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1. INTRODUCTION, MAIN RESULTS

Throughout this work H denotes an arbitrarily fixed infinite dimensional
complex Hilbert space with the scalar product (x|y) which is linear in z and

conjugate linear in y, giving rise to the norm ||z| = (z|z)"/2. We denote the
open unit ball {e € H: |le| < 1} with B and for any vector a € H we shall
write a* := [z — (x|a)] for its dual functional.

Recall that the group Aut(B) of all holomorphic automorphisms of B con-
sists the biholomorphic maps B <> B, and the H-unitary operators restricted
to B form the isotropy subgroup of the origin of Aut(B). Stone’s classical
theorem on strongly continuous one-parameter groups of unitary operators
can be reformulated in terms of Aut(B) as a statement that the infinitesimal
generator of a strongly continuous one-parameter subgroup of Aut(B) leaving
fixed the origin can be identified canonically with the restriction i A|B where A
is a possibly unbounded self-adjoint linear operator with dense domain in H.
The first attempt to reach an analogous description for the strongly continuous
one-parameter subgroups of Aut(B) formed by possibly non-linear maps can
be found in Vesentini’s celebrated paper [15] in 1987 based on a linear model
generalizing naturally a well-known analogous concept for finite dimensional
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Mobius groups. Later on [16] he returned to the theme with the aim of extend-
ing the results to strongly continuous one-parameter semigroups holomorphic
automorphisms of the unit ball of a Cartan factor of type 1 that is a space
of the form £(H;,H,y) with Hilbert spaces Hy where a linear model is still
available. Katshkevich-Reich-Shoiket [9] extended these investigations to gen-
eral strongly continuous one-parameter semigroups of holomorphic fractional
linear transformations. Nevertheless a simple explicit algebraic description for
these semigroups seems not yet being appeared in the literature.

Our purpose in this paper will be to develop an alternative shorter ap-
proach to the description of vector fields and their integration arising as in-
finitesimal generators of strongly continuous one-parameter subsemigroups of
Aut(B). Though several details presented here seem to be contained implic-
itly in [15,16,9], our treatment based on the existence of joint fixed points uses
essentially different ideas which may be of independent geometric interest con-
cerning the structure of the Banach-Lie group of the surjective isometries of
a hyperbolic space. We try give a self-contained presentation staring only
from the familiar form (2.3) for the Mdbius shifts establish first in [5,Ch.X] in
infinite dimensions. At the beginning we provide some general results concern-
ing the existence of joint fixed points and continuity of boundary extensions
in the setting of reflexive spaces. We pay particular attention (Section 4,
The Jordan case) to the characterize the cases where a Kaup type formula
[ — b— (z|b)x + iAx], given first in [10] for the uniformly continuous case,
is available for the vector fields of the infinitesimal generators. We focus to
one-parameter groups, establishing the following main results.

THEOREM 1.1. Assume [\lit . t € R] is a strongly continuous one-
parameter group of holomorphic automorphisms of B.! Then there exists a
vector T with ||Z|| < 1 along with a constant A € R and a densely defined
possibly unbounded self-adjoint operator A : Z — H with dense domain such
that

(1.2) BN(Z+Z) = D where D := {z € D : ¢+ () is differentiable onR},

d
(1.3) pn t_O\IJt(;U) = —((iA = X)(z —T)|T)x + (iA+ \)(z — T) (x € D).
Given any tuple (A, T, \) consisting of a densely defined self-adjoint operator
A :Z — H, a vector T with ||Z|]| < 1 and a real number X\, there exists (a

That is W' = ¥ o U° € Aut(B) for all couples ¢,s € R and the functions [t — W'(z)]
are continuous R — H for any fixed vector z € B.
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necessarily unique) strongly continuous one-parameter group [¥! : t € R]
satisfying (1.2) and (1.3) if and only if one of the following alternatives holds:
(1) [[z]|=1; (2) [[7]] <1, A=0.

COROLLARY 1.4. If ||Z|| = 1 above and T is an eigenvector of the operator
A with eigenvalue p(€ R) then the following alternatives hold: either for some
0 # A € R we have

. eMexp(itA)zo 2Xe”M(€ 1) z
Vi) = e D T U B e D)

where A # 0 and p(p, \,t) := (ip — N\)e* — (A +ip), or

. exp(itA)wzg £E—-1 _
Ul (zg + £7) = Tripie—1) + <1+—1+ipt(£_1))x

forallt e R, and zo + £x € B with ¢ L .

COROLLARY 1.5. If T # T € 0B are the only common fized poits of

[Wt:t € R], there exists © € Aut(B) along with a constant 0 # X\ € R such
that ©(7) =7, O(F') = —T and

At ]
t B L e exp(ZtA)l‘O
OoTlo® ($+§x)—2)\_¢(0,)\,t)(5_1)+<1+

forallt € R, and xo + T € B with zo L T.

20e?M (¢ — 1) _
2X — (0, \, )(E — 1))“7

2. PRELIMINARIES: LINEAR MODEL WITH JOINT FIXED POINTS

LEMMA 2.1. Assume K is a compact topological space and let [f; : t €
R4] be a one-parameter semigroup of continuous maps K — K admitting
fized points such that all the functions t — fi(z) are continuous. Then also
ﬂteR+ Fix(f;) # 0. Proof. Consider any parameter t > 0 and a point x €

Fix(fy). For n = 1,2,... recursively we have fy(z) = ft(f(n_l)t(:n)) = .
Thus Fix(fn:) D Fix(f;) # 0 (t € Ry, n =1,2,...). From the continuity of
the maps f; it follows that Fix(fi/,) (n=1,2,...) is a decreasing sequence
of non-empty compact sets with non-empty intersection X := (0, Fix(f p1)-
Since any rational number 0 # g € Q4 can be written in the form ¢ = m/n!
for suitable integers m,n > 0, it follows even that (g, Fix(fy) = & # 0.
Consider any parameter ¢ > 0 and any point x € X. Given any sequence
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q1:42, - € Q4 converging to ¢, the continuity of the orbit ¢ — fi(w) ensures
that « = lim, f,, (z) = fi(z).

Lemma 2.2. Let K be a domain in a Banach space E and let f; : Dy — E
(t € Ry] be a family of holomorphic maps defined on open neighborhoods of
K such that the restrictions [fi|K : t € Ry] form a strongly continuous one-
parameter semigroup. Assume that for every boundary point x € 0K there
exists a 1-dimensional complex disc A, centered in x and intersecting K such
that A, C ﬂte[O,dz] D; and Ute[o,dz] ft(Az) is a bounded set for some 6, > 0.

Then [f;|K : t € R] is also a strongly continuous one-parameter semigroup.

Proof. By assumption fs(fi(z)) = fsrt(x) (x € K, s,t € Ry). Since the
maps f;|K are all continuous, and it follows fs(fi(z)) = fsie(2) (z € K, s,t €
R, ) that is [f¢|K : t € R,] is a one-parameter semigroup of continuous maps
on the closure K. Hence, to complete the proof, it suffices to see only that
for any x € 0K, the function t — f;(x) is continuous on some neighborhood
the origin, namely on [0,6,). Fix any x € JK and consider a convergent
sequence t, — t within [0,d,]. We show the convergence f;, (x) — fi(z)
as follows. We can write A, = {z + (v : |(| < 1} with a suitable vector
v € E. By assumption, the functions g,(¢) := fi, (z 4+ (v) (n = 1,2,...) are
uniformly bounded and holomorphic on the unit disc. Furthermore they are
assumed to converge pointwise to g(¢) := fi(z + (v) on the non-empty open
complex domain {¢ € C: x4 (v € K}. In Banach space setting, pointwise
convergence implies uniform convergence on compact sets for holomorphic
maps [12]. In particular, we have uniform convergence for [g, : n = 1,2,.. ]
on some compact disc with positive radius. By a theorem of Vigué [17, 8], for
a uniformly bounded sequence of holomorphic maps, the uniform convergence
on some subdomain entails locally uniform (and hence pointwise) convergence
on the whole domain. In particular, g, — ¢ pointwise and hence f;,(z) =

gn(0) = 9(0) = fi(x).

COROLLARY 2.3. If E is a JB*-triple, K is its open unit ball and [f; :
t e R]ﬁis a strongly continuous one-parameter subgroup of Aut(K) then the

maps f, obtained with graph closure from the respective f;, form a strongly
continuous one-parameter group of maps K — K.

Proof. 1t is well-known [11] that we can write f; = My, ) o Uy with
some invertible linear operator U; € L(E) and a so-called M&bius transfor-
mation with the fractional linear form x — f(0) 4+ B[l + L(z, f:(0)] 'z where
By, L(z, f:(0)) € L(E) and ||L(z, f:(0))|| < ||f:(0)]|||z]]. In particular each f;
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extends holomorphically to the ball of radius 1/ f;(0)||. Thus the conditions
required by the lemma are fulfilled since }/in(l) f(0) = 0 by assumption.
—

Henceforth we focus to the case of the unit ball B of an infinite dimensional
Hilbert space.

Recall [5, Ch. VI] that the group of Aut(B) all holomorphic automor-
phisms of B admits a matrix representation. Namely each element ¥ of
Aut(B) has the fractional linear form

A b
(2.4) () :m, AcL(H), beecH, deC
and we have
Ax +b A b A1 b1 A2 bg
Uiolo(z) = Uy (Ua(z)) = Gl 1 d whenever L* d] = [CT d1:| [CS E

This representation is unique up to a constant, since in (2.4) we necessarily
have

[ﬁ Z} = d[(jf Cll] [g (1]] where a:=V(0), U= (82P,+ B.P.) 1 ¥(0)

in terms of the the Fréchet derivative ¥’ and the standard notations

P,:= [orthogonal projection H—>(Ca}, Ba=+vV1-]a|?, Qq:=Pa+Ba(I—Py).

We call the matrix
T .- QuallUO] [QU a
" laer1]0 1] [(Ura)*1
corresponding to the case with constant d = 1 the canonical representation of

V. In the sequel we shall write

H:=HoC={[{]:zcH, (cC}

and identify the matrix M := [mij]?j:1 where mq; € L(H), mia € H, mg; €

H* and mqs € C with the linear operator [g] > M[Zﬁ] on H. Notice that, by
(2.4) we have

I IS |
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where [-]c resp. [-]u are the standard notations for the canonical projections
H — C resp. H — H. It is immediate that any ¥ € Aut(B) extends
holomorphically to the ball (1 — ||¥(0)|)~'B. Hence we can define the group
of all automorphisms of the closed unit ball B := {x € H: ||z| < 1} as

Aut(B) :={U: ¥ € Aut(B)} where W := [continuous extension of ¥ to B].

It is also well-known [5, Ch.VI] that any mapping ¥ € Aut(B) is weakly
continuous and preserves the Grassmann family Aff(B) of all complex affine
closed subspaces intersected with B.2 By Schauder’s fixed point theorem,
Fix(¥) # ) since B is weakly compact. Moreover we have the following
alternatives:

(1) Fix(¥) € Aff(B), (2) Fix() consists of two boundary points.
In case (2) from the proof of [5, Thm.VI.4.8] we see even that ¥ = ®0O, 0P -

with a suitable automorphism ® € Aut(B) and a Mdbius shift

. Qe +a

for some 0 # a € B such that Fix(©,) = {—e, e} where e := a/||al|.

REMARK 2.7. In finite dimensions, it is customary to normalize (2.4) by
requiring det [?*ﬂ =1. Thus, in case of dim(H) = N, in this manner one can
establish a canonical identification of Aut(B) with a subgroup of the classical
matrix group SL(N 4+ 1). Though in infinite dimensions such a normalization
is not available, for one-parameter groups with common fixed point there is
an alternative way as follows.

DEFINITION 2.8. Let ([\IJt :te ]R],f) be a couple of a one-parameter
subgroup of Aut(B) with common fixed point Z for the continuous extensions

of its members to B: 7 € B, @t(f) =7 (t € R). In terms of the canonical
representations define

~ ~ 711 1 Q: ai] [Up 0
Tt .= [qjtm] T —— A teR).
z e V' = 150760 |l 1) o 1]  (ER
where a; = ¥(0) € B, U; € L(H) is a suitable unitary operator and @; :=
Qu, = P+ B(I — P) with P :=Pya= |la]| 2(z]a)as, Bi=+/1—]ac]?.

’If x = Z?@Akfk with A1, \2€ C and 37 A\x =1 then ¥(z) =37 o ¥(xy) for some
o1, a2€C with Y7 o =1 (namely ar=Xe[14 (2 |U*a)]/[1+(Mz1+A2w2|U"a)]).
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Later on, conveniently we shall simply write Ut instead of \f/% without
danger of confusion.

REMARK 2.9. As we have seen Wi(z) = (1 + (Uyr|a)) HQuUlr + a4] =
[©4,0 U] (z). Thus, by construction we have

#o= @[], eem 9[- [)

It is worth to notice that the term (U;T|a;) is actually independent of U, as

Proof: In general we have Py = (y|as){a¢|as) 2a; (0 # ag,y € H). Tt follows
(P,UiZ|a) = (Uyz|ag) with (PyUT|a;) = 0 for any ¢t € R. Thus multiplying
the fixed point equation T = @t(f) = (1+(Uz|as)) (P + B Py)Usm with |ay),
we get (1 + (UsZ|ay)) " U + ar]ar) = (T|a;) whence the relations (2.10) are
immediate.

The power style indexing of Tt in ¢ is justified by the proposition below.

PROPOSITION 2.11. Given a strongly continuous one-parameter group
[T :teR] in Aut(B) with common fized point T € B, the family [VL: t € R]
18 a strongly continuous one-parameter group of operators in H.

Proof. Since W'oW® = ¥!ts (¢ s € R), for the representation matrices
we have Ul = dtvS\IIHS with suitable constants d; s € C,. The fixed point

property i (z) = 7 implies

#[7]-[7] en.

Hence necessarily d; s =1 (t, s€R), thus [\Tlt : t€R] is a one-parameter matrix
group.

By assumption, the function ¢ — a; = ¥*(0) is norm-continuous R — B.
Hence we can deduce the strong continuity of the H-unitary operator valued
function ¢ — U;. Namely consider any vector z € H. To establish the norm-
continuity of the function t — Uy, we may assume without loss of generality
that € B. Then, by the aid of the Mobius shifts (2.3) we can write

U = [0, o U] (z) = O_q, (¥(2)) (teR).
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Observe that the norm continuity of ¢ — a; implies the continuity of ¢ —
(z|as) and t — B; € [0,1) entailing the norm-continuity of ¢t — P; + B, P; €
Ball(£(H)). Hence the required norm-continuity of t — Uz = (1—(z|as)) " [(Piz—
a¢+ B¢ Pyx] is immediate. In general, the product of two bounded strongly con-
tinuous linear operator valued functions R — £(X) over a normed space X

is strongly continuous. Hence we conclude that the entries (1,1),(1,2),(2,1)
resp. (2,2) of the matrices U' are strongly continuous functions R — £(H),

R — H, R — H*~H resp. R — R which completes the proof.

COROLLARY 2.12. Given a strongly continuous one-parameter group
[Tt: t € R] in L(H), the following statements are equivalent
(i) for allt € R, the maps x [Tt[ﬂ](;l [Tt[ﬂ]H belong to Aut(B);
(ii) we have T* = e W' (t € R) for some strongly continuous one-para-
meter subgroup [V : teR] of Aut(B) and a constant peC;
(iii) each operator T* maps the cone K:={ [2’"] P> [|z)|?} onto itself;
(iv) each operator T' maps OK := {[z] 2 €2 = ||z]|*} onto itself.

Proof. The implication (ii)=-(i) is trivial by (2.5).

Proof of (i)=-(ii): By assumption the maps ¥!(z) := [Tt[ﬂ]él T a
(t € R,z € B). are well-defined holomorphic automorphisms of the unit
ball B. By (2.5) we have T* = d,¥" (t € R) with suitable constants d; € C,.
Fixing any point # € B, the strong continuity of the group [7* : ¢ € R] implies
the continuity of the function 7° [ﬂ whence we deduce also the continuity of
t — W!(z) which entails the continuity of ¢ — W' (7] = dtTt [7] and hence the
continuity of ¢ — d;. By the one-parameter group property, all the relations
Ttts = Tt7s, Yits = PIUs (¢, s € R) hold. Therefore dyys = dyds (t,s €R)
and the continuity of ¢ — d; establishes the existence of a constant p € C with
dt:e“t (tGR)

Proof of (i)« (iii)<(iv): Consider the projective Hilbert space H./~ as-
sociated with H regarded as the set of all nontrivial punctured complex rays
C, [z] with the factor topology.® By homogeneity, any injective linear op-
erator 7 € L(H) acts holomorphically on H,/ ~ by its factorization Tx :
(C*[‘E] > C*’T["g]. In particular, as admitting a continuous inverse, each
map T2 is a holomorphic automorphism of #/ ~. Hence the equivalences
(i)e(iili)<(iv) are straightforward consequences of the facts that, with the

3 As usually, H. := H\ {0} with the equivalence relation [Z] ~ [fﬂ = C. [%] =C. [z]

where C, := C\{0}. A subset of H/~ is open if the union of it members (rays in H.) is open
in H.
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embedding II : = — C[]] and its inverse w((C[E]) = x/& (£ # 0), we
have IIB := K, 7K = B and [Tt[ﬂ](;l[ﬁ[ﬂ]}l = 7o TL o l[]] when-
ever [Tt[ﬂ]c £ 0.

COROLLARY 2.13. Given any © € Aut(B), the ©-shifted automorphisms
P! := OoWtoO! form strongly continuous one-parameter group with common
fized point g := O(T) when extended continuously to B and @ty = et~ 1ULO
(teR) for some peC.

3. LINEAR AND NON-LINEAR INFINITESIMAL GENERATORS

Throughout this section, let ([\Ilt: te R],f) be an arbitrarily fixed couple

of a strongly continuous one-parameter group in Aut(B) with a common fixed
point for the continuous extensions in B. Recalling the Hille-Yosida theorem
[13, Kap.10], Proposition 2.11 ensures that the differential
(3.1)
A:h— %@tb with D :=dom(A) ={heH:t— U'h is differentable on R}
(called the infinitesimal generator of the linear model [‘/I\It: te R] where Ul = ‘/I}%
for short) is a not necessarily bounded linear map with closed graph and
[Ut: t € R]-invariant domain being dense in . Instead of the differential A =
%\t:()\f/t of the representations we are primarily interested in the differential

0= 4 U':D -+ H where D =dom(f2) = {l‘ €B: i‘ Ul (z) exists}.
dt lt=0 dt lt=0

In order that we could regard the vector field €2 as a non-linear infinitesimal

generator for [¥! : t € R], we should see the density of D in B. In order to

establish a non-linear Stone-type theorem, we should determine precise links

to self-adjoint linear operators.

LEMMA 3.2. D is Wt : tER] -tnvariant. We have [ﬂ €D < z€D
whenever r€B.

Proof. The [\I/t (te ]R] -invariance of D is clear from the group property
UHs = Wl o U* (t,5 €R). Moreover even dom(%|,_ 00 ¥ oO!) = O(D)
whenever O is any holomorphic automorphism of B. Hence, given any point
x € B, we have z € D if and only if 0 = ©_,(z) € dom(%‘tzocbt) with the
one-parameter group of the maps ® := ©_, o ¥ 0 O, in terms of the Mobius
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transformations (2.3). That is, without loss of generality, it suffices only to
see the equivalence Oedom(%|t:0@t) — [?] €D. According to (2.10), by

setting a; := ¥U'(0) and a; := \/I\’t[(l)] we have a; = (1 — (a¢|Z)(1 — [la¢e]|*) [ ]

(t € R). Hence the curves t — a; resp. t — a; are differentiable in the same
time, which completes the proof.

For later use we also introduce the notations

z

e (oo [}y mo[o3l]y asA[]], cen

LEMMA 3.3. Z is a dense linear submanifold in H with D = (T—i— Z) NB
and D = [%] —l—C[ﬂ. The set D is dense in B and

%L:O@t(:@) —[A@—2)z+B(z-7) (zeD)

Proof. By definition, [ﬂ €D with A[ ] 0 since \Ilt[l] = [ ] (teR). Since
D is closed for linear combinations, it follows that [ ] [ﬂ D and that Z is
the image of D by the bounded linear operator H[ ] =x—£&Z. Since [IH =H
and since D is dense in ‘H, Z = IID is also dense in H=1II'{. From Lemma
3.2 we know that D = BN {ac : [ﬂ € D}. Hence the relation D = (f—i— Z) NnB
along with the density of D in B is immediate. leen any x € D, the relation

(7] € D implies A[{] = &, ¥'[{]. Since ¥'(x) = {'[] T (3
along with ¥ =1d and A[]] =0, we get

R G N R )8 [ RS M R U ) 9
p et e B M I | L
LEMMA 3.4. Suppose a Hilbert space W is the orthogonal sum of the
subspaces W1, Wo and C is the infinitesimal generator of a strongly contin-
uous one-parameter subgroup [Tt : t € R] of L(W). Then, for the cone

K :={w ®wy : [|wi] > |ws]|}, we have T'"K =K (t € R) if and only if C is
tangent to the boundary of K that is if

(3.5) Re(C (w1 Bwa)|wi —w2)=0 (wiBwz€dom(C), [Jwi]=|lwsl]).

Proof. Tt is immediate that T'K C K (t € R) = T!'0K C 0K (t € R)
= %|t:0Tt(w1 ® ws) € Tany, gu, (K) for w; & we € dom(C) = (3.5). Assume

10
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(3.5) and let P denote the canonical projection of W onto W7 and define
T4 .= exp(tC + sP) (s,t € R). By the theorem of bounded perturbations [4,
p.158] the operators T%¢ are all well-defined. Moreover, by [4, Corollary 1.7
p. 161] (applied with B := sP and A := C there) we have lims_,o T"*w = T w
(w € dom(C),t € R). Therefore, to establish that T'K C K (¢ € R), it suffices
to see only that T%%w €K whenever wedom(C)NK and t,s>0. To proceed
to contradiction, let s, > 0 and w := w1 ® wy € dom(C) with [|wi|| > ||w2]|
but [[[Tt5w]y || < |[[T*w]z|]. The function §(7) := ||[[T™5w]1||*> — ||[T7*w]a]|? is
differentiable in 7 on the whole R and §(0) > 0 > §(¢). Thus there exist a point
t. € (0,t] such that §(7) > 0 =4(t.) (0 < 7 < t,). Since 0(ts) = 0, the vector
wy := Tt 5w belongs to K and hence Re(Cw.,|[w.]1) = Re(Cw,|[w.]2). We get
the contradiction 0 > ¢’ (t.) = 2Re((C+sP)w.|[wi]1)—2Re((C+sP)wy|[wi]2) =
2| fw. 1 2 > 0.

COROLLARY 3.6. Given any vector v € Z, we have
Re( —Av+ <BU’§> + <Bv’v>) =0 whenever Hf—i— UH =1.

Proof. By Corollary 2.12, we have UK = K (t € R) where K := {[g :
€] > ||lz||} € H. An application of Lemma 3.4 with W; := C, Wy := H,
K := K, T" := W', C := A establishes that Re [(Az)¢] = Re (Bz|z) whenever
[2”] € D and ||z|| = |£|. We obtain the statement with the choice z := v+ T
and ¢ :=1if v € Z with |Jv + Z|| = 1 because then, by Lemma 3.3, [{] € D.

PROPOSITION 3.7. For some symmetric linear operator A : Z—H and
a suitable constant N€R which is necessarily = 0 if ||Z||#1, we have (1.3) as

B =iA+ )\, Az = ((iA - X)z|Z) (2 € Z).

Proof. Consider any vector 0 # z € Z. Let ¢ € C be the (unique) constant
such that T + ¢z L z and define ¢ := /1 — ||z + (z||?. Actually we have
¢ = —(Z|2)/(z]z) and 1 > ||Z||? = |Z + ¢z||> + || — ¢2||? showing that both ¢
and g are well-defined. Consider the unit vectors

v, =T+ (z+e¥pz (peR).
According to Corollary 3.6,
Re(((—i—ewg) [— Az + (Bz|Z)] + [(+eo|*(Bz | z>) =0 (p€eR).

Thus the identity Re(a + Be’? + Pye*w) = 0 for all ¢ € R holds with
the constants a := ([ — Az + (Bz ‘ z)] + (|¢]* + 0*)(Bz ’ z), Bi=0|—Az+

11
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<Bz ’f> + Z<Bz ’ z>] and v := Q(<Bz ‘ z> Since 2Re(a + Be? + yeT¥) =
2Re(a) + (B +7)e" + (B + v)e~*, we have necessarily Re(a) = 8+ 7 = 0.
From the relation g +7% =0, it follows

(3.8) Az — (Bz|T) = 2(Re(Bz|z) = —2(z|7)

and substituting this into the relation 0 = Re(a), we get
(3.8) 0= (0 — [¢|*) Re (B= |z) =(1- |1Z||*) Re ( Bz BE
From (3.8) we see also that

Re(Bz ‘ z) 1 Az —(Bz ‘ z)
»—_——t =/

(=]2) 2 (z[®)

is a real valued Géateaux holomorphic function on the algebraically open and
in Z algebraically dense domain {z€Z: z / T} which is possible only if being

constant on Z. By writing A for this constant value, from (3.8) and (3.8') we
conclude that

Az:<(B—2)\I)z|T>, Re((B=X)z|z) =0 (z € Z),

and, in particular, if ||Z]| <1 then necessarily A =0 above. By setting A :=
—i(B+M\I), hence the statement including the symmetry of A is immediate.

The following geometric converse of Proposition 3.7 is elementary:

REMARK 3.9. Given a dense linear submanifold Z in H, a symmetric
linear operator A : Z — H, a vector T € B, the vector field Q) (z) := —((i4A —
M) (z —Z|T)x + (iA+ M) (xz — T) define for T+ Z is tangent to the unit sphere
OB at the points x € T + Z with ||z|| = 1 whenever either ||Z|| =1 and A € R
or [|Z]| <1 and A = 0.

4. THE JORDAN CASE

In the sequel we proceed to the problem if the operator A in Proposition 3.7
arising from the differential % t:O\I/t of a strongly continuous one-parameter
subgroup of Aut(B) is necessarily self-adjoint and conversely if every self-
adjoint operator may appear there. We continue the previous investigations

with unchanged notations but under the additional hypothesis that

(4.1) 0eD= dom(%’tzo\llt) .

12
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As we know, D = {z € B: [{] € D} = BN (Z + Z) where D = dom(A)
with A4 = %‘tzo\lj% and Z = {a: e H: [g] € D} is a dense complex linear
submanifold in H. Thus, as a consequence of (4.1), for the distinguished

common fixed point of the extended automorphisms T’ we have 7 € Z =
dom(B) = dom(A). Therefore also

[er=le) ALl=[G-a)=[2 Zellf] wezcco

REMARK 4.2. Recall [10] that the complete holomorphic vector fields on
B are the infinitesimal generators of the uniformly continuous one-parameter
subgroups of Aut(B) and, with suitable ¢ € H and a bounded self-adjoint
operator C' € L(H) they can be written in the form x — a — {zc*z} + iCx by
means of the Jordan triple product.

(4.3) {zy*z} = %<x|y>z + %<z‘y>x

In terms of the factorization ¥! = ©,, o U;|B we introduce the following vector
resp. not necessarily bounded symmetric linear operator:

4 g im © _ .4 _ 1
b= %‘t:O‘I’ (0) = }E}% Eat’ R = _Zdt t:OUt TX }gr(l) it(Ut —Ix.

PROPOSITION 4.4. Under hypothesis (4.1), we have D = B N Z along
with dom(R) D Z and the vector field 2 := %‘tzo\llt admits the Jordan form
(4.5) Qz) =b— {zb*z} +iRx (x € D).

Proof. The relation D = BN Z is clear since T € Z. By the definition of
the generator A,

0 R N .1 1 az 0
S ey em e ) )
AH fing 5 ( ) 1) =l 1+ (Uzlay 1] 7 L1
Since %ir% a; = 0 and ||U;Z|| < 1 (¢t € R), taking (2.10) into account, we see
—>

that the limit

t—0

1 d
b= lim - :7’ (0
iz =g, Y (0

is well-defined and
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As a consequence we also have

1
B = V1=l = V1 —[th+ o) =1 Z[[b]*#* + o(t?),
Q=P +p(I—-P)=1+(1-p)P,=1+o0o(t) (inoperator norm).
Since also Uz = 2+ 0(1) in norm, hence we deduce that for any vector z € Z,

and ¢ € C,

} +o(t) in norm.

(4.6) @t[z] _ 1= (@) {QtUt at] m _ {Utz—t<a;|b>z

1= |la]]? [a;Uz 1] L t{Uz|b) + ¢
.. Bz . ..
By definition, [ Az] = }gl% H (\I/t I ) [8] Hence with well-defined limits we

conclude that

(4.7) Bz =lim — (Ut )z — (T |b)z (z € Z).

t—0 1t

The strong limit of t~1(U; — I')|Z is necessarily symmetric due to the fact that
each Uy is unitary. Thus comparing (4.7) with Proposition 3.7 stating that the
operator B has the form ¢A + Al with some A € R and a symmetric operator
A with dom(A) = Z, we get

(48)  A=-Re(@|b), A=Wl (U ~1)~Im(@|0)1|Z  in3T

t—0
We calculate € by substituting (4.7-8) into its form Q(z) = [A@ — 2)]|z +
B(x — 7) applying also the relations BT = —b, AT = (z|b), B = iA + A,
Az = ((tA — X)z|z) = ((B — 2A\I)z|T). Namely, given any vector x € D,
taking into account the antisymmetry of the operator iA = B—\I, we can
write

Q(z) = [Az]z — [Az]z + Bz — BT =
= (z|b)x — ((B — 2\ )z|Z)x + Bx + b=
= b+ [(z[b)] + B]z — (B — M)z|[z)z + MNz|T)z =
=b+ iRz + (z|(B — \)T)x + Nz|T)x =
=b+iRx + (x|BZ)r = b+ iRx — (x|b)x.

COROLLARY 4.9. Z = dom(R) that is x € Z if and only if the limit

lim ¢t~ (Ulx — x) exists.
-0

Proof. Recall that Z = {z € H: 4| _ U'[?] is well-defined}. From
Proposition 4.4 we know that iRz = PH(I] t=1(U; — Iz is well-defined for every
%

14
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vector x € Z. Conversely, suppose u = }in% t=1(Ux — ) is well-defined. Then
—

Uiz =x+tu+0"""™(t) and (4.6) establishes \/I\/t[g] =[5] +t[u7g||Z;>x] +o"orm (¢),

LEMMA 4.10. We have U_; =U;'=U}, a_y = —Ufa; (t €R).

Proof. Given any t € R, we have U~ = \I/t_l thatis ©, ,U_; = [@at Ut] -
U 'e! = U7 '0-q, = [U7'0-q,UJU " = ©y1(_, Uy ' From the unam-
biguous decomposability of holomorphic automorphisms of circular domains
into Mdbius and unitary parts [2] we deduce O, _, :®_U;1at and U_y=U;".

LEMMA 4.11. The operator R is self-adjoint with dom(R) = Z.

Proof. In view of (4.6), and since Upzx = = + itRzx + 0"™(t) for any
x € Z=dom(R) = dom(%‘tont), we conclude that

d =~ [r]  [iR—(z|b)] b x x (%
(4.12) dt‘tzo\y m - [ b* —(E\bﬂ m for any [g} €b= M'
The linear operator in £(H) with matrix [_lf o1 <fb|b>} is bounded. Since A =

%! t:()@t with domain D is the generator of a strongly continuous semigroup
in L(H), by the theorem of bounded perturbations [4], also the operator with
matrix [“g‘ 0] with domain D is the generator of a strongly continuous one-
parameter subgroup of £(H) entailing that iR is the generator of a strongly
continuous group [Vt 'te ]R] in £(H). Since U_; = U; ! = U}, the arguments
on sun adjoint semigroups in [4, p. 69] show that %gr(l) t= YU} —I) = —iR is

the generator of the sun adjoint group [V}/* it € ]R] = [V_t 1t € R] and we
have —iR = (iR)* which completes the proof.

THEOREM 4.13. Any vector field of the form (4.5) where R is a not
necessarily bounded self-adjoint operator with dense domain Z C H, is the
infinitesimal generator defined on D :=Z N B of a pointwise continuous one-
parameter group [®' : t € R] of holomorphic automorphisms of B.*

Proof. 1t suffices to see that there is a strongly (i.e. pointwise) continuous
one-parameter group [Vt tte ]R] of bounded linear operators of the space ‘H
such that

8 PEIERIE] wemscon viexm{[Z]: Pz )

4That is, for all z € D := ZNB, the functions t — ®(x) range in Z, they are differentiable
and satisfy the identity 4 ®*(z) = V(®'(z)) (t € R).

15
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Namely, in this case the maps

o= PP L] eem e

suit the requirements of the theorem since z € D = []] € K = V[{] =

@'(x) € D and x €D = g, _@'(z) = -V [{]]" ], V' [T VO[] +

LN oV [T = ([ ) e+ [T 8 [T = —(elba-+ iR+
b = Q(z). Notice that, by Corollary 2.12, a strongly continuous one parameter
group of linear operator leaves the cone K invariant if all its members map the
boundary 0K= {[ | zll=[¢]}= {[e”HxH]: z€H, TeR} into itself. Therefore
it suffices to check that there is a (necessarily unique) strongly continuous
one-parameter group in £(H) with domain Z ® C = [g] such that

=L Il = [l eemeem

By Stone’s theorem, the H-unitary operators Wt[ﬂ = [GXP(?R)"E] form a

strongly continuous one-parameter group whose infinitesimal generator is de-

fined on dom(R) ® C = Z & C with the diagonal matrix [%R 8]. Since the

matrix [2* 8] represents a bounded linear operator in A, by the theorem of
bounded perturbations [4], there is a strongly continuous one-parameter group
[Vt t e ]R] whose generator is defined on Z @ C with the matrix [213 g ] In
particular dtVt[ ] = [215 g]Vt[g] (t e R, x € Z). To complete the proof, we
show that necessarlly

i Il =1l =0 eemzem

Consider any vector x € Z and write [’Z] = Vt[”;l] for all parameters t € R.
Then

: [Ila:tH2 IétP] = 2Re[<dxt/dt\xt> — (dft/dt)a} —

~ore ([0 [ k=) - [ o) 2]t} =

= 2Re [(iRz; + ftb‘$t> - <xt‘b>5] -
= —21m<th‘xt> + 21m(<§b|xt> — <$t‘§b>) =

16
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5. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1.

Consider any pointwise continuous one-parameter subgroup [‘Ift tte R]
of Aut (B) and let us fix any common fixed point Z € B of the continuous
extensions of the maps ! (¢ € R) (guaranteed by Lemma 2.4). From Propo-
sition 3.7, we know already that (1.2-3) hold for some dense linear complex
submanifold Z of the underlying Hilbert space with a symmetric linear oper-
ator A with dom(A) = Z. We have to see that A is even self-adjoint in any
case and, conversely every self-adjoint operator with domain Z may appear
in (1.3) with any constant A € Rif # € 0B or A = 0 if 7 € B. In order to
establish a link to the Jordan case, fix any point ceD:dom(dd—‘lf ‘t:O) and let

P :=0_ V'O, (teR), 7:=06.7)

by means of the Mobius transformations (2.3). Clearly @t : teR]isa
strongly continuous one-parameter subgroup of Aut (B) such that
(5.1)

0=0_.(c) € O_, <d0m<8;t‘t:0>> = dom(ait‘tzo), S ﬂ Fix(@t).
teR

Thus we can apply the results of Section 4 in particular Lemma 4.11 to [®° :
t € R] to conclude that there is a dense complex linear submanifold Y ¢ H
along with a self-adjoint operator R with dom(R) = Y and a vector b € H
such that

@% = ¢~ @0 oxp (tﬁf SD (t e R).

Hence Corollary 2.11 establishes the existence of a constant v € C with

Ul =e"'6720,850_.  (t€R)

due to the identity ©.0_, = 3T = (1—lell?) [é (1]] for the canonical represen-
tations

*ec
Otc = [Cj:c* 1] where Q := I+ (1—B)P, B:=+/1— |2, P:=P..
By passing to infinitesimal generators, with p := v — (Z|b), we get
(5.2)
At t

i heole) = le el 1o ] o [] € com ()

17
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From Lemma 3.3 and (5.1) we see that

T Tt . ddL .
[o] +e[g] = aom (% ) = Buaom (2] ) =[]

Thus, given any vector z € H, we have z € Z if and only if [g] = GA);[?T/]] for
some y € Y and € C that is if 2 = Qy — (y|c)c = [Q — ||c[|*PJy for some
y € Y. It follows

(5.3) Z=[Q-|*PY=Q7Y

because the operators P, Q commute, we have 8% =1 — ||¢[|> > 0 and Q[Q —
le|?P] = [BI + (1 — B)P][BI + (B* — B)P] = B?I. We are now ready to
establish the self-adjointness of the operator A in (1.3). By (5.2) we have

4L

(tA+ M)z = o

0

=0 [Z}] = pz + B[iQRQz — Qbc*z + cb*Qz] (2 € Z).
B H

That is, with the bounded self-adjoint operator S := i8[Qbc* — cb*Qz] =
[iQbc*]+[iQbc*])* we have A = BQRQ+S+i(A—p)I. We know the symmetry of
A already entailing the relations p = A with A = SQRQ+S. Here the operator
QRQ self-adjoint with dom(QRQ) = Q 'dom(R) = Q'Y = Z = dom(A)
since R is a self-adjoint operator with dom(R) = Y while @ is an invertible
bounded self-adjoint operator, Therefore, as being the bounded self-adjoint
perturbation, the operator A is necessarily self-adjoint.

To see the converse, we need only to check the reversibility of some of
our previous arguments. Assuming A to be self-adjoint in (1.2-3), it is the
theorem of bounded perturbations [4] ensures that the operator A[Zza]
[ ‘ (iA+>g)z B

((1A=AID)z[T) (2+€7)
continuous one-parameter subgroup [U! : ¢t € R] of £L(H) with graph being
tangent to the boundary of cone K in Corollary 2.12(iii) and we have K = UK
(t € R). Hence the holomorphic maps ¥'(z) := [U! [ﬂ]«_:l [ [T]]4 are well-
defined on the unit ball B leaving it invariant, and form a strongly continuous
one-parameter subgroup in Aut(B).

] (z € Z, &£ € C) is the infinitesimal generator of a strongly

Proof of Corollary 1.4.
By assumption AT = pZ in particular € dom(A). Thus we are in the
Jordan case 0 € dom(f2) and hence

Qx) = <x—§‘(iA—|—)\I)E>CE+ (iA+N)(z -7 =

=b— (z|b)z+iR  with b=Q(0) = (=X —ip)z, iR=Q(0)=iA+ipl .

18
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Recall that we have Wi(z) = [\T/t(f)]gl[\flt(”f)]H r € H) for the strongly

continuous one-parameter group [Uf : ¢ € R] which, according to (4.12), has
the infinitesimal generator

i‘ 3t iR — (Z|b) b _ 1A+ A (=X —ip)T
dt lt=0 b* (—(z|b) (=\+ip)T* A—ip |
Since the operator A is self-adjoint with eigenvector Z, it is reduced by the

subspaces CZ and Hg := 7' (= {x € H: 2 1 Z}). Thus in terms of Hy & Cz ®
C-matrices,

PR (1A + X)|Hy 0 0
&‘7@: 0 Adrip —A—ip
=0 0 “A+ip A—ip

entailing that (a) in case 0 # A € R we have

Gt [eM exp(itA) ’Hg 0
= AMip —x—ip|| =
i 0 expt [—,\fip A—zﬂ
[ exp(itA)|Hy 0 0
= 0 A +ip)e + (A +ip) (A —ip)e*X + (A —ip) |,
i 0 (A +ip)e + (A +ip) (A —ip)e + (A —ip)

(b) in case of A =0 we have

=~ e exp(itA)|Hy 0 ] e exp(it A)|Ho 0 0
Ut = . 1 -1 = 0 1+ itp —itp
0 expitp [1 —1} 0 itp 1—itp

Hence the statement is straightforward from the relation

U (zo +£T) = [‘it[fcmé 1]T];1<[‘T’t[$07§7 I]T}QE—F [‘f’t(fﬂo,& 1]TL>-

LEMMA 5.4. The group Aut(B) is 2-transitive on OB i.e. given any tuple
(e1, f1, €2, f2) of unit vectors with ey # ea, f1 # fa, there is a transformation
O € Aut(B)such that O(ex) = fi. (k=1,2).

Proof. Let eq, f1, €2, fo € OB with e; #ea, f1# fo. Let ¢ be the center of the
circular arc C' in the 1-dimensional complex disc D := B N {(1 — {)e; + Cez :
¢ € C} connecting the points ej,es and being orthogonal in real sense to

19
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the boundary circle of D. Since holomorphic fractional linear transformations
preserve affine lines, the Mébius shift ! = ©_.(z) = (1 — (z[c)) " (Qez — ¢)
maps D onto an affine disc passing through 0 = ©_.(c¢) and containing the
points gr := ©_.(ex) (k = 1,2) as boundary points. Since the continuous
extension ©_, preserves the unit sphere 0B, The image ©_.(D) is a disc of
the form ©_.(D) = {Cgx : (| < 1} (k = 1,2). Since holomorphic maps are
conformal, the image ©71(C) is an arc passing through the origin and being
orthogonal to the boundary circle which is possible only if it is a diameter of the
form {rg: —1 <7 < 1} with ||g|| = 1 that is we have ©_.(ex) = gr = (—1)*g
(k = 1,2) for some unit vector g. Similarly, ©_4(f) = (—=1)*h (k = 1,2) for
some unit vector h and a Mobius shift ©_4. It is a well-known elementary
fact that any the unitary group is transitive on 0B, actually e.g. we have
Ug = h with a twisted reflection U := k[I —2P},_,4] where the constant x € C
is of modulus 1 such that (g + h L (g — h i.e. k(g|h) € R. Therefore the
transformation © := ©4 0 U o ©__ suits the requirements of the lemma.

Proof of Corollary 1.5.

Due to the 2-transitivity on the boundary, there exists © € Aut(B) such
that ©(7) = 7, ©(z') = —7. Thus, by passing to the group [© o Uf 0o 71 :
t € R] instead of [¥! : ¢ € R], we may assume without loss of generality that
{7} = Fix (Eto) with the effect

—((iA=X)(z —7Z)|Z)x + A+ AN)(x —7) =0 for =T
Regarding the case x = —7, since (Z|T) = 1, it follows (AZ|z)T + AT = 0.

However, since the operator A is self-adjoint, necessarily also AT = <AE|E>E
implying AZ = 0. Hence the statement is immediate from Corollary 1.4.

Acknowledgements. The author’s research was supported by the project
TAMOP-4.1.1.C-12/1/KONV-2012-0005 Impulse Lasers for Use in Materi-
als Science and Biophotonics of the Furopean Union and co-financed by the
European Social Fund.

REFERENCES

[1] M. Abate, Common fized points of commuting holomorphic maps, Math.
Ann. 283 (1989) 645-655.

20



L.L. Staché Fixed point approach

[2] H. Braun — W. Kaup — H. Upmeier, On the automorphisms of circular
and Reinhardt domains in complex Banach spaces, Manuscripta Math.,
25 (1978), 97-133.

[3] S. Dineen, Complete holomorphic vector fields on the second dual of a
Banach space, Math. Scand. 59 (1986) 131-142.

[4] K.-J. Engel — R. Nagel, One-Parameter Semigroups for Linear Evolution
Equations, Graduate Texts in Mathematics Vol. 194, Springer-Verlag,
New York, 2000.

[5] T. Franzoni — E. Vesentini, Holomorphic Maps and Invariant Distances,
North Holland Math. Studies 40, North Holland Publ. Co., Amsterdam-
New York-Oxford, 1980.

[6] K. Goebel, Fized points and invariant domains of holomorphic mappings
of the Hilbert ball, Nonlinear Analysis, Theory, Methods and Applica-
tions, 6/12 (1982) 1327-1334.

[7] T.L. Hayden — T.J. Suffridge, Biholomorphic maps in Hilbert space have
a fized point, Pacific J. Math., 38 (1971) 419-422.

[8] J.-M. Isidro — L.L. Staché, Holomorphic Automorphism Groups in Banach
Spaces, North Holland Math. Studies 105, North Holland Publ. Co.,
Oxford—New York—Amsterdam, 1985.

[9] V. Katshkevich - S. Reich - D. Shoiket, One-parameter semigroups of
fractional-linear transformations, Operator Theory Advances and Ap-
plications, 123 (2001) 401-411.

[10] W. Kaup, Uber die Klassifikation der symmetrischen hermiteschen Man-
nigfaltigkeiten unendlicher Dimension 1., Math. Ann., 357 (1981), 463—
481.

[11] W. Kaup, A Riemann mapping theorem for bounded symmetric domains
in complex Banach spaces, Math. Z., 83 (1983), 503-529.

[12] L. Nachbin, Holomorphic functions, domains of holomorphy and local

properties, North-Holland Pub. Co., Oxford-New York—Amsterdam,
1970.

21



L.L. Staché Fixed point approach

[13] F. Riesz — B. Sz.-Nagy, Vorlesungen iiber Funktionalanalysis, VEB Deutscher
Verlag der Wissenschaften, Berlin, 1968.

[14] B. Sz.-Nagy — C. Foias, Harmonic Analysis of Operators on Hilbert Space,
Akadmiai Kiad/North-Holland Publ. Co., Budapest—Amsterdam—London,
1970.

[15] E. Vesentini, Semigrioups of holomorphic isometries, Advances in Math-
emetics, 65 (1987), 272-306.

[16] E. Vesentini, Semigrioups of holomorphic isometries, in: P.M. Gauthier
(ed.), Complex Potential Theory, pp. 475-548. Kluwer Academic Pulbl.,
Netherlands, 1994.

[17] J.-P. Vigué, Le group des automorphismes analytiques d'un domaine
borné d'un espace de Banach complexe. Applications aux domaines
bornés symmetriques, Ann. Sci. Ecole Norm. sup., 9 (1976), 203—282.

Received 23 November 2013 University of Szeged
”Bolyai” Institute
Aradi Vértanik tere 1,
H-6720 Szeged,
Hungary
stacho@math.u-szged.hu

22



