(x) ⇒ ΨkN
(x) ∈ Fix(Ψkn) (n < N). Hence Schauder’s fixed point

theorem excludes the case of S being convex. Suppose S = {p, q} ⊂ ∂Ball(H). Then
necessarily Fix(ΨkM

) = {p, q} for some index M < N and ΨkN
: p ↔ q. However, in this

case we can write ΨkN = Φ◦Θa◦Φ
−1

with a suitable automorphism Φ ∈ AutBall(H) and a

Möbius shift Θa of the form (M) where 0 ̸=a∈Ball(H). Then, by setting Ω:=Φ
−1◦ΨkM

◦Φ
and e :=a/|a∥, we have {±e}=Fix(Θa) and Ω : e↔−e. On the other hand, it is immediate
that e = limn→∞ Θ

n

a(x) for every point x ∈ Ball(H)\{e}. Taking any point f ∈ Fix(Ω)
we get the contradiction e = limn→∞ Θ

n

a(f) = limn→∞ Θ
n

a◦ Ω(f) = limn→∞ Ω◦ Θn

a(f) =
Ω(e) = −e. Q.e.d.

Henceforth we keep fixed the notation
[
Ψt : t ∈ R

]
for an arbitrarily given strongly

continuous one-parameter group in AutBall(H). That is

(P ) Ψt(x) =
(Pt + βtP t)U

tx+ at
1 + ⟨Utx|at⟩

=
[
Θat ◦ Ut

]
(x)

where at=Ψt(0)∈Ball(H), Ut∈L(H) is a unitary operator and, with the notations in (M),
βt :=βat , Pt :=Pat , P t :=Pat for short. In particular Ptx = [⟨x|at⟩/⟨at|at⟩]at, P t = I −Pt.

According to the previous lemma, the continuous extensions Ψ
t
(t ∈ R) to Ball(H) have a

common fixed point which we shall denote with x:

x ∈ Ball(H), Ψ
t
(x) = x (t ∈ R).

Remark. In finite dimensions, it is customary to normalize (R) by requiring det
[
A b
c∗d

]
=1.

Thus, in case of dim(H) = N , in this manner one can establish a canonical identification of
AutBall(H) with a subgroup of the classical matrix group SL(N + 1). Though in infinite
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dimensions such a normalization is not available, for one-parameter groups with common
fixed point there an alternative way as follows.

Proposition. With the notations (P ), the (R)-type representation matrices

Ψ̂t :=
1

1 + ⟨Utx|at⟩

[
(Pt + βtP t)Ut at

[U∗
t at]

∗ 1

]
=

1

1 + ⟨Utx|at⟩

[
Pt + βtP t at

a∗t 1

] [
Ut 0
0 1

]
of

[
Ψt : t ∈ R] form a strongly continuous one-parameter group of operators in H⊕ C.

Proof. Since Ψt◦Ψs =Ψt+s (t, s ∈ R), for the representation matrices we have Ψ̂tΨ̂s =

dt,sΨ̂
t+s with suitable constants dt,s ∈ C. The fixed point property Ψ

t
(x) = x implies

Ψ̂t

[
x

1

]
=

[
x

1

]
(t ∈ R).

Hence necessarily dt,s=1 (t, s∈R), thus
[
Ψ̂t : t∈R

]
is a one-parameter matrix group.

By assumption, the function t 7→ at = Ψt(0) is norm-continuous R → Ball(H). Hence
we can deduce the strong continuity of the H-unitary operator valued function t 7→ Ut.
Namely consider any vector x ∈ H. To establish the norm-continuity of the function
t 7→ Ut, we may assume without loss of generality that x ∈ Ball(H). Then, by the aid of
the Möbius shifts (M) we can write

Utx =
[
Θ−1

at
◦Ψt

]
(x) = Θ−at

(
Ψ(x)

)
(t∈R).

Observe that the norm continuity of t 7→ at implies the continuity of t 7→ ⟨x|at⟩ and
t 7→ βt ∈ [0, 1) entailing the norm-continuity of t 7→ Pt + βtP t ∈ Ball

(
L(H)

)
. Hence the

required norm-continuity of t 7→ Utx = (1− ⟨x|at⟩)−1[(Ptx− at + βtP tx] is immediate. In
general, the product of two bounded strongly continuous linear operator valued functions
R → L(X) over a normed space X is strongly continuous. Hence we conclude that the

entries (1, 1), (1, 2), (2, 1) resp. (2, 2) of the matrices Ψ̂t are strongly continuous functions
R → L(H), R → H, R → H∗≃H resp. R → R which completes the proof. Q.e.d.

Remark. It is worth to notice that the term ⟨Utx|at⟩ is actually independent of ut as

(Ux) ⟨Utx|at⟩ =
⟨x− at|at⟩
1− ⟨x|at⟩

, Ψ̂t =
1− ⟨x|at⟩
1− ⟨at|at⟩

[
Pt + βtP t at

a∗t 1

] [
Ut 0
0 1

]
.

Proof: In general we have Pty = ⟨y|at⟩⟨at|at⟩−2at (0 ̸= at, y ∈ H). It follows ⟨PtUtx|at⟩ =
⟨Utx|at⟩ with ⟨P tUtx|at⟩ = 0 for any t ∈ R. Thus multiplying the fixed point equation

x = Ψ
t
(x) = (1+⟨Utx|at⟩)−1(Pt+βtP t)Utx with |at⟩, we get (1+⟨Utx|at⟩)−1⟨Utx+at|at⟩ =

⟨x|at⟩ whence the relations (Ux) are immediate.

Recalling the Hille–Yosida theorem [6, Kap.10] on strongly continuous one-parameter
groups of bounded linear operators in Banach spaces, the above proposition ensures the
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existence of a not necessarily bounded linear map A : D → H ⊕ C (the infinitesimal

generator of
[
Ψ̂t : t∈R

]
) such that

(Aa)

D =
{[x

ξ

]
∈H⊕C :

d

dt

∣∣∣
t=0̂
Ψt

[x
ξ

]
exists

}
,

d

dt
Ψ̂t = AΨ̂t = Ψ̂tA on D,

A
[
x

ξ

]
=

d

dt

∣∣∣
t=0

Ψ̂t

[
x

ξ

]
for

[
x

ξ

]
∈D.

Henceforth we fix the notations A,D for the infinitesimal generator of
[
Ψ̂t : t∈R

]
and its

domain, respectively. It is well-known that A has closed graph and D is a dense linear
submanifold of H ⊕ C being invariant under the maps Ψ̂t. We shall write

{[
x
ξ

]}
H

:= x

resp.
{[

x
ξ

]}
C := ξ for the canonical projections in H⊕C. We also introduce the notations

(N)
D0 :=

{
x ∈ H :

[x
0

]
∈ D

}
, B :=

(
x+D0

)
∩ Ball(H) ;

Bz :=
{
A
[z
0

]}
H
, Λz :=

{
A
[z
0

]}
C

for z ∈ D0 .

Proposition. D0 is a dense linear submanifold in H with D =
[D0

0

]
+ C

[
x
1

]
. We have

B =
{
x ∈ Ball(H) :

[
x
1

]
∈ D

}
. The set B is

[
Ψt : t∈R

]
-invariant and dense in Ball(H)

such that
d

dt

∣∣∣
t=0

Ψ
t
(x) = [Λ(x− x)]x+B(x− x) (x ∈ B).

Proof. The first statement in (Aa) implies
[
x
1

]
∈ D with A

[
x
1

]
= 0 since Ψ̂t

[
x
1

]
≡

[
x
1

]
.

Since D is closed for linear combinations, it follows
[D0

0

]
+ C

[
x
1

]
⊂ D. Given any vector[

x
ξ

]
∈ D, we have x− ξx ∈ D0 because

[
x
ξ

]
− ξ

[
x
1

]
∈ D. Hence also D ⊂

[D0

0

]
+ C

[
x
1

]
.

As for the density of D0 in H and hence also the density of B in Ball(H), consider an
arbitrary vector x ∈ H. Since D is dense in H⊕C, there is a sequence

[
x1

ξ1

]
,
[
x2

ξ2

]
, . . . ∈ D

with
[
xn

ξn

]
→

[
x
0

]
that is ξn→0, xn→0 (in norm) whence D0 ∋ xn−ξnx→ x.

To see B =
{
x ∈ Ball(H) :

[
x
1

]
∈ D

}
it suffices to notice that in general

(∗) x ∈ D0 + x ⇐⇒
[x
1

]
∈ D (x ∈ H).

Proof of (∗): x ∈ D0 ⇐⇒
[
x−x
0

]
∈ D ⇐⇒

[
x
1

]
−
[
x
1

]
∈ D ⇐⇒

[
x
1

]
∈ D.

Using (∗), we show the
[
Ψ

t
: t ∈ R

]
-invariance of the set B as follows. Since Ψ̂t : D ↔ D and

Ψ
t
: Ball(H) ↔ Ball(H), we can deduce consecutively the equivalence of the statements

(i)Ψt(x∈ B, (ii)x∈ Ball(H) and
[
Ψt(x)

1

]
∈ D, (iii)x∈ Ball(H) and

{
Ψ̂t

[
x
1

]}−1

C Ψ̂t
[
x
1

]
∈ D,

(iv)x∈Ball(H) and Ψ̂t
[
x
1

]
∈D, (v)x∈Ball(H) and

[
x
1

]
∈D, (vi)x∈B.
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Finally, given any vector x ∈ B, by (∗) we have
[
x
1

]
∈ D whenceA

[
x
1

]
= d

dt

∣∣
t=0

Ψ̂t
[
x
1

]
. Since

Ψ
t
(x) =

{
Ψ̂t

[
x
1

]}−1

C

{
Ψ̂t

[
x
1

]}
H

and since Ψ̂0 = Id, A
[
x
1

]
= d

dt

∣∣
t=0

Ψ̂t
[
x
1

]
= d

dt

∣∣
t=0

[
x
1

]
= 0,

hence we get

d

dt

∣∣∣
t=0
Ψ

t
(x) = −

{
Ψ̂0

[x
1

]}−2

C

[
d

dt

∣∣∣
t=0

{
Ψ̂0

[x
1

]}
C

]{
Ψ̂0

[x
1

]}
H
+
{
Ψ̂0

[x
1

]}−1

C

d

dt

∣∣∣
t=0

{
Ψ̂0

[x
1

]}
H
=

= −
{
A
[x
1

]}
C
x+

{
A
[x
1

]}
H

= −
{
A
[x− x

0

]}
C
x+

{
A
[x− x

0

]}
H
. Q.e.d.

Corollary. Given any vector v ∈ D0 we have

Re
(
− Λv +

⟨
Bv

∣∣x⟩+ ⟨
Bv

∣∣v⟩) = 0 whenever
∥∥x+ v

∥∥ = 1 .

Proof. Let v ∈ D0, u := x+ v and assume ∥u∥ = 1. Since, as it is well-known [3],
Ψ
(
∂Ball(H)

)
= ∂Ball(H) for any holomorphic automorphism Ψ of the unit ball, we have∥∥Ψt

(u)
∥∥=1 (t∈R). It follows

0 =
d

dt

∣∣∣
t=0

⟨
Ψ

t
(u)

∣∣∣Ψt
(u)

⟩
= 2Re

⟨ d
dt

∣∣∣
t=0

Ψ
t
(u)

∣∣∣ u⟩.
Applying the proposition with x :=u and v :=x−x, this means that Re

⟨
[−Λv]u+Bv

∣∣u⟩=0.
Taking into account that ⟨u|u⟩ = 1, the statement is immediate. Q.e.d.

Proposition. For some constant λ ∈ R we have

Λz =
⟨
(B−2λI)z

∣∣x⟩, Re
⟨(
B−λI

)
z
∣∣ z⟩ = 0 (z ∈ D0).

In particular, if ∥x∥ < 1 then necessarily λ = 0 above.

Proof. Consider any vector z ̸= 0. Let ζ ∈ C be the (unique) constant such that
x + ζz ⊥ z and define ϱ :=

√
1− ∥x+ ζz∥2. Actually we have ζ = −⟨x|z⟩/⟨z|z⟩ and

1 ≥ ∥x∥2 = ∥x+ ζz∥2 + ∥− ζz∥2 showing that both ζ and ϱ are well-defined. Consider the
unit vectors

vφ := x+ ζz + eiφϱz (φ∈R).

According to the last corollary,

Re
(
(ζ+eiφϱ)

[
− Λz +

⟨
Bz

∣∣x⟩]+ |ζ+eiφϱ|2
⟨
Bz

∣∣ z⟩) = 0 (φ ∈ R).

That is we have

Re
(
α+ βeiφ + γe−iφ

)
= 0 (φ ∈ R)

where α := ζ
[
− Λz +

⟨
Bz

∣∣x⟩]+ (|ζ|2 + ϱ2)
⟨
Bz

∣∣ z⟩,
β := ϱ

[
− Λz +

⟨
Bz

∣∣x⟩+ ζ
⟨
Bz

∣∣ z⟩], γ := ϱζ
⟨
Bz

∣∣ z⟩.
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Since 2Re
(
α+ βeiφ + γe−iφ

)
= 2Re(α) + (β + γ)eiφ + (β + γ)e−iφ, we have necessarily

Re(α) = β + γ = 0 .

As β + γ = 0, it follows

(B) Λz − ⟨Bz |x⟩ = 2 ζ Re ⟨Bz | z⟩ = −2 ⟨z |x⟩ Re ⟨Bz | z⟩
⟨z | z⟩

,

and substituting this into the relation 0 = Re(α), we get

(B′) 0 = (ϱ2 − |ζ|2)Re
⟨
Bz

∣∣ z⟩ = (
1− ∥x∥2

)
Re

⟨
Bz

∣∣ z⟩ .
From (B) we see that

z 7→
Re

⟨
Bz

∣∣ z⟩⟨
z
∣∣ z⟩ = −1

2

Λz −
⟨
Bz

∣∣x⟩⟨
z
∣∣x⟩

is a real valued Gâteaux holomorphic function on the algebraically open and in D0 al-
gebraically dense domain {z ∈ D0 : z ̸⊥ x} which is possible only if being constant on
D0. By writing λ for this constant value, the statement is immediate from (B) and (B′).
Q.e.d.

Taking int account the obvious reversibility properties of the steps of the proof, we conclude
immediately the following technical statement.∗

Corollary. Given a possibly unbounded linear functional Λ : D0 → C along with a possibly
unbounded linear operator B : D0 → H, we have

[
Λ(x − x)

]
x + B(x − x) ⊥ x for any

x ∈ [x+D0]∩ ∂Ball(H) if and only if Λz=
⟨
(B−2λI)z

∣∣x⟩, Re
⟨(
B−λI

)
z
∣∣ z⟩=0 (z∈D0)

with some real constant λ if ∥x∥ = 1 and with λ = 0 in case of ∥x∥ < 1.

Lemma. The operator B : D0 → D0 is closed.

Proof. Consider a convergent sequence D0 ∋ zn → z with limit point in H such that
Bzn → w for some w ∈ H. We have to show that (∗) z ∈D0 with Bz =w, For (∗), it
suffices to observe that

Λzn =
⟨
(B − 2λI)zn

∣∣x⟩ → ⟨
w − 2λz

∣∣x⟩,
∗ Direct proof. Given any λ ∈ R and a vector z ∈ H with ∥x + z∥ = 1, we have the
following chain of equivalences: 0 = Re

⟨
− ⟨(iA − λ)z|x⟩(x + z) + (iA + λI)z

∣∣x + z
⟩
iff

0 = Re
[
− ⟨(iA − λ)z|x⟩ + ⟨(iA + λI)z|x + z⟩

]
iff 0 = Re

[
2λ⟨z|x⟩ + ⟨iAz|z⟩ + λ⟨z|z⟩

]
iff

0 = Re
[
λ
(
⟨x+z|x+z⟩−⟨x|x⟩−⟨x|z⟩+ ⟨z|x⟩

)
+ ⟨iAz|z⟩

]
iff 0 = Re

[
λ(1−∥x∥2)+ ⟨iAz|z⟩

]
.
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recalling that the not necessarily bounded linear operator A
[
x
ξ

]
=

[
B(x−ξx)
Λ(x−ξx)

]
mapping the

linear manifold D :=
[D0

0

]
+C

[
x
1

]
into itself is closed. Indeed we have

[D0

0

]
∋
[zn
0

]
→

[z
0

]
, A

[zn
0

]
=

[Bzn
Λzn

]
→

[ w

⟨w − 2λz|x⟩

]
implying (∗) along with the relation Λz = ⟨w − 2λz|x⟩ = ⟨(B − 2λI)z|x⟩. Q.e.d.

Definition. For convenience, we shall write A := −i(B + λI). Thus henceforth

(A) Bz = (iA+ λI)z , Λz =
⟨
(iA− λI)z

∣∣x⟩ (z ∈ D0)

where A : D0 → D0 is a densely defined closed symmetric linear operator and λ is some real
number. We know also that any vector field of the form x+D0 ∋ x+z 7→ −[Λz](x+z)+Bz
is tangent to the unit sphere if and only if B and Λ are of the form (A) with a symmetric
operator A and any real number λ if ∥x∥ = 1 and with λ = 0 in case of ∥x∥ = 1.

The case 0 ∈ B with ∥x∥ = 1

Throughout this section we assume that a common fixed point x of
[
Ψ

t
: t ∈R

]
lyes in

the boundary of the unit ball and the origin belongs to the domain B of the non-linear
generator that is we have

(Ab) 0 ∈ B, ∥x∥ = 1.

Remark, Since B = x + D0 ∩ Ball(H) and since D0 is a complex linear submanifold of
H, we have 0 ∈ B if and only if x ∈ D0 which is equivalent to

[
0
1

]
=

[
x
1

]
−

[
x
0

]
∈ D.

In this case the terms Bx,Λx are also well-defined and in their terms we can write the
infinitesimal generator A in a matrix form
as

A
[0
1

]
= A

([x
1

]
−
[x
0

])
= −

[Bx
Λx

]
,

A
[x
ξ

]
=

[B(x− ξx)

Λ(x− ξx)

]
=

[B −Bx
Λ −Λx

][x
ξ

]
.

Notice that in case of
[
0
1

]
̸∈ D we have only A

[
x
ξ

]
=

[
B
Λ

](
[I − 1]

[
x
ξ

])
while the formal

product
[
B
Λ

]
[I − 1] cannot be defined.

Theorem. Under the hypothesis (Ab), B is the intersection of the dense complex linear
submanifold D0 of H with the closed unit ball and V admits the Jordan form

(J) V(x) = b− {xb∗x}+ iAx (x ∈ B)
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in terms of the Jordan triple product {xc∗y} := 1
2 ⟨x|c⟩y +

1
2 ⟨y|c⟩x where

b :=
d

dt

∣∣
t=0

Ψt(0) = lim
t→0

at/t, Ax := lim
t→0

1

it
(Ut − I)x− Im

⟨
x
∣∣b⟩x (x ∈ D0).

Proof. By the definition of the domain D,

A
[0
1

]
= lim

t→0

1

t

(
Ψ̂t − Ψ̂0

)[0
1

]
= lim

t→0

1

t

{ 1

1 + ⟨Utx|at⟩

[at
1

]
−
[0
1

]}
.

Since limt→0 at = 0 and ∥Utx∥ ≤ 1 (t ∈ R), taking (Ux) into account, we see that the limit

b := lim
t→0

1

t
at =

d

dt

∣∣∣
t=0

Ψt(0)

is well-defined and

Bx = −
{
A
[0
1

]}
H

= −b, Λx = −
{
A
[0
1

]}
C
=

⟨
x
∣∣ b⟩.

As a consequence we also have

βt =
√
1− ⟨at|at⟩ =

√
1− ∥tb+ o(t)∥2 =

=
√
1− t2∥b∥2 + o(t2) = 1− 1

2
∥b∥2t2 + o(t2).

Hence we deduce that 1− βt = o(t) and therefore, for any vector z ∈ D0.

1

t

(
Ψ̂t − I

)[z
0

]
=

1

t

[
(Pt + βtP t)Utz − ⟨U tx|at⟩z

tΛz + o(t)

]
=

=

[
t−1(Ut − I)z + t−1(1− βt)P tUtz − ⟨x|b⟩z

Λz

]
+ o(1).

Since, by definition,
[
Bz
Λz

]
= lim

t→0

1
t

(
Ψ̂t − I

)[
z
0

]
, we get

Bz = lim
t→0

1

t
(Ut−I)z −

⟨
x
∣∣b⟩z (z ∈ D0).

In particular, from the relations (Ab) we obtain that for any unit vector z ∈ D0 we have
i⟨Az|z⟩ + λ = lim

t→0
t−1⟨(Ut − I)z|z⟩ − ⟨x|b⟩ whence the the symmetry of A along with the

properties 0 = d
dt t=0

∥Utz∥2 = 2Re lim
t→0

t−1⟨(Ut − I)z|z⟩ and λ ∈ R implies

λ = −Re
⟨
b
∣∣x⟩ , A = lim

t→0

strong 1

it

(
Ut − I

)
− Im

⟨
x
∣∣ b⟩I .
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Finally we calculate V = d
dt

∣∣
t=0

Ψt by substituting the previous results int the form

V(x) =
[
Λ(x− x)

]
x+B(x− x). Namely, given any vector x ∈ B, taking into account the

antisymmetry of the operator B−λI, we can write

V(x) =
[
Λx

]
x−

[
Λx

]
x+Bx−Bx) =

= ⟨x|b⟩ − ⟨(B − 2λI)x|x⟩x+Bx+ b =

= ⟨x|b⟩ − ⟨(B − λI)x|x⟩x+ ⟨(B − λI)x|x⟩x+Bx+ b =

= b+
[
⟨x|b⟩I +B

]
x+ ⟨x|(B + λI)x⟩x =

= b+
[
⟨x|b⟩I +B

]
x+ ⟨x|(−b+ 2λx)⟩x =

= b− ⟨x|b⟩x+
[
(⟨x|b⟩+ λ+ (B − λI)

]
x =

= b− ⟨x|b⟩x+
[
i⟨Ax|x⟩I + iA

]
x

whence the Jordan form (J) is immediate. Q.e.d.

Lemma. We have (1 + ⟨Utx|at⟩)−1
[
Pt+βtP t at

a∗
t 1

]
=

[
I 0
0 1

]
+ t

[
−⟨x|b⟩I b
b∗ −⟨x|b⟩

]
+ onorm(t).

Proof. This is a direct consequence of the facts that at = tb + onorm(t), βt = 1 + o(t),
(1 + ⟨Utx|at⟩)−1 = (1− ⟨x|at⟩)(1− ⟨at|at⟩)−1 = (1− t⟨x|b⟩+ o(t))β−2 = 1− t⟨x|b⟩+ o(t)
and Pt + βtP t = (1− βt)Pt + βt(Pt + P t) = I + onorm(t) as t→ 0. Q.e.d.

Corollary. We have D0 = dom
(
lim
t→0

t−1(Ut − I)
)
, that is x ∈ D0 if and only if the limit

lim
t→0

t−1(U tx− x) exists.

Proof. Recall that D0 =
{
x ∈ H : d

dt

∣∣
t=0

Ψ̂t
[
x
0

]
is well-defined

}
. From the theorem we

know that iAx = lim
t→0

t−1(Ut − I)x is well-defined for every vector x ∈ D0. Conversely,

suppose u = lim
t→0

t−1(Utx− x) is well-defined. Then Utx = x+ tu+ onorm(t) and

Ψ̂t
[x
0

]
= (1 + ⟨Utx|at⟩)

[Pt + βtP t at
a∗t 1

] [Ut 0

0 1

] [x
0

]
=

=
([I 0

0 1

]
− t

[ ⟨x|at⟩ − b

−b∗ ⟨x|at⟩

]
+ onorm(1)

) [x+ tu+ onorm(t)

0

]
=

=
[x
0

]
+ t

[u− ⟨x|at⟩x
⟨x|b⟩

]
+ onorm(t). Q.e.d.

Lemma. We have U−t = U−1
t = U∗

t , a−t = −U∗
t at (t ∈ R).

Proof. Given any parameter t ∈ R, we have Ψ−t = Ψ−1
t that is Θa−tU−t =

[
ΘatUt

]−1
=

U−1
t Θ−1

at
= U−1

t Θ−at =
[
U−1
t Θ−atUt

]
U−1
t = ΘU−1

t (−at)
U−1
t . Using the uniqueness of

9



the decomposability of holomorphic automorphisms of circular domains into Möbius and
unitary parts [7], hence we deduce that Θa−t = Θ−U−1

t at
and U−t = U−1

t . Q.e.d.

Proposition. The operator A in (J) is self-adjoint.

Proof. In view of the previous lemmas we can conclude that for any vector
[
x
ξ

]
∈ D,

d

dt

∣∣∣
t=0

Ψ̂t =
d

dt

∣∣∣
t=0

(1 + ⟨Utx|at⟩)−1
[Pt + βtP t at

a∗t 1

][Ut 0

0 1

][x
ξ

]
=

=
d

dt

∣∣∣
t=0

(1 + ⟨Utx|at⟩)−1
[Pt + βtP t at

a∗t 1

][x
ξ

]
+
d

dt

∣∣∣
t=0

[Ut 0

0 1

][x
ξ

]
=

=
[ iA−⟨x|b⟩I b

b∗ −⟨x|b⟩

][x
ξ

]
The linear operator in L(H⊕C) with matrix

[ −⟨x|b⟩I b
b∗ −⟨x|b⟩

]
is bounded. Since A = d

dt

∣∣
t=0

Ψ̂t

with domain |D is the generator of a strongly continuous semigroup in L(H⊕ C), by the
theorem of bounded perturbations [8], also the operator with matrix

[
iA 0
0 0

]
with domain

D is the generator of a strongly continuous group in L(H ⊕ C) strongly continuous one-
parameter subgroup of L(H) entailing that iA in (J) is the generator of a strongly contin-
uous group

[
Vt : t ∈ R

]
in L(H). Since U−t = U−1

t = U∗
t , the arguments on sun adjoint

semigroups in [8, p. 69] show that limt→0 t
−1(U∗

t − I) = −iA is the generator of the sun
adjoint group

[
V ∗
t : t ∈ R

]
=

[
V−t : t ∈ R

]
and we have −iA = (iA)∗. Q.e.d.

Theorem. Any vector field of the form (J) where A is a not necessarily bounded self-
adjoint operator with dense domain D0 ⊂ H, is the infinitesimal generator defined on B :=
D0 ∩ Ball(H) of a pointwise continuous one-parameter group Φt : t ∈ R] of holomorphic
automorphisms of Ball(H).∗

Proof. It suffices to see that there is a strongly (i.e. pointwise) continuous one-parameter
group

[
V t : t ∈ R

]
of bounded linear operators of the space H⊕ C such that

d

dt

∣∣∣
t=0

V t
[x
ξ

]
=

[ iA b

b∗ 0

][x
ξ

]
(x ∈ D0, ξ ∈ C), V tK ⊂ K :=

{[x
ξ

]
: ∥x∥2 ≥ |ξ|2

}
.

Namely, in this case the maps

Φt(x) :=
{
V t

[x
1

]}−1

C

{
V t

[x
1

]}
H

(t ∈ R, x ∈ B)

suit the requirements of the theorem since x ∈ B ⇒
[
x
1

]
∈ K ⇒ V t

[
x
1

]
⇒ Φt(x) ∈ B and

x∈B⇒ d
dt

∣∣
t=0

Φt(x)=−
{
V 0

[
x
1

]}−2

C
d
dt

∣∣
t=0

{
V t

[
x
1

]}
C

{
V 0

[
x
1

]}
H
+
{
V 0

[
x
1

]}−1

C
d
dt

∣∣
t=0

{
V t

[
x
1

]}
H

= −
{[

iA b
b∗ 0

][
x
1

]}
Cx+

{[
iA b
b∗ 0

][
x
1

]}
H

= −⟨x|b⟩x+ iAx+ b = V(x).

∗ That is, for all x ∈ B := D0 ∩ Ball(H), the functions t 7→ Φt(x) range in D0, they are
differentiable and satisfy the identity d

dtΦ
t(x) = V

(
Φt(x)

)
(t ∈ R).
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Notice that a strongly continuous one parameter group of linear operator leaves the cone K
invariant if all its members map the boundary ∂K=

{[
x
ξ

]
: ∥x∥=|ξ|

}
=
{[

x
eiτ∥x∥

]
: x∈H, τ∈R

}
into itself.∗ Therefore it suffices to check that there is a (necessarily unique)strongly
continuous one-parameter group in L(H⊕ C) with domain D0 ⊕ C such that

d

dt
V t

[x
ξ

]
=

[ iA b

b∗ 0

]
V t

[x
ξ

]
,

∥∥∥∥{V t
[ x

∥x∥

]}
H

∥∥∥∥ =

∣∣∣∣{V t
[ x

∥x∥

]}
C

∣∣∣∣ (x ∈ D0, t ∈ R).

By Stone’s theorem, the H ⊕ C-unitary operators W t
[
x
ξ

]
:=

[
exp(itA)x

ξ

]
form a strongly

continuous one-parameter group whose infinitesimal generator is defined on dom(A)⊕C =
D0 ⊕ C with the diagonal matrix

[
iA 0
0 0

]
. Since the matrix

[
0 b
b∗ 0

]
represents a bounded

linear operator in H⊕C, by the theorem of bounded perturbations 8], there is a strongly
continuous one-parameter group

[
V t : t ∈ R

]
whose generator is defined on D0 ⊕ C with

the matrix
[
iA b
b∗ 0

]
. In particular d

dtV
t
[
x
ξ

]
=

[
iA b
b∗ 0

]
V t

[
x
ξ

]
(t ∈ R, x ∈ D0). To complete

the proof, we show that necessarily

d

dt

[∥∥∥{V t
[ x

∥x∥

]}
H

∥∥∥2 − ∣∣∣{V t
[ x

∥x∥

]}
C

∣∣∣2] = 0 (t ∈ R, x ∈ D0).

Consider any vector x ∈ D0 and write
[
xt

ξt

]
:= V t

[
x

∥x∥
]
for all parameters t ∈ R. Then

d

dt

[
∥xt∥2 − |ξt|2

]
= 2Re

[⟨
dxt/dt

∣∣xt⟩− (
dξt/dt)ξt

]
=

= 2Re

[⟨{[ iA b

b∗ 0

][xt
ξt

]}
H

∣∣∣xt⟩−
{[ iA b

b∗ 0

][xt
ξt

]}
C

(
dξt/dt)ξt

]
=

= 2Re
[⟨
iAxt + ξtb

∣∣xt⟩− ⟨
xt
∣∣b⟩ξt] =

= −2 Im
⟨
Axt

∣∣xt⟩+ 2 Im
(⟨
ξb
∣∣xt⟩− ⟨

xt
∣∣ξb⟩) = 0. Q.e.d.

∗ In general, if a Hilbert space W is the orthogonal sum of the subspaces Wk (k=1, 2) and
C is the infinitesimal generator of a strongly continuous one-parameter group [T t : t∈R] in
L(W) then we have T tC=C (t∈R) for the cone C :=

{
w1⊕w2 : wk∈Wk, ∥w1∥>∥w2∥

}
if and only if C is tangent to the boundary of C that is if
(∗) Re

⟨
C(w1⊕w2),w1

⟩
=Re

⟨
C(w1⊕w2),w2

⟩
wheneverw1⊕w2∈dom(C) with ∥w1∥=∥w2∥.

Proof. It is immediate that T tC⊂C (t∈R) ⇒ T t∂C⊂∂C (t∈R) ⇒ d
dt |t=0T

t(w1 ⊕w2) ∈
Tanw1⊕w2(C) for w1 ⊕w2 ∈ dom(C) ⇒ (∗). Assume (∗) and let P denote the canonical
projection of W onto W1 and define T t,s := exp(tC + sP ) (s, t ∈ R). By the theorem of
bounded perturbations [8, p.158] the operators T t,s are all well-defined. Moreover, by [8,
Corollary 1.7 p. 161] (applied with B := sP and A := C there) we have lims→0 T

t,sw =
T tw (w ∈ dom(C), t ∈ R). Therefore, to establish that T tC ⊂ C (t ∈ R), it suffices to see
only that (∗∗) T t,sw∈C wheneverw∈dom(C)∩C and t, s>0. To proceed to contradiction,
let s, t > 0 and w := w1 ⊕w2 ∈ dom(C) with ∥w1∥ > ∥w2∥ but ∥[T t,sw]1∥ ≤ ∥[T t,sw]2∥.
The function δ(τ) := ∥[T τ,sw]1∥2 − ∥[T τ,sw]2∥2 is differentiable in τ on the whole R and
δ(0) > 0 ≥ δ(t). Thus there exist a point t∗ ∈ (0, t] such that δ(τ) > 0 = δ(t∗) (0 ≤ τ < t∗).
Since δ(t∗) = 0, w∗ := T t∗,sw ∈ ∂C and hence Re⟨Cw∗, [w∗]1⟩ = Re⟨Cw∗, [w∗]2⟩. We
get the contradiction 0 ≥ δ′(t∗) = 2Re⟨(C + sP )w∗, [w∗]1⟩ − 2Re⟨(C + sP )w∗, [w∗]2⟩ =
2s∥[w∗]1∥2 > 0.

11



Reduction to the Jordan case 0 ∈ B

In accordance with the previous standard notations, throughout this section
[
Ψ

t
: t ∈ R

]
denotes a pointwise continuous one-parameter subgroup of Aut

(
Ball(H)

)
with infinitesimal

generator X : B → H where B :=
{
x ∈ Ball(H) : t 7→ Ψ

t
(x) is differentiable on R

}
. We

regard X as a vector field defined on the intersection of a dense complex-affine submanifold
with the unit ball of H.
Let us fix any point a ∈ B with ∥a∥ < 1 and, in terms of the Möbius transformations (M),
consider the transformations

Φ
t
:= Θ#

−aΨ
t
= Θ−a ◦Ψ

t ◦Θa

given by the adjoint action of Θ−a = Θ−1
a . Clearly

[
Φ

t
: t ∈ R

]
is a pointwise continuous

one-parameter subgroup of Aut
(
Ball(H)

)
whose infinitesimal generator is the vector field

V := Θ#
−aX : y 7→ d

dt

∣∣∣
t=0

Θ−a

(
Ψ

t(
Θa(y)

))
defined on the domain

B1 := Θ−aB = D1 ∩ Ball(H).

Recall that 0 ∈ B1 and D1 is some dense complex-linear submanifold in H and, as a
consequence of the results of the previous section, we can write V in the Jordan form (J)
with some vector b ∈ H and a suitable not necessarily bounded self-adjoint linear operator
A : D1 → H. By the aid of the inverse adjoint action Θ#

a , hence we get X in the form

X (x) =
[
Θ#

a V
]
(x) =

d

dt

∣∣∣
t=0

Θa

(
Φ

t(
Θ−a(x)

))
=

=
d

dt

∣∣∣
t=0

Θa

(
Θ−a(x) + tV

(
Θ−a(x)

)
+ o(t)

)
=

=
d

dt

∣∣∣
t=0

(
1 + ⟨y + tk|a⟩

)−1
([

Pa + βaPa

]
(y + tk) + a

)∣∣∣ y=Θ−a(x)

k=b−⟨y|b⟩y+iAy

for the locations x ∈ B. Next we calculate the a detailed algebraic form for X . Notice that

d

dt

∣∣∣
t=0

(
1 + ⟨y + tk|a⟩

)−1
= −⟨k|a⟩

(
1 + ⟨y|a⟩

)−2

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The classical case ∥x∥ < 1. Since the Möbius transformation Θx takes the origin into x
and since its inverse coincides with Θ−x, the automorphisms of the form T t := Θ−x◦Ψt◦Θx
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leave the origin fixed and hence
[
T t : t ∈ R

]
is a strongly continuous one-parameter

group consisting of restrictions of linear unitary operators to Ball(H). By Stone’s classical
theorem, there is a not necessarily bounded self-adjoint operator A with dense domain in
H such that T t = exp(itA) (t∈R). It follows Ψt = Θx ◦ exp(itA) ◦ Θ−x (t∈R) entailing
that the (non-linear) infinitesimal generator of

[
Ψ

t
: t ∈ R

]
is

d

dt

∣∣∣
t=0

Ψ
t
(x) = i

[
Θ′

x

(
Θ−x(x)

)]
AΘ−x(x)

for x in the domain Θx

(
dom(A) ∩ Ball(H)

)
= (x+D0) ∩ Ball(H) = B.
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