A Stone type theorem for one-parameter groups
of non-linear automorphisms in Hilbert space

L.L. STACHO

Abstract. A commplete parametric algebraic description is given in terms of the inner
product for the strongly continuous one-parameter subgroups of the group all biholomor-
phic automorphisms of the unit ball of a Hilbert space with emphasis to non Jordan type
infinitesimal generators.
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1. Introduction, main results

Throughout this work H denotes an arbitrarily fixed infinite dimensional complex Hilbert
space with the scalar product (x|y) which is linear in x and conjugate linear in y, giving
rise to the norm ||z|| = (z|x)*/2. We denote the open unit ball {e € H: |le| < 1} with B
and for any vector a € H we shall write a* := [z — (z|a)] for its dual functional.

Recall that the group Aut(B) of all holomorphic automorphisms of B consists the biholo-
morphic maps B < B, and the H-unitary operators restricted to B form the isotropy
subgroup of the origin of Aut(B). Stone’s classical theorem on strongly continuous one-
parameter groups of unitary operators can be reformulated in terms of Aut(B) as a state-
ment that the infinitesimal generator of a strongly continuous one-parameter subgroup
of Aut(B) leaving fixed the origin can be identified canonically with the restriction iA|B
where A is a possibly unbounded self-adjoint linear operator with dense domain in H.
Our purpose will be an analogous description for the strongly continuous one-parameter
subgroups of Aut(B) formed by possibly non-linear maps, including approximations with
norm-continuous one-parameter subgroups. We establish the following main result.

Theorem 1.1. Assume [\Ift . t € R] is a strongly continuous one-parameter group of
holomorphic automorphisms of B.' Then there exists a vector T with ||Z|| < 1 along with
a constant A € R and a densely defined possibly unbounded self-adjoint operator A : Z — H
with dense domain such that

(1.2) BN(@Z+Z)=D where D:={zeD: t— V' (x) is differentiable on R},
(1.3) % W) =—((A- N - DR+ (A +N@-7)  (reD).

Given any tuple (A, T, \) consisting of a densely defined self-adjoint operator A : Z — H,
a vector T with ||Z|| < 1 and a real number X\, there exists (a necessarily unique) strongly

That is Uits = U! o U € Aut(B) for all couples ¢,s € R and the functions [t — ¥!(z)]
are continuous R — H for any fixed vector = € B.
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continuous one-parameter group [U' : t € R] satisfying (1.2) and (1.3) if and only if one
of the following alternatives holds: (1) |Z||=1; (2) |Z||<1, A=0.

It is tempting to conjecture that all strongly continuous one-parameter groups of holomor-
phic automorphisms of bounded circular domains in Banach spaces can be reconstructed
similarly from a polynomial of second degree defined on some dense algebraic submanifold.
However, the techniques we use here depend heavily on Hilbert space structure and the
presence of a linear model in the lifting space H := H® C = {[g cxeH, &€ (C}. We
can formulate the background in terms of this linear representation in H for the group of
the non non-linear maps ¥! as follows.

Theorem 1.4. For any triple A = (A, T, \) € E;‘eri?f(fjd(H) x B x R, the operator

| witn dom(Ag)z[dom(A)}+C[ﬂ

Am[ﬂ :: &(z’A—%AI)(w—fE) X

£ (1A= M) (z —7)|T)
is the infinitesimal generator of a strongly continuous one parameter subgroup [Uy : t € R|

of L(H). A family [¥* : t € R] of mappings B — B is a strongly continuous one-parameter
subgroup of Aut(B) if and only if, in terms of the coordinates |.|u resp. [.]c in H,

v -], [, @emiew

for some triple A = (A, T, \) satisfying (1) or (2) in Theorem 1.1.
As an immediate consequence, with the Yosida approximants [4,p.205] we get the following.

Corollary 1.5. Any strongly continuous one parameter subgroup [P : t € R] of Aut(B)
can be approximated pointwise with a sequence [Vl : t € R] (n = 1,2,...) of uniformly
continuous one-parameter groups of fractional linear maps of the form

w10 [otedan ] [ettnn 1],

by the aid of the bounded linear operators Ay p = nAgy (nId% — Agl)_l.

2. Preliminaries: linear model with joint fixed points for one-parameter groups

Recall [5, Ch. VI] that the group of Aut(B) all holomorphic automorphisms of B admits
a matrix representation. Namely each element ¥ of Aut(B) has the fractional linear form

Az +b

(2.1) U(z) = W )

AeL(H), bjceH, deC



and we have

Ax +b A b Ay b Ay b
\P1o\112(90):\1'1(\1’2(a:)):m whenever [c* d}:{cfl di]{c’; dz}

This representation is unique up to a constant, since in (2.1) we necessarily have

[ﬁ Z} zd[(;?f Oll] [g ﬂ where a:=W(0), U= (8°P,+ B.P,) 1T (0)

in terms of the the Fréchet derivative ¥’ and the standard notations

P,:= [orthogonal projection H—>(Ca}, Ba=vV1—|al?, Qq:=Pq+ B.(I—P,).

We call the matrix
~ QuallUO Q.U «a
VU= =
a*1][0 1 (U*a)* 1

corresponding to the case with constant d = 1 the canonical representation of W. In the
sequel we shall write

H ::H@C:{[Q :z€H, £€C}

and identify the matrix M := [mijﬁjzl where my; € L(H), mi2 € H, mg; € H* and

mag € C with the linear operator [z] - M[g on H. Notice that, by (2.1) we have

2.2 v P[] e B

(2:2) (x)—[ [1”@[ [1]]H (z€B)

where [-]|c resp. [-]m are the standard notations for the canonical projections H — C
resp. H — H. It is immediate that any ¥ € Aut(B) extends holomorphically to the ball
(1 — || ¥(0)||)"*B. Hence we can define the group of all automorphisms of the closed unit
ball B:={z € H: |jz]| <1} as

Aut(B):={U: U e Aut(B)} where U := [continuous extension of ¥ to B].

It is also well-known [5, Ch.VI] that any mapping ¥ € Aut(B) is weakly continuous and
preserves the Grassmann family Aff(B) of all complex affine closed subspaces intersected
with B.! By Schauder’s fixed point theorem, Fix(¥) # () since B is weakly compact.
Moreover we have the following alternatives:

(1) Fix(¥) € Aff(B), (2) Fix(¥) consists of two boundary points.
In case (2) from the proof of [5, Thm.VI.4.8] we see even that ¥ = ® 0 O, o &' with a

suitable automorphism ® € Aut(B) and a Mdbius shift

Qux + a

(2.3) Of x> T+ @)

If z = Zizl)\kxk with A, A2 € C and 22:1)% =1 then ¥(z) = Zizlakﬁ(xk) for some
aq, a€ C with Zf:lockzl (namely oy =g [14 (2 |U*a)]/[1+ (Mz1 + Aoz2|U*a)]).
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for some 0 # a € B such that Fix(0,) = {—e, e} where e := a/||a].

The next result is an infinite dimensional extension for a simple special case of a far reaching
theorem of Abate [1] established for finite dimensional uniformly convex domains. It
seems that Dineen’s bidual embedding method [3] is suitable in proving a complete infinite
dimensional analogy with uniformly convex domains in Banach spaces. Instead, below we
give a short direct proof on the basis of the special algebraic form (2.1).

Lemma 2.4. Abelian subsets of Aut(B), in particular one-parameter subgroups, admit
common fixed points.

Proof. Assume {VU; : j € J} C Aut(B) with ¥;0¥;, = U0V, (j,k € J). By weak
continuity, for any index family K C J, the set (), cx Fix(¥y) of common fixed points
is weakly compact. Thus, according to Riesz’ intersection theorem, it suffices to see that
Niex Fix(Uy) # 0 for finite index families K. By proceeding to contradiction, let K =

{k1,...,kn} be a subset of J With minimal cardinality such that (¢ Fix(¥z) = 0.
Necessarﬂy N > 1 and S := ﬂ le(\Ifk ) # () is either a weakly compact convex
subset of B or it consists of two boundary points. Since Wy, commutes with all the
maps Uy, (n < N), we have Uy (S) C S. Indeed, if z € S then Uy, (Vs (z)) =
Uy (Vg (2)) = Upy (2) = Uy (2) € Fix(Pg,) (n < N). Hence Schauder’s fixed point
theorem excludes the case of S being convex. Suppose S = {p, ¢} C IB. Then necessarily
Fix(Vg,,) = {p, ¢} for some index M < N and Uy, : p <> q. However, in this case we
can write Uy, = ® 00, 0 ® ~! With a suitable automorphism ® € Aut(B) and a Mdbius
shift ©, of the form (2.3) where 0 # a € B. Then, by setting Q := 3 o Wy, 0 ® and
e:=a/l|al|, we have {ie} Fix(0,) and Q : e <> —e. On the other hand, it is immediate

that e = lim,_, O, (z) for every point z € B\{e} Taking any point f € le(Q) we get the
contradiction e = llmnﬁoo O/ (f) = limy_y00 ©,0 Q(f) = limy, 00 Qo O (f) = Qe) = —e.

Remark 2.5. In finite dimensions, it is customary to normalize (2.1) by requiring
det [f*ﬂ =1. Thus, in case of dim(H) = NN, in this manner one can establish a canonical
identification of Aut(B) with a subgroup of the classical matrix group SL(/N +1). Though
in infinite dimensions such a normalization is not available, for one-parameter groups with

common fixed point there is an alternative way as follows.

Definition 2.6. Let ([\Ilt ot € R],f) be a couple of a one-parameter subgroup of
Aut(B) with common fixed point # for the continuous extensions of its members to B:

7 € B, i3 (z) =7 (t € R). In terms of the canonical representations define

U= [ﬂf”;gzmﬁ Cﬂ H ﬂ (teR).

where a; = U4(0) € B, U; € L(H) is a suitable unitary operator and @Q; := Q,, =
Pt + Bt(I — Pt) with Pt.fC = Patl': HCLtH72<£|CLt>at, ﬁt:\/\/ l—HatHQ.

Later on, conveniently we shall simply write U* instead of WL without danger of confusion.
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Remark 2.7. As we have seen U'(z) = (1 + (Upz|a:)) " QiU'z + ai] = [Og, 0 U] (z).
Thus, by construction we have

v @], wem #[1]-[]

It is worth to notice that the term (U;T|a;) is actually independent of U, as

Proof: In general we have Py = (yla)(as|ar) "*a; (0 # ar,y € H). It follows (P,U;T|a;) =
(UgT|ay) with (P U;T|ar) = 0 for any ¢ € R. Thus multiplying the fixed point equation
T = @t(f) = (1+(Utf|at>)_1(Pt+Btﬁt)Utf with |(Zt>, we get (1+<Utf|at>)_1(Utf+at\at> =
(Z|at) whence the relations (2.8) are immediate.

The power style indexing of Tt in ¢ is justified by the proposition below.

Proposition 2.9. Given a strongly continuous one-parameter group [Pt :t €R] in Aut(B)
with common fized point T € B, the family (WL t € R] is a strongly continuous one-
parameter group of operators in H.

Proof. Since U'oWs = Uits (¢ s € R), for the representation matrices we have Wi¥s =

dt,S\/I}tJFS with suitable constants d; s € C,. The fixed point property T (T) = T implies

#[7]-[F] en

Hence necessarily d; ;=1 (¢, s€R), thus [\Tft it GR} is a one-parameter matrix group.

By assumption, the function ¢ — a; = ¥¥(0) is norm-continuous R — B. Hence we can
deduce the strong continuity of the H-unitary operator valued function ¢ — U;. Namely
consider any vector x € H. To establish the norm-continuity of the function t — Uy, we
may assume without loss of generality that x € B. Then, by the aid of the M&bius shifts
(2.3) we can write

Ugr = [@;tl o U (z) = O_q, (¥(z)) (teR).

Observe that the norm continuity of ¢ — a; implies the continuity of ¢ — (z|a;) and
t — B € [0,1) entailing the norm-continuity of ¢ — P, + 3Py € Ball(£(H)). Hence the
required norm-continuity of ¢ + Uyz = (1 — (z|a;)) " [(Pix — a¢ + B Pix] is immediate. In
general, the product of two bounded strongly continuous linear operator valued functions
R — L£(X) over a normed space X is strongly continuous. Hence we conclude that the

entries (1,1),(1,2),(2,1) resp. (2,2) of the matrices W' are strongly continuous functions
R— L(H),R—-H, R — H*~H resp. R — R which completes the proof. Q.e.d.
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Corollary 2.10. Given a strongly continuous one-parameter group [T': t € R] in L(H),
the following statements are equivalent
(i) for allt € R, the maps T W [fﬂgl [T HHH belong to Aut(B);
(ii) we have Tt = MW (t € R) for some strongly continuous one-parameter subgroup
(0! : ¢t €R] of Aut(B) and a constant p € C;
(iii) each operator T* maps the cone K := {[Z] ;€12 > [|z||*} onto itself;
(iv) each operator T* maps OK := {[g 2 [€12 = ||z||*} onto itself.

Proof. The implication (ii)=-(i) is trivial by (2.2).

Proof of (i)=>(ii): By assumption the maps ¥*(z) := [T* [ﬂ]gl [T'[]]]g (t € R, z €B).
are well-defined holomorphic automorphisms of the unit ball B. By (2.2) we have T* =
d, Ut (t € R) with suitable constants d; € C,. Fixing any point x € B, the strong continuity
of the group [T*: ¢ € R] implies the continuity of the function 7*[{] whence we deduce
also the continuity of ¢ — W!(z) which entails the continuity of ¢ —» W (2] = d; ' Tt [7]
and hence the continuity of ¢ — d;. By the one-parameter group property, all the relations
Tits = THTs, Wits = W'W* (t,s € R) hold. Therefore d;,, = dids (t,5 € R) and the
continuity of ¢ — d; establishes the existence of a constant u € C with d; = e (t € R).

Proof of (i)« (iii)<>(iv): Consider the projective Hilbert space H./~ associated with #H
regarded as the set of all nontrivial punctured complex rays C, [g with the factor topol-
ogy.?2 By homogeneity, any injective linear operator 7 € L(H) acts holomorphically on
H./ =~ by its factorization 74 : C, [g — C*T[g . In particular, as admitting a continuous
inverse, each map T2 is a holomorphic automorphism of H/ =. Hence the equivalences

(i)<(iii)<(iv) are straightforward consequences of the facts that, with the embedding
Il : z — C[7] and its inverse W(C[z]) =x/¢ (£ #0), we have IIB := K, 7/ = B and

[Tt[fﬂél["ft[ﬂ]H =7moT} oH[ﬂ whenever [Tt[ff“(c £ 0.

Corollary 2.11. Given any © € Aut(B), the ©-shifted automorphisms ®! := Oo¥'oO@~!
form strongly continuous one-parameter group with common fized point § := O(T) when
extended continuously to B and ®L = e'O~'WLO (teR) for some peC.

3. Infinitesimal generators

Throughout this section, let ([\I/t: te R],E) be an arbitrarily fixed couple of a strongly
continuous one-parameter group in Aut(B) with a common fixed point for the continuous
extensions in B. Recalling the Hille-Yosida theorem [9, Kap.10], Proposition 2.9 ensures
that the differential

d ~ ~
3.1) A:b— allftf) with D :=dom(A) = {f € H : t — U'h is differentable on R}

As usually, H, := H\{0} with the equivalence relation [z] ~ [m c<— C, [f]} =C.[%]
where C, := C\{0}. A subset of H/~ is open if the union of it members (rays in H.) is
open in H.




(called the infinitesimal generator of the linear model [\Tlt: teR] where ' =L for short)
is a not necessarily bounded linear map with closed graph and [\T/t : t € R]-invariant domain

being dense in H. Instead of the differential A = %|t:0@t of the representations we are
primarily interested in the differential

0= % tZO\Ift :D —-H where D =dom(Q2) = {x €B: %L:O\Pt(w) exists}.

In order that we could regard the vector field € as a non-linear infinitesimal generator
for [U! : t € R], we should see the density of D in B. In order to establish a non-linear
Stone-type theorem, we should determine precise links to self-adjoint linear operators.

Lemma 3.2. D s Wt : teR] -invariant. We have [31”] €D «— x&D whenever x€B.

Proof. The [¥: ¢€R]-invariance of D is clear from the group property W' = ¥’ o ¥*
(t,s €R). Moreover even dom (<% ’tzo@o\IftOG_l) = ©(D) whenever O is any holomorphic
automorphism of B. Hence, given any point x € B, we have x € D if and only if 0 =
O_,(x)e dom(%hzoqﬂ) with the one-parameter group of the maps ®' ;= ©_, 0 ¥t 00,
in terms of the Mobius transformations (2.3). That is, without loss of generality, it suffices
only to see the equivalence 0& dom(% ‘tzofbt) — [(1]} €D. According to (2.8), by setting
a; := U'(0) and @, := U [7] we have a; = (1 — (a;|Z) (1 — [|a¢]|?)~1[%] (t € R). Hence the
curves t — a; resp. t — @; are differentiable in the same time, which completes the proof.

For later use we also introduce the notations
z

e foen: [[enh mem[af]], nemPA cen

Lemma 3.3. Z is a dense linear submanifold in H with D = (E + Z) NB and D =
[%} + C[ﬂ The set D is dense in B and

4
dt

—t

U (z) =[AT — )]z + B(x — ) (z € D).

t=0

Proof. By definition, [ﬂ € D with AE] = 0 since \/I\/t[f] = [f] (t € R). Since D is
closed for linear combinations, it follows that [%} + C[ﬂ = D and that Z is the image
of D by the bounded linear operator H[g = x — &x. Since II'H = H and since D
is dense in H, Z = IID is also dense in H = II'H. From Lemma 3.2 we know that
D=Bn {:1: : [ﬂ € D}. Hence the relation D = (E+ Z) N B along with the density of D

in B is immediate. Given any x € D, the relation [‘ﬂ € D implies A[ﬂ = %|t20\/ﬁt[ﬂ.

Since ¥ (z) = {(I\ft[ﬂ }gl{\flt (7]} along with U9 = 1d and A[7] =0, we get
S =L G T PR P EIL &L e

o CHIER T R PG ¥
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Lemma 3.4. Suppose a Hilbert space W s the orthogonal sum of the subspaces W1, W
and C is the infinitesimal generator of a strongly continuous one-parameter subgroup

[T :teR] of LIW). Then, for the cone K:={wi®ws, : ||wi] > |lws| }, we have T'K =K
(teR) if and only if C is tangent to the boundary of K that is if

(35) Re<C(w1@w2)’w1> = Re<C(w1@ wg)‘w2> (wl@wg GdOIﬂ(C), ||w1||:||w2||)

Proof. It is immediate that T'KC K (t €R) = T'OK C 9K (t€R) = L|,_oT" (w1 ®
wy) € Tany, guw, (K) for wy & we € dom(C) = (3.5). Assume (3.5) and let P denote
the canonical projection of W onto W; and define T%% := exp(tC + sP) (s,t € R). By
the theorem of bounded perturbations [4, p.158] the operators T are all well-defined.
Moreover, by [4, Corollary 1.7 p. 161] (applied with B := sP and A := C there) we
have lim,_,o T"*w = T'w (w € dom(C),t € R). Therefore, to establish that 7K C K
(t € R), it suffices to see only that T%%w € K whenever w € dom(C)NK and ¢,s>0. To
proceed to contradiction, let s,¢ > 0 and w := wy & wy € dom(C) with ||w] > |Jwz]| but
|[TH5w]q ]| < ||[TH*w]a||. The function §(7) := ||[T™*w]1||* — ||[T™*w]2||? is differentiable
in 7 on the whole R and 6(0) > 0 > 6(¢). Thus there exist a point ¢, € (0,¢] such that
8(t) > 0 = 8(ts) (0 < 7 < ti). Since 6(t,) = 0, the vector w, := T" 5w belongs to
OK and hence Re(Cw,|[wi]1) = Re(Cw,|[wi]2). We get the contradiction 0 > ¢'(t.) =
2Re((C + sP)w.|[wi]1) — 2Re((C + sP)wy|[ws]2) = 2s||[w.]1]|* > 0.

Corollary 3.6. Re< —Av+ <Bv}f> + <BU|U>> = 0 whenever v € Z with Hf—i— UH =1.

Proof. By Corollary 2.10, we have U'K = K (t€R) where K := {[g e > |z} C H.

An application of Lemma 3.4 with W; := C, Wy := H, K := K, Tt := ¥*, C .= A
establishes that Re [(Az)¢] = Re (Bxz|z) whenever [g € D and ||z|| = |£]. We obtain the
statement with the choice z := v+ 7 and £ := 1 if v € Z with ||v + Z|| = 1 because then,

by Lemma 3.3, we have [{] € D.

Proposition 3.7. For some symmetric linear operator A : Z — H and a suitable constant
A € R which is necessarily = 0 if ||Z|| # 1, we have (1.3) as

B=iA+ )\, Az={(iA-X)z[z) (2€Z).

Proof. Consider any vector 0 # z € Z. Let ( € C be the (unique) constant such that
T+ Cz L 2 and define o := /1 — [T+ (z]|?. Actually we have ( = —(Z|z)/(z|z) and
1> ||z||? = |z + ¢z||? + || — ¢z||? showing that both ¢ and ¢ are well-defined. Consider the
unit vectors

v, =T+ (2 +ePoz (peR).

According to Corollary 3.6,

Re((¢+e'%0)[ — Az + (B2 |7)] +[¢+e#0’(Bz[2)) =0 (¢ €R),
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Thus the identity Re(a + B + ye~*) = 0 for all ¢ € R holds with the constants

o= C[—Az+ <Bz|f>} + (<> + 92)<Bz‘z>, B = Q[—Az+ <Bz‘f> +Z<Bz‘z>] and
v = 0({(Bz|z). Since 2Re(a+ Be’¥ +ve~¥) = 2Re(a) + (B +7)e™ + (B + 7)e~ ™,

we have necessarily Re(«) = 8 +7 = 0. From the relation §+7% =0, it follows

— B
(3.8) Az—<Bz|f>:2gRe<Bz|z>:—2<z|z>W,
and substituting this into the relation 0 = Re(a), we get
(3.8") 0=(0®>—[¢/*)Re(Bz|z) = (1—|Z|*) Re (Bz| 2) .
From (3.8) we see also that
Re(Bz | z) B Az — (Bz | z)

z _

1
1) 2 (e[D)
is a real valued Gateaux holomorphic function on the algebraically open and in Z alge-
braically dense domain {z € Z: z [ T} which is possible only if being constant on Z.
By writing A for this constant value, from (3.7) and (3.8") we conclude that
Az = ((B=2X)z|Z), Re((B-Al)z|z)=0 (z€12Z),

and, in particular, if ||Z|| <1 then necessarily A =0 above. By setting A := —i(B+\I),
hence the statement including the symmetry of A is immediate.

The following geometric converse of 3.7 is elementary:

Remark 3.9. Given a dense linear submanifold Z in H, a symmetric linear operator
A:Z — H, avector T € B, the vector field Qy(z) := — (A=) (z—Z|Z)z+(GA+N]) (z—T)
define for T + Z is tangent to the unit sphere 0B at the points z € T + Z with [|z|| = 1
whenever either ||Z|| =1 and A € R or ||Z|| < 1 and A = 0.

In the sequel we proceed to the problem if the operator A in Proposition 3.7 arising from
the differential %| t:O\Ift of a strongly continuous one-parameter semigroup of Aut(B) is
necessarily self-adjoint and conversely if every self-adjoint operator may appear in 3.7.

4. The Jordan case

We continue the previous investigations with unchanged notations but under the additional
hypothesis that

(4.1) 0eD = dom(%‘t:O\Pt> .
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Asweknow, D = {z € B: [{] € D} = BN(Z+Z) where D = dom(A) with A = %Le:o@tf
and Z = {x eH: [g} € D} is a dense complex linear submanifold in H. Thus, as a conse-
quence of (4.1), for the distinguished common fixed point of the extended automorphisms
T wehave T € Z = dom(B) = dom(A). Therefore also

Her=[2). Al)-[he =[5 i) wezcco

Remark 4.2. Recall [8] that the complete holomorphic vector fields on B are the infinites-
imal generators of the uniformly continuous one-parameter subgroups of Aut(B) and, with
suitable ¢ € H and a bounded self-adjoint operator C' € L(H) they can be written in the
form z — a — {xc*x} + iCx by means of the Jordan triple product.

(4.3) {zy*z} = %<x’y>z + %(z‘yﬁ:

In terms of the factorization ¥* = ©,, o U;|B we introduce the following vector resp. not
necessarily bounded symmetric linear operator:

b:= E‘t:oqj (0) - %l_f)% zata R = —Za t:OUt g }g% E(Ut — I)ZL’

Proposition 4.4. Under hypothesis (4.1), we have D = BN Z along with dom(R) D Z

and the vector field € := %{t:()\llt admits the Jordan form

(4.5) Q(x) =b—{xb*x} +iRx (x € D).
Proof. The relation D = BNZ is clear since T € Z. By the definition of the generator A,
0 1,~, =010 1 1 a 0
- 90t Ho g -1
AM tgr(l)t( ) 1) 70 14+ (Ugzlas) L1 1

Since }iﬂ(l) a; = 0 and ||U;Z|| <1 (t € R), taking (2.8) into account, we see that the limit
ﬁ.

0

. d
bi=lima =&

is well-defined and

A IR

As a consequence we also have

1
B =1 =llae]> = V1= [ltb+o(®)]|* =1 = SlIb[*#* + o(t?),
Q=P +p(I—-P)=1+(1-p8)P=1+0(t) (in operator norm).

10



Since also Uz = z + o(1) in norm, hence we deduce that for any vector z € Z, and ¢ € C,

@tm 1= (Z|ay) {QtUt atl m _ [Utz—t<f|b>z

(4.6) T T a)? |atUz 1] L¢ t(Upz|b) + ¢

] +o(t) in norm.

By definition, [fﬂ = }111(1) : (\Ift I) [(z)} Hence with well-defined limits we conclude that
%

(4.7) Bz =lim — (Ut )z — (T |b)z (z € Z).

t—0 1t

The strong limit of t~*(U; — I)|Z is necessarily symmetric due to the fact that each Uy is
unitary. Thus comparing (4.7) with Proposition 3.7 stating that the operator B has the
form A + AT with some A € R and a symmetric operator A with dom(A) = Z, we get

(4.8) A= Re(z|b), A=lli"™ (U ~1)~Tm(z|6)I|Z in37.

t—0

We calculate 2 by substituting (4.7-8) into its form Q(z) = [A(Z—z)|z+ B(z—7) applying
also the relations BT = —b, AT = (z|b), B = iA+ A, Az = ((iA—\)x|T) = (B—2AI)z|T).
Namely, given any vector z € D, taking into account the antisymmetry of the operator
1A = B—\I, we can write
Q(z) = [AZ]z — [Az]z + Bx — BT =
= (Z|b)x — ((B —2\])z|T)x + Bz + b =

= b+ [(Z|b)] + B]z — ((B — M)z[Z)z + Az|z)z =

=b+ iRz + (z|(B— A)T)x + A\z|T)x =

=b+ iRz + (z|BT)x = b+ iRx — (z|b)x.

Corollary 4.9. Z = dom(R) that is x € Z if and only if the limit 7pn% t=1(Utx — z) exists.
—

Proof. Recall that Z = {:L' cH: %‘t:o@t[g] is well—deﬁned}. From Proposition 4.4
we know that iRz = 1%irr(l) t=Y(U; — Iz is well-defined for every vector x € Z. Conversely,
4)

suppose u = 7yn% t~1(Uyz — ) is well-defined. Then Uz = = + tu + 0™ (t) and (4.6)
—

establishes that \/I\ft[g] =[3]+ t[u_(ﬁ'(?}t)w] + "o (¢),

Lemma 4.10. We have U_;=U;'=U}, a_y = ~Ufa; (t€R).

Proof. Given any t € R, we have ¥~ = ¥; ! that is ©, ,U_; = [@atUt} o =U; e 1=
Ute_,, = [Ut_l@_at U] Ut = @U;l(_at)Ut_l. By the unambiguous decomposablhty of
holomorphic automorphisms of circular domains into Mébius and unitary parts [2], hence
we deduce that ©,_, = @_U;l and U_; = Ut_1

at
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Lemma 4.11. The operator R is self-adjoint with dom(R) = Z.

Proof. In view of (4.6), and since Uiz = x + itRx + 0"°™(t) for any € Z = dom(R) =
dom(%|t:0Ut), we conclude that

i‘ @t[x} _ [iR—(ﬂbﬂ b } [.%’ x
dt lt=0 13 b* —(z|b)l L¢ 13
The linear operator in £(H) with matrix [‘bﬁ?"”f @b'w] is bounded. Since A = 4| tzo\flt
with domain D is the generator of a strongly continuous semigroup in £L(#), by the theorem
of bounded perturbations [4], also the operator with matrix [“g 8 ] with domain D is the
generator of a strongly continuous one-parameter subgroup of £L(H) entailing that iR is the
generator of a strongly continuous group [V} 't e ]R} in L(H). Since U_; = Ut_1 = U/, the
arguments on sun adjoint semigroups in [4, p. 69] show that }1_% t=1(U; —I) = —iR is the

c)

| forany [?]ep=[%].

generator of the sun adjoint group [Vt* ite R] = [V_t (te ]R] and we have —iR = (iR)*
which completes the proof.

Theorem 4.12. Any vector field of the form (4.5) where R is a not necessarily bounded
self-adjoint operator with dense domain Z C H, s the infinitesimal generator defined on
D := Z N B of a pointwise continuous one-parameter group [®' : t € R] of holomorphic
automorphisms of B.3

Proof. It suffices to see that there is a strongly (i.e. pointwise) continuous one-parameter
group [Vt tte ]R} of bounded linear operators of the space H such that

t_ovt[g - [ZR I(’)} [‘z] (xeZ, £€C), VKCK:= {[z] 2 > \5\2}.

Namely, in this case the maps

RN H M

4
dt

suit the requirements of the theorem since z € D = [{] € K = V![]] = ®'(z) € D and

reD = gl @) = DI o DV B [ + 0B o ' [ e
= —Hﬁf é’} [ﬂ]cx—k [[ZR g] ["{HH = —(z|b)x + iRz + b = Q(z). Notice that, by Corollary
2.10, a strongly continuous one parameter group of linear operator leaves the cone K
invariant if all its members map the boundary 0K= {[z] |z||=[¢|}= {[eifﬁm”}: z€H, TeR}
into itself. Therefore it suffices to check that there is a (necessarily unique) strongly
continuous one-parameter group in £(H) with domain Z & C = [g] such that

%Vtm = {ZR S]Vt[ﬁ H[Vt[ninHHH = 1[’”{@”]}@

That is, for all x € D := ZN B, the functions ¢ — ®'(x) range in Z, they are differentiable
and satisfy the identity 4 ®!(z) = V(®'(z)) (t € R).

(x € Z, t eR).

12



[eXP(?R)ﬂ form a strongly contin-

By Stone’s theorem, the H-unitary operators W* [Z} =
uous one-parameter group whose infinitesimal generator is defined on dom(R)&C =Z&C
with the diagonal matrix [%R 8 } Since the matrix [g* 8} represents a bounded linear op-
erator in ‘H, by the theorem of bounded perturbations [4], there is a strongly continuous
one-parameter group [Vt tt e R} whose generator is defined on Z @& C with the matrix

[ZIE(I;}. In particular %Vt[g = [;’){?g}vt[fg} (t € R, x € Z). To complete the proof, we

show that necessarily

dt“H [my” HQ_H [p;n” ” 0  (teR, ze2)

Consider any vector x € Z and write [?] =% [” ”} for all parameters t € R. Then

L laal?  [6012] = 2Re[(doe/dtfor) — (dee/dt)E] =

—ore ([ [ ko) - [ o) [ ]], assavec } -

= 2Re [(iRw; + &blar) — (m:[0)&] =
= —2Im(Ray|wr) + 2Im((€blar) — (x:]€b)) =

5. Proof of Theorems 1.1 and 1.4

Consider any pointwise continuous one-parameter subgroup [\Ilt te ]R] of Aut (B) and
let us fix any common fixed point T € B of the continuous extensions of the maps W?
(t € R) (guaranteed by Lemma 2.4). From Proposition 3.7, we know already that (1.2-3)
hold for some dense linear complex submanifold Z of the underlying Hilbert space with a
symmetric linear operator A with dom(A) = Z. We have to see that A is even self-adjoint
in any case and, conversely every self-adjoint operator with domain Z may appear in (1.3)
with any constant A € R if T € 9B or A = 0 if ¥ € B. In order to establish a link to the

Jordan case, fix any point CED:dom(%Lﬁ:O) and let

P :=0_.V'0, (teR), 7:=0.7)

by means of the Mébius transformations (2.3). Clearly [Et tte R] is a strongly continuous
one-parameter subgroup of Aut (B) such that

ot ot .
t= 0>) B dom<% t:o)’ yEe m FIX((I)t)
teR

dt
Thus we can apply the results of Section 4 in particular Lemma 4.11 to [®' : ¢ € R] to
conclude that there is a dense complex linear submanifold Y C H along with a self-adjoint
operator R with dom(R) =Y and a vector b € H such that

@% = e @0t exp (t[zb]j SD (t € R).

(5.1) 0=0_.(c) eO_, (dom(
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Hence Corollary 2.11 establishes the existence of a constant v € C with
UL =¢"37?0.0,0_.  (t€R)

due to the identity ©.0_, = 2T = (1—c||?) [é (1)] for the canonical representations

[Q +c

0. —
S |

} where Q:=p81+ (1—-03)P, B:=+/1—||? P:=P..

By passing to infinitesimal generators, with p := v — (Z|b), we get
Tt

ole =ul]+oal i glemg] wor [(]ecom(E],)

From Lemma 3.3 and (5.1) we see that

AWt
dt

(5.2)

y/ T dUL . ddL Y
O[] = aom(TLy) = Otom ('] ) = [ |
[O} + 13 Td limo P\t limo C
Thus, given any vector z € H, we have z € Z if and only if [S} = (30[%] for some y € Y

and 1 € C that is if z = Qy — (y|c)c = [Q — ||¢[|*P]y for some y € Y. It follows
(5.3 Z - [Q—[dPP]Y = Q'Y

because the operators P, commute, we have 5% = 1 — ||c[|* > 0 and Q[Q — ||c|*P] =
[BI+(1—B)P][BI+(B*—B)P] = 2. We are now ready to establish the self-adjointness
of the operator A in (1.3). By (5.2) we have

AL

A+ Nz =
A+ Az = |—

0

t=0 m] = pz + B[IQRQz — Qbc*z + cb* Q2] (2 € Z).
a H

That is, with the bounded self-adjoint operator S := i3[Qbc* — cb*Qz] = [iQbc*] + [iQbc*]*
we have A = BQRQ + S + i(A — pu)l. We know the symmetry of A already entailing
the relations p = A with A = BQRQ + S. Here the operator QRQ self-adjoint with
dom(QRQ) = Q@ 'dom(R) = Q7Y = Z = dom(A) since R is a self-adjoint operator with
dom(R) = Y while @ is an invertible bounded self-adjoint operator, Therefore, as being
the bounded self-adjoint perturbation, the operator A is necessarily self-adjoint.

To see the converse, we need only to check the reversibility of some of our previous argu-
ments. Assuming A to be self-adjoint in (1.2-3), it is the theorem of bounded perturbations

[4] ensures that the operator A[zzﬁf] = [((iA—(;/I‘)JZ\EI))(Z—I—ET)] (z € Z, £ € C) is the infinites-

imal generator of a strongly continuous one-parameter subgroup [U! : ¢ € R] of £L(H with
graph being tangent to the boundary of cone K in Corollary 2.10(iii) and we have K = U!K

(t € R). Hence the holomorphic maps ¥ (z) := [U*[]]] (El [U'[7]] are well-defined on the

14



unit ball B leaving it invariant, and form a strongly continuous one-parameter subgroup

in Aut(B).
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