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Abstract. A commplete parametric algebraic description is given in terms of the inner
product for the strongly continuous one-parameter subgroups of the group all biholomor-
phic automorphisms of the unit ball of a Hilbert space with emphasis to non Jordan type
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1. Introduction, main results

Throughout this work H denotes an arbitrarily fixed infinite dimensional complex Hilbert
space with the scalar product ⟨x|y⟩ which is linear in x and conjugate linear in y, giving
rise to the norm ∥x∥ = ⟨x|x⟩1/2. We denote the open unit ball {e ∈ H : ∥e∥ < 1} with B
and for any vector a ∈ H we shall write a∗ := [x 7→ ⟨x|a⟩] for its dual functional.
Recall that the group Aut(B) of all holomorphic automorphisms of B consists the biholo-
morphic maps B ↔ B, and the H-unitary operators restricted to B form the isotropy
subgroup of the origin of Aut(B). Stone’s classical theorem on strongly continuous one-
parameter groups of unitary operators can be reformulated in terms of Aut(B) as a state-
ment that the infinitesimal generator of a strongly continuous one-parameter subgroup
of Aut(B) leaving fixed the origin can be identified canonically with the restriction iA|B
where A is a possibly unbounded self-adjoint linear operator with dense domain in H.
Our purpose will be an analogous description for the strongly continuous one-parameter
subgroups of Aut(B) formed by possibly non-linear maps, including approximations with
norm-continuous one-parameter subgroups. We establish the following main result.

Theorem 1.1. Assume
[
Ψt : t ∈ R] is a strongly continuous one-parameter group of

holomorphic automorphisms of B.1 Then there exists a vector x with ∥x∥ ≤ 1 along with
a constant λ ∈ R and a densely defined possibly unbounded self-adjoint operator A : Z → H
with dense domain such that

(1.2) B ∩ (x+ Z) = D where D :=
{
x ∈ D : t 7→ Ψt(x) is differentiable on R

}
,

(1.3)
d

dt

∣∣∣
t=0

Ψt(x) = −
⟨
(iA− λ)(x− x)

∣∣x⟩x+ (iA+ λ)(x− x) (x ∈ D).

Given any tuple (A, x, λ) consisting of a densely defined self-adjoint operator A : Z → H,
a vector x with ∥x∥ ≤ 1 and a real number λ, there exists (a necessarily unique) strongly

1 That is Ψt+s = Ψt ◦ Ψs ∈ Aut(B) for all couples t, s ∈ R and the functions [t 7→ Ψt(x)]
are continuous R → H for any fixed vector x ∈ B.
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continuous one-parameter group [Ψt : t ∈ R] satisfying (1.2) and (1.3) if and only if one
of the following alternatives holds: (1) ∥x∥=1; (2) ∥x∥<1, λ=0.

It is tempting to conjecture that all strongly continuous one-parameter groups of holomor-
phic automorphisms of bounded circular domains in Banach spaces can be reconstructed
similarly from a polynomial of second degree defined on some dense algebraic submanifold.
However, the techniques we use here depend heavily on Hilbert space structure and the
presence of a linear model in the lifting space H := H⊕ C =

{
[xξ
]
: x ∈ H, ξ ∈ C

}
. We

can formulate the background in terms of this linear representation in H for the group of
the non non-linear maps Ψt as follows.

Theorem 1.4. For any triple A = (A, x, λ) ∈ Lunbded
selfadj (H)×B× R, the operator

AA

[x
ξ

]
:=

[ (iA+ λI)(x− ξx)

⟨(iA− λI)(x− x)|x⟩

]
with dom(AA) =

[dom(A)

0

]
+ C

[x
1

]
is the infinitesimal generator of a strongly continuous one parameter subgroup [U t

A : t ∈ R]
of L(H). A family [Ψt : t ∈ R] of mappings B → B is a strongly continuous one-parameter
subgroup of Aut(B) if and only if, in terms of the coordinates [ . ]H resp. [ . ]C in H,

Ψt(x) =
[
U t
A

[x
1

]]−1

C

[
U t
A

[x
1

]]
H

(x ∈ B, t ∈ R)

for some triple A = (A, x, λ) satisfying (1) or (2) in Theorem 1.1.

As an immediate consequence, with the Yosida approximants [4,p.205] we get the following.

Corollary 1.5. Any strongly continuous one parameter subgroup [Ψt : t ∈ R] of Aut(B)
can be approximated pointwise with a sequence [Ψt

n : t ∈ R] (n = 1, 2, . . .) of uniformly
continuous one-parameter groups of fractional linear maps of the form

Ψt
n(x) =

[
exp(tAA,n)

[x
1

]]−1

C

[
exp(tAA,n)

[x
1

]]
H

by the aid of the bounded linear operators AA,n := nAA

(
nIdH −AA

)−1
.

2. Preliminaries: linear model with joint fixed points for one-parameter groups

Recall [5, Ch. VI] that the group of Aut(B) all holomorphic automorphisms of B admits
a matrix representation. Namely each element Ψ of Aut(B) has the fractional linear form

(2.1) Ψ(x) =
Ax+ b

⟨x|c⟩+ d
, A ∈ L(H), b, c ∈ H, d ∈ C
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and we have

Ψ1◦Ψ2(x) = Ψ1

(
Ψ2(x)

)
=

Ax+ b

⟨x|c⟩+ d
whenever

[
A b
c∗ d

]
=

[
A1 b1
c∗1 d1

] [
A2 b2
c∗2 d2

]
.

This representation is unique up to a constant, since in (2.1) we necessarily have[
A b
c∗ d

]
= d

[
Qa a
a∗ 1

][
U 0
0 1

]
where a :=Ψ(0), U= (β2

aPa+ βaPa)
−1Ψ′(0)

in terms of the the Fréchet derivative Ψ′ and the standard notations

Pa :=
[
orthogonal projection H→Ca

]
, βa=

√
1−∥a∥2, Qa := Pa + βa(I − Pa).

We call the matrix

Ψ̃ :=

[
Qa a

a∗ 1

][
U 0

0 1

]
=

[
QaU a

(U∗a)∗ 1

]
corresponding to the case with constant d = 1 the canonical representation of Ψ. In the
sequel we shall write

H :=H⊕C=
{[

x
ξ

]
: x∈H, ξ∈C

}
and identify the matrix M :=

[
mij

]2
i,j=1

where m11 ∈ L(H), m12 ∈ H, m2,1 ∈ H∗ and

m22∈C with the linear operator
[
x
ξ

]
7→ M

[
x
ξ

]
on H. Notice that, by (2.1) we have

(2.2) Ψ(x) =
[
Ψ̃
[x
1

] ]−1

C

[
Ψ̃
[x
1

] ]
H

(x ∈ B)

where [ · ]C resp. [ · ]H are the standard notations for the canonical projections H → C
resp. H → H. It is immediate that any Ψ ∈ Aut(B) extends holomorphically to the ball
(1− ∥Ψ(0)∥)−1B. Hence we can define the group of all automorphisms of the closed unit
ball B := {x ∈ H : ∥x∥ ≤ 1} as

Aut(B) :=
{
Ψ : Ψ ∈ Aut (B)

}
where Ψ :=

[
continuous extension of Ψ to B

]
.

It is also well-known [5, Ch.VI] that any mapping Ψ ∈ Aut(B) is weakly continuous and
preserves the Grassmann family Aff(B) of all complex affine closed subspaces intersected
with B.1 By Schauder’s fixed point theorem, Fix(Ψ) ̸= ∅ since B is weakly compact.
Moreover we have the following alternatives:

(1) Fix(Ψ) ∈ Aff(B), (2) Fix(Ψ) consists of two boundary points.

In case (2) from the proof of [5, Thm.VI.4.8] we see even that Ψ = Φ ◦ Θa ◦ Φ−1
with a

suitable automorphism Φ ∈ Aut(B) and a Möbius shift

(2.3) Θa : x 7→ Qax+ a

1 + ⟨x|a⟩

1 If x =
∑2

k=1λkxk with λ1, λ2∈ C and
∑2

k=1λk = 1 then Ψ(x) =
∑2

k=1αkΨ(xk) for some

α1, α2∈C with
∑2

k=1αk=1
(
namely αk=λk[1+⟨xk|U∗a⟩]/[1+⟨λ1x1+λ2x2|U∗a⟩]

)
.
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for some 0 ̸= a ∈ B such that Fix(Θa) = {−e, e} where e := a/∥a∥.

The next result is an infinite dimensional extension for a simple special case of a far reaching
theorem of Abate [1] established for finite dimensional uniformly convex domains. It
seems that Dineen’s bidual embedding method [3] is suitable in proving a complete infinite
dimensional analogy with uniformly convex domains in Banach spaces. Instead, below we
give a short direct proof on the basis of the special algebraic form (2.1).

Lemma 2.4. Abelian subsets of Aut(B), in particular one-parameter subgroups, admit
common fixed points.

Proof. Assume {Ψj : j ∈ J } ⊂ Aut(B) with Ψj ◦Ψk = Ψk ◦Ψj (j, k ∈ J ). By weak
continuity, for any index family K ⊂ J , the set

∩
k∈K Fix(Ψk) of common fixed points

is weakly compact. Thus, according to Riesz’ intersection theorem, it suffices to see that∩
k∈K Fix(Ψk) ̸= ∅ for finite index families K. By proceeding to contradiction, let K =

{k1, . . . , kN} be a subset of J with minimal cardinality such that
∩

k∈K Fix(Ψk) = ∅.
Necessarily N > 1 and S :=

∩N−1
n=1 Fix(Ψkn) ̸= ∅ is either a weakly compact convex

subset of B or it consists of two boundary points. Since ΨkN commutes with all the
maps Ψkn (n < N), we have ΨkN

(S) ⊂ S. Indeed, if x ∈ S then Ψkn

(
ΨkN

(x)
)

=

ΨkN

(
Ψkn(x)

)
= ΨkN (x) ⇒ ΨkN (x) ∈ Fix(Ψkn) (n < N). Hence Schauder’s fixed point

theorem excludes the case of S being convex. Suppose S = {p, q} ⊂ ∂B. Then necessarily
Fix(ΨkM ) = {p, q} for some index M < N and ΨkN : p ↔ q. However, in this case we

can write ΨkN = Φ ◦ Θa ◦ Φ−1
with a suitable automorphism Φ ∈ Aut(B) and a Möbius

shift Θa of the form (2.3) where 0 ̸= a ∈ B. Then, by setting Ω := Φ
−1 ◦ ΨkM

◦ Φ and

e := a/|a∥, we have {±e}=Fix(Θa) and Ω : e↔−e. On the other hand, it is immediate
that e = limn→∞ Θ

n

a(x) for every point x∈B\{e}. Taking any point f ∈ Fix(Ω) we get the
contradiction e = limn→∞ Θ

n

a(f) = limn→∞ Θ
n

a◦ Ω(f) = limn→∞ Ω◦Θn

a(f) = Ω(e) = −e.

Remark 2.5. In finite dimensions, it is customary to normalize (2.1) by requiring

det
[
A b
c∗d

]
=1. Thus, in case of dim(H) = N , in this manner one can establish a canonical

identification of Aut(B) with a subgroup of the classical matrix group SL(N +1). Though
in infinite dimensions such a normalization is not available, for one-parameter groups with
common fixed point there is an alternative way as follows.

Definition 2.6. Let
(
[Ψt : t ∈ R], x

)
be a couple of a one-parameter subgroup of

Aut(B) with common fixed point x for the continuous extensions of its members to B:

x ∈ B, Ψ
t
(x) = x (t ∈ R). In terms of the canonical representations define

Ψ̂t
x :=

[
Ψ̃t

[x
1

]]−1

C
Ψ̃t =

1

1 + ⟨Utx|at⟩

[
Qt at
a∗t 1

] [
Ut 0
0 1

]
(t ∈ R).

where at = Ψt(0) ∈ B, Ut ∈ L(H) is a suitable unitary operator and Qt := Qat =
Pt + βt(I − Pt) with Ptx := Patx= ∥at∥−2⟨x|at⟩at, βt=

√
1−∥at∥2.

Later on, conveniently we shall simply write Ψ̂t instead of Ψ̂t
x without danger of confusion.
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Remark 2.7. As we have seen Ψt(x) = (1 + ⟨Utx|at⟩)−1[QtU
tx+ at] =

[
Θat ◦ Ut

]
(x).

Thus, by construction we have

Ψt(x) =
[
Ψ̂t

[x
1

] ]−1

C

[
Ψ̂t

[x
1

] ]
H

(x ∈ B), Ψ̂t
[x
1

]
=

[x
1

]
.

It is worth to notice that the term ⟨Utx|at⟩ is actually independent of Ut as

(2.8) ⟨Utx|at⟩ =
⟨x− at|at⟩
1− ⟨x|at⟩

, Ψ̂t =
1− ⟨x|at⟩
1− ⟨at|at⟩

[
Qt at
a∗t 1

] [
Ut 0
0 1

]
.

Proof: In general we have Pty = ⟨y|at⟩⟨at|at⟩−2at (0 ̸= at, y ∈ H). It follows ⟨PtUtx|at⟩ =
⟨Utx|at⟩ with ⟨P tUtx|at⟩ = 0 for any t ∈ R. Thus multiplying the fixed point equation

x = Ψ
t
(x) = (1+⟨Utx|at⟩)−1(Pt+βtP t)Utx with |at⟩, we get (1+⟨Utx|at⟩)−1⟨Utx+at|at⟩ =

⟨x|at⟩ whence the relations (2.8) are immediate.

The power style indexing of Ψ̂t in t is justified by the proposition below.

Proposition 2.9. Given a strongly continuous one-parameter group [Ψt : t∈R] in Aut(B)

with common fixed point x ∈ B, the family [Ψ̂ t
x : t ∈ R] is a strongly continuous one-

parameter group of operators in H.

Proof. Since Ψt◦Ψs =Ψt+s (t, s ∈ R), for the representation matrices we have Ψ̂tΨ̂s =

dt,sΨ̂
t+s with suitable constants dt,s ∈ C∗. The fixed point property Ψ

t
(x) = x implies

Ψ̂t

[
x

1

]
=

[
x

1

]
(t ∈ R).

Hence necessarily dt,s=1 (t, s∈R), thus
[
Ψ̂t : t∈R

]
is a one-parameter matrix group.

By assumption, the function t 7→ at = Ψt(0) is norm-continuous R → B. Hence we can
deduce the strong continuity of the H-unitary operator valued function t 7→ Ut. Namely
consider any vector x ∈ H. To establish the norm-continuity of the function t 7→ Ut, we
may assume without loss of generality that x ∈ B. Then, by the aid of the Möbius shifts
(2.3) we can write

Utx =
[
Θ−1

at
◦Ψt

]
(x) = Θ−at

(
Ψ(x)

)
(t∈R).

Observe that the norm continuity of t 7→ at implies the continuity of t 7→ ⟨x|at⟩ and
t 7→ βt ∈ [0, 1) entailing the norm-continuity of t 7→ Pt + βtP t ∈ Ball

(
L(H)

)
. Hence the

required norm-continuity of t 7→ Utx = (1− ⟨x|at⟩)−1[(Ptx− at + βtP tx] is immediate. In
general, the product of two bounded strongly continuous linear operator valued functions
R → L(X) over a normed space X is strongly continuous. Hence we conclude that the

entries (1, 1), (1, 2), (2, 1) resp. (2, 2) of the matrices Ψ̂t are strongly continuous functions
R → L(H), R → H, R → H∗≃H resp. R → R which completes the proof. Q.e.d.
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Corollary 2.10. Given a strongly continuous one-parameter group [T t : t ∈ R] in L(H),
the following statements are equivalent

(i) for all t ∈ R, the maps x 7→
[
T t

[
x
1

]]−1

C

[
T t

[
x
1

]]
H

belong to Aut(B);

(ii) we have T t = eµtΨ̂t (t ∈ R) for some strongly continuous one-parameter subgroup
[Ψt : t ∈ R] of Aut(B) and a constant µ ∈ C;

(iii) each operator T t maps the cone K :=
{[

x
ξ

]
: |ξ|2 > ∥x∥2

}
onto itself;

(iv) each operator T t maps ∂K :=
{[

x
ξ

]
: |ξ|2 = ∥x∥2

}
onto itself.

Proof. The implication (ii)⇒(i) is trivial by (2.2).

Proof of (i)⇒(ii): By assumption the maps Ψt(x) :=
[
T t

[
x
1

]]−1

C

[
T t

[
x
1

]]
H

(t ∈ R, x ∈ B).
are well-defined holomorphic automorphisms of the unit ball B. By (2.2) we have T t =

dtΨ̂
t (t ∈ R) with suitable constants dt ∈ C∗. Fixing any point x ∈ B, the strong continuity

of the group [T t : t ∈ R] implies the continuity of the function T t
[
x
1

]
whence we deduce

also the continuity of t 7→ Ψt(x) which entails the continuity of t 7→ Ψ̂t
[
x
1

]
= d−1

t T t
[
x
1

]
and hence the continuity of t 7→ dt. By the one-parameter group property, all the relations
T t+s = T tT s, Ψ̂t+s = Ψ̂tΨ̂s (t, s ∈ R) hold. Therefore dt+s = dtds (t, s ∈ R) and the
continuity of t 7→ dt establishes the existence of a constant µ ∈ C with dt = eµt (t ∈ R).

Proof of (i)⇔(iii)⇔(iv): Consider the projective Hilbert space H∗/≈ associated with H
regarded as the set of all nontrivial punctured complex rays C∗

[
x
ξ

]
with the factor topol-

ogy.2 By homogeneity, any injective linear operator T ∈ L(H) acts holomorphically on
H∗/≈ by its factorization T≈ : C∗

[
x
ξ

]
7→ C∗T

[
x
ξ

]
. In particular, as admitting a continuous

inverse, each map T t
≈ is a holomorphic automorphism of H/ ≈. Hence the equivalences

(i)⇔(iii)⇔(iv) are straightforward consequences of the facts that, with the embedding
Π : x 7→ C

[
x
1

]
and its inverse π

(
C
[
x
ξ

])
:= x/ξ (ξ ̸= 0), we have ΠB := K, πK = B and[

T t
[
x
1

]]−1

C

[
T t

[
x
1

]]
H

= π ◦ T t
≈ ◦Π

[
x
1

]
whenever

[
T t

[
x
1

]]
C ̸= 0.

Corollary 2.11. Given any Θ ∈ Aut(B), the Θ-shifted automorphisms Φt := Θ◦Ψt ◦Θ−1

form strongly continuous one-parameter group with common fixed point y := Θ(x) when

extended continuously to B and Φ̂t
y = eµtΘ̃−1Ψ̂t

xΘ̃ (t∈R) for some µ∈C.

3. Infinitesimal generators

Throughout this section, let
(
[Ψt : t ∈ R], x

)
be an arbitrarily fixed couple of a strongly

continuous one-parameter group in Aut(B) with a common fixed point for the continuous
extensions in B. Recalling the Hille–Yosida theorem [9, Kap.10], Proposition 2.9 ensures
that the differential

(3.1) A : h 7→ d

dt
Ψ̂th with D := dom(A) =

{
h ∈ H : t 7→ Ψ̂th is differentable on R

}
2 As usually, H∗ := H\{0} with the equivalence relation

[
x
ξ

]
∼

[
y
η

]
:⇐⇒ C∗

[
y
η

]
= C∗

[
x
ξ

]
where C∗ := C\{0}. A subset of H/≈ is open if the union of it members (rays in H∗) is
open in H.

6



(called the infinitesimal generator of the linear model
[
Ψ̂t: t∈R

]
where Ψ̂t≡Ψ̂t

x for short)

is a not necessarily bounded linear map with closed graph and [Ψ̂t : t∈R]-invariant domain

being dense in H. Instead of the differential A = d
dt |t=0Ψ̂

t of the representations we are
primarily interested in the differential

Ω :=
d

dt

∣∣∣
t=0

Ψt : D → H where D = dom(Ω) =
{
x ∈ B :

d

dt

∣∣∣
t=0

Ψt(x) exists
}
.

In order that we could regard the vector field Ω as a non-linear infinitesimal generator
for [Ψt : t ∈ R], we should see the density of D in B. In order to establish a non-linear
Stone-type theorem, we should determine precise links to self-adjoint linear operators.

Lemma 3.2. D is
[
Ψ

t
: t∈R

]
-invariant. We have

[
x
1

]
∈D ⇐⇒ x∈D whenever x∈B.

Proof. The
[
Ψt : t∈R

]
-invariance of D is clear from the group property Ψt+s = Ψt ◦Ψs

(t, s ∈R). Moreover even dom
(

d
dt

∣∣
t=0

Θ◦Ψt◦Θ−1
)
= Θ(D) whenever Θ is any holomorphic

automorphism of B. Hence, given any point x ∈ B, we have x ∈ D if and only if 0 =
Θ−x(x)∈dom

(
d
dt

∣∣
t=0

Φt
)
with the one-parameter group of the maps Φt := Θ−x ◦ Ψt ◦ Θx

in terms of the Möbius transformations (2.3). That is, without loss of generality, it suffices
only to see the equivalence 0∈dom

(
d
dt

∣∣
t=0

Φt
)
⇐⇒

[
0
1

]
∈D. According to (2.8), by setting

at := Ψt(0) and at := Ψ̂t
[
0
1

]
we have at = (1−⟨at|x⟩(1−∥at∥2)−1

[
at

1

]
(t ∈ R). Hence the

curves t 7→ at resp. t 7→ at are differentiable in the same time, which completes the proof.

For later use we also introduce the notations

Z :=
{
z ∈ H :

[z
0

]
∈ D

}
; Bz :=

[
A
[z
0

]]
H
, Λz :=

[
A
[z
0

]]
C

(z ∈ Z).

Lemma 3.3. Z is a dense linear submanifold in H with D =
(
x + Z

)
∩ B and D =[

Z
0

]
+ C

[
x
1

]
. The set D is dense in B and

d

dt

∣∣∣
t=0

Ψ
t
(x) = [Λ(x− x)]x+B(x− x) (x ∈ D).

Proof. By definition,
[
x
1

]
∈ D with A

[
x
1

]
= 0 since Ψ̂t

[
x
1

]
=

[
x
1

]
(t ∈ R). Since D is

closed for linear combinations, it follows that
[
Z
0

]
+ C

[
x
1

]
= D and that Z is the image

of D by the bounded linear operator Π
[
x
ξ

]
:= x − ξx. Since ΠH = H and since D

is dense in H, Z = ΠD is also dense in H = ΠH. From Lemma 3.2 we know that
D = B∩

{
x :

[
x
1

]
∈ D

}
. Hence the relation D =

(
x+Z

)
∩B along with the density of D

in B is immediate. Given any x ∈ D, the relation
[
x
1

]
∈ D implies A

[
x
1

]
= d

dt

∣∣
t=0

Ψ̂t
[
x
1

]
.

Since Ψ
t
(x) =

{
Ψ̂t

[
x
1

]}−1

C

{
Ψ̂t

[
x
1

]}
H

along with Ψ̂0 = Id and A
[
x
1

]
= 0, we get

d

dt

∣∣∣
t=0
Ψ

t
(x) = −

[
Ψ̂0

[x
1

]]−2

C

(
d

dt

∣∣∣
t=0

{
Ψ̂0

[x
1

]}
C

)[
Ψ̂0

[x
1

]]
H
+
[
Ψ̂0

[x
1

]]−1

C

d

dt

∣∣∣
t=0

{
Ψ̂0

[x
1

]}
H
=

= −
[
A
[x
1

]]
C
x+

[
A
[x
1

]]
H

= −
[
A
[x− x

0

]]
C
x+

[
A
[x− x

0

]]
H
.
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Lemma 3.4. Suppose a Hilbert space W is the orthogonal sum of the subspaces W1,W2

and C is the infinitesimal generator of a strongly continuous one-parameter subgroup
[T t : t∈R] of L(W). Then, for the cone K :=

{
w1⊕w2 : ∥w1∥>∥w2∥

}
, we have T tK=K

(t∈R) if and only if C is tangent to the boundary of K that is if

(3.5) Re
⟨
C(w1⊕w2)

∣∣w1

⟩
= Re

⟨
C(w1⊕ w2)

∣∣w2

⟩ (
w1⊕w2∈dom(C), ∥w1∥=∥w2∥

)
.

Proof. It is immediate that T tK⊂K (t ∈ R) ⇒ T t∂K⊂ ∂K (t ∈ R) ⇒ d
dt |t=0T

t(w1 ⊕
w2) ∈ Tanw1⊕w2(K) for w1 ⊕ w2 ∈ dom(C) ⇒ (3.5). Assume (3.5) and let P denote
the canonical projection of W onto W1 and define T t,s := exp(tC + sP ) (s, t ∈ R). By
the theorem of bounded perturbations [4, p.158] the operators T t,s are all well-defined.
Moreover, by [4, Corollary 1.7 p. 161] (applied with B := sP and A := C there) we
have lims→0 T

t,sw = T tw (w ∈ dom(C), t ∈ R). Therefore, to establish that T tK ⊂ K
(t ∈ R), it suffices to see only that T t,sw∈K whenever w∈ dom(C)∩K and t, s> 0. To
proceed to contradiction, let s, t > 0 and w := w1 ⊕ w2 ∈ dom(C) with ∥w1∥ > ∥w2∥ but
∥[T t,sw]1∥ ≤ ∥[T t,sw]2∥. The function δ(τ) := ∥[T τ,sw]1∥2 − ∥[T τ,sw]2∥2 is differentiable
in τ on the whole R and δ(0) > 0 ≥ δ(t). Thus there exist a point t∗ ∈ (0, t] such that
δ(τ) > 0 = δ(t∗) (0 ≤ τ < t∗). Since δ(t∗) = 0, the vector w∗ := T t∗,sw belongs to
∂K and hence Re⟨Cw∗|[w∗]1⟩ = Re⟨Cw∗|[w∗]2⟩. We get the contradiction 0 ≥ δ′(t∗) =
2Re⟨(C + sP )w∗|[w∗]1⟩ − 2Re⟨(C + sP )w∗|[w∗]2⟩ = 2s∥[w∗]1∥2 > 0.

Corollary 3.6. Re
(
− Λv +

⟨
Bv

∣∣x⟩+ ⟨
Bv

∣∣v⟩) = 0 whenever v ∈ Z with
∥∥x+ v

∥∥ = 1.

Proof. By Corollary 2.10, we have Ψ̂tK = K (t∈R) where K :=
{[

x
ξ

]
: |ξ| > ∥x∥

}
⊂ H.

An application of Lemma 3.4 with W1 := C, W2 := H, K := K, T t := Ψ̂t, C := A
establishes that Re

[
(Λx)ξ

]
= Re

⟨
Bx

∣∣x⟩ whenever
[
x
ξ

]
∈ D and ∥x∥ = |ξ|. We obtain the

statement with the choice x := v + x and ξ := 1 if v ∈ Z with ∥v + x∥ = 1 because then,
by Lemma 3.3, we have

[
x
1

]
∈ D.

Proposition 3.7. For some symmetric linear operator A : Z → H and a suitable constant
λ ∈ R which is necessarily = 0 if ∥x∥ ≠ 1, we have (1.3) as

B = iA+ λI, Λz =
⟨
(iA− λI)z

∣∣x⟩ (z ∈ Z).

Proof. Consider any vector 0 ̸= z ∈ Z. Let ζ ∈ C be the (unique) constant such that
x + ζz ⊥ z and define ϱ :=

√
1− ∥x+ ζz∥2. Actually we have ζ = −⟨x|z⟩/⟨z|z⟩ and

1 ≥ ∥x∥2 = ∥x+ ζz∥2 + ∥− ζz∥2 showing that both ζ and ϱ are well-defined. Consider the
unit vectors

vφ := x+ ζz + eiφϱz (φ∈R).

According to Corollary 3.6,

Re
(
(ζ+eiφϱ)

[
− Λz +

⟨
Bz

∣∣x⟩]+ |ζ+eiφϱ|2
⟨
Bz

∣∣ z⟩) = 0 (φ ∈ R).
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Thus the identity Re
(
α + βeiφ + γe−iφ

)
= 0 for all φ ∈ R holds with the constants

α := ζ
[
− Λz +

⟨
Bz

∣∣x⟩] + (|ζ|2 + ϱ2)
⟨
Bz

∣∣ z⟩, β := ϱ
[
− Λz +

⟨
Bz

∣∣x⟩ + ζ
⟨
Bz

∣∣ z⟩] and

γ := ϱζ
⟨
Bz

∣∣ z⟩. Since 2Re
(
α + βeiφ + γe−iφ

)
= 2Re(α) + (β + γ)eiφ + (β + γ)e−iφ,

we have necessarily Re(α) = β + γ = 0. From the relation β + γ = 0, it follows

(3.8) Λz − ⟨Bz |x⟩ = 2 ζ Re ⟨Bz | z⟩ = −2 ⟨z |x⟩ Re ⟨Bz | z⟩
⟨z | z⟩

,

and substituting this into the relation 0 = Re(α), we get

(3.8′) 0 = (ϱ2 − |ζ|2)Re
⟨
Bz

∣∣ z⟩ = (
1− ∥x∥2

)
Re

⟨
Bz

∣∣ z⟩ .

From (3.8) we see also that

z 7→
Re

⟨
Bz

∣∣ z⟩⟨
z
∣∣ z⟩ = −1

2

Λz −
⟨
Bz

∣∣x⟩⟨
z
∣∣x⟩

is a real valued Gâteaux holomorphic function on the algebraically open and in Z alge-
braically dense domain {z ∈ Z : z ̸⊥ x} which is possible only if being constant on Z.
By writing λ for this constant value, from (3.7) and (3.8′) we conclude that

Λz =
⟨
(B−2λI)z

∣∣x⟩, Re
⟨(
B−λI

)
z
∣∣ z⟩ = 0 (z ∈ Z),

and, in particular, if ∥x∥< 1 then necessarily λ= 0 above. By setting A :=−i(B+λI),
hence the statement including the symmetry of A is immediate.

The following geometric converse of 3.7 is elementary:

Remark 3.9. Given a dense linear submanifold Z in H, a symmetric linear operator
A : Z → H, a vector x ∈ B, the vector field Ωλ(x) := −⟨(iA−λI)(x−x|x⟩x+(iA+λI)(x−x)
define for x + Z is tangent to the unit sphere ∂B at the points x ∈ x + Z with ∥x∥ = 1
whenever either ∥x∥ = 1 and λ ∈ R or ∥x∥ < 1 and λ = 0.

In the sequel we proceed to the problem if the operator A in Proposition 3.7 arising from
the differential d

dt

∣∣
t=0

Ψt of a strongly continuous one-parameter semigroup of Aut(B) is
necessarily self-adjoint and conversely if every self-adjoint operator may appear in 3.7.

4. The Jordan case

We continue the previous investigations with unchanged notations but under the additional
hypothesis that

(4.1) 0 ∈ D = dom
( d

dt

∣∣∣
t=0

Ψt
)
.
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As we know,D =
{
x ∈ B :

[
x
1

]
∈ D

}
= B∩(x+Z) whereD = dom(A) withA = d

dt

∣∣
t=0

Ψ̂t
x

and Z =
{
x ∈ H :

[
x
0

]
∈ D

}
is a dense complex linear submanifold in H. Thus, as a conse-

quence of (4.1), for the distinguished common fixed point of the extended automorphisms

Ψ
t
we have x ∈ Z = dom(B) = dom(Λ). Therefore also[0

1

]
∈D=

[Z
C

]
, A

[x
ξ

]
=
[B(x− ξx)

Λ(x− ξx)

]
=
[B −Bx

Λ −Λx

][x
ξ

]
(x∈Z, ξ∈C).

Remark 4.2. Recall [8] that the complete holomorphic vector fields on B are the infinites-
imal generators of the uniformly continuous one-parameter subgroups of Aut(B) and, with
suitable c ∈ H and a bounded self-adjoint operator C ∈ L(H) they can be written in the
form x 7→ a− {xc∗x}+ iCx by means of the Jordan triple product.

(4.3)
{
xy∗z

}
:=

1

2

⟨
x
∣∣y⟩z + 1

2

⟨
z
∣∣y⟩x

In terms of the factorization Ψt = Θat ◦ Ut|B we introduce the following vector resp. not
necessarily bounded symmetric linear operator:

b :=
d

dt

∣∣∣
t=0

Ψt(0) = lim
t→0

1

t
at, R := −i

d

dt

∣∣∣
t=0

Ut : x 7→ lim
t→0

1

it
(Ut − I)x.

Proposition 4.4. Under hypothesis (4.1), we have D = B ∩ Z along with dom(R) ⊃ Z
and the vector field Ω := d

dt

∣∣
t=0

Ψt admits the Jordan form

(4.5) Ω(x) = b− {xb∗x}+ iRx (x ∈ D).

Proof. The relation D = B∩Z is clear since x ∈ Z. By the definition of the generator A,

A
[0
1

]
= lim

t→0

1

t

(
Ψ̂t − Ψ̂0

)[0
1

]
= lim

t→0

1

t

{ 1

1 + ⟨Utx|at⟩

[at
1

]
−
[0
1

]}
.

Since lim
t→0

at = 0 and ∥Utx∥ ≤ 1 (t ∈ R), taking (2.8) into account, we see that the limit

b := lim
t→0

1

t
at =

d

dt

∣∣∣
t=0

Ψt(0)

is well-defined and

Bx = −
[
A
[0
1

]]
H

= −b, Λx = −
[
A
[0
1

]]
C
=

⟨
x
∣∣ b⟩.

As a consequence we also have

βt =
√
1− ∥at∥2 =

√
1− ∥tb+ o(t)∥2 = 1− 1

2
∥b∥2t2 + o(t2),

Qt = Pt + βt(I − Pt) = I + (1− βt)Pt = I + o(t) (in operator norm).

10



Since also Utz = z + o(1) in norm, hence we deduce that for any vector z ∈ Z, and ζ ∈ C,

(4.6) Ψ̂t
[z
ζ

]
=

1− ⟨x|at⟩
1− ∥at∥2

[
QtUt at
a∗tUtz 1

] [z
ζ

]
=

[
Utz − t⟨x|b⟩z
t⟨Utz|b⟩+ ζ

]
+ o(t) in norm.

By definition,
[
Bz
Λz

]
= lim

t→0

1
t

(
Ψ̂t − I

)[
z
0

]
. Hence with well-defined limits we conclude that

(4.7) Bz = lim
t→0

1

it
(Ut−I)z −

⟨
x
∣∣b⟩z (z ∈ Z).

The strong limit of t−1(Ut − I)|Z is necessarily symmetric due to the fact that each Ut is
unitary. Thus comparing (4.7) with Proposition 3.7 stating that the operator B has the
form iA+ λI with some λ ∈ R and a symmetric operator A with dom(A) = Z, we get

(4.8) λ = −Re
⟨
x
∣∣ b⟩ , A = lim

t→0

strong (
U t − I

)
− Im

⟨
x
∣∣ b⟩I∣∣∣Z in 3.7.

We calculate Ω by substituting (4.7-8) into its form Ω(x) =
[
Λ(x−x)

]
x+B(x−x) applying

also the relationsBx = −b, Λx = ⟨x|b⟩, B = iA+λI, Λx = ⟨(iA−λI)x|x⟩ = ⟨(B−2λI)x|x⟩.
Namely, given any vector x ∈ D, taking into account the antisymmetry of the operator
iA = B−λI, we can write

Ω(x) =
[
Λx

]
x−

[
Λx

]
x+Bx−Bx =

= ⟨x|b⟩x− ⟨(B − 2λI)x|x⟩x+Bx+ b =

= b+
[
⟨x|b⟩I +B

]
x− ⟨(B − λI)x|x⟩x+ λ⟨x|x⟩x =

= b+ iRx+ ⟨x|(B − λI)x⟩x+ λ⟨x|x⟩x =

= b+ iRx+ ⟨x|Bx⟩x = b+ iRx− ⟨x|b⟩x.

Corollary 4.9. Z = dom(R) that is x ∈ Z if and only if the limit lim
t→0

t−1(U tx−x) exists.

Proof. Recall that Z =
{
x ∈ H : d

dt

∣∣
t=0

Ψ̂t
[
x
0

]
is well-defined

}
. From Proposition 4.4

we know that iRx = lim
t→0

t−1(Ut − I)x is well-defined for every vector x ∈ Z. Conversely,

suppose u = lim
t→0

t−1(Utx − x) is well-defined. Then Utx = x + tu + onorm(t) and (4.6)

establishes that Ψ̂t
[
x
0

]
=

[
x
0

]
+ t

[
u−⟨x|at⟩x

⟨x|b⟩
]
+ onorm(t).

Lemma 4.10. We have U−t = U−1
t = U∗

t , a−t = −U∗
t at (t ∈ R).

Proof. Given any t ∈ R, we have Ψ−t = Ψ−1
t that is Θa−tU−t =

[
ΘatUt

]−1
= U−1

t Θ−1
at

=

U−1
t Θ−at =

[
U−1
t Θ−atUt

]
U−1
t = ΘU−1

t (−at)
U−1
t . By the unambiguous decomposability of

holomorphic automorphisms of circular domains into Möbius and unitary parts [2], hence
we deduce that Θa−t = Θ−U−1

t at
and U−t = U−1

t .
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Lemma 4.11. The operator R is self-adjoint with dom(R) = Z.

Proof. In view of (4.6), and since Utx = x+ itRx+ onorm(t) for any x ∈ Z = dom(R) =
dom( d

dt

∣∣
t=0

Ut), we conclude that

d

dt

∣∣∣
t=0

Ψ̂t
[x
ξ

]
=

[ iR−⟨x|b⟩I b

b∗ −⟨x|b⟩

][x
ξ

]
for any

[x
ξ

]
∈ D =

[Z
C

]
.

The linear operator in L(H) with matrix
[ −⟨x|b⟩I b

b∗ −⟨x|b⟩
]
is bounded. Since A = d

dt

∣∣
t=0

Ψ̂t

with domain D is the generator of a strongly continuous semigroup in L(H), by the theorem
of bounded perturbations [4], also the operator with matrix

[
iR 0
0 0

]
with domain D is the

generator of a strongly continuous one-parameter subgroup of L(H) entailing that iR is the
generator of a strongly continuous group

[
Vt : t ∈ R

]
in L(H). Since U−t = U−1

t = U∗
t , the

arguments on sun adjoint semigroups in [4, p. 69] show that lim
t→0

t−1(U∗
t − I) = −iR is the

generator of the sun adjoint group
[
V ∗
t : t ∈ R

]
=

[
V−t : t ∈ R

]
and we have −iR = (iR)∗

which completes the proof.

Theorem 4.12. Any vector field of the form (4.5) where R is a not necessarily bounded
self-adjoint operator with dense domain Z ⊂ H, is the infinitesimal generator defined on
D := Z ∩ B of a pointwise continuous one-parameter group [Φt : t ∈ R] of holomorphic
automorphisms of B.3

Proof. It suffices to see that there is a strongly (i.e. pointwise) continuous one-parameter
group

[
Vt : t ∈ R

]
of bounded linear operators of the space H such that

d

dt

∣∣∣
t=0

Vt
[x
ξ

]
=

[ iR b

b∗ 0

][x
ξ

]
(x ∈ Z, ξ ∈ C), VtK ⊂ K :=

{[x
ξ

]
: ∥x∥2 ≥ |ξ|2

}
.

Namely, in this case the maps

Φt(x) :=
[
Vt

[x
1

]]−1

C

[
Vt

[x
1

]]
H

(t ∈ R, x ∈ D)

suit the requirements of the theorem since x ∈ D ⇒
[
x
1

]
∈ K ⇒ Vt

[
x
1

]
⇒ Φt(x) ∈ D and

x ∈ D ⇒ d
dt

∣∣
t=0

Φt(x) = −
[
V0

[
x
1

]]−2

C
d
dt

∣∣
t=0

[
Vt

[
x
1

]]
C

[
V0

[
x
1

]]
H

+
{
V0

[
x
1

]}−1

C
d
dt

∣∣
t=0

[
Vt

[
x
1

]]
H

= −
[[

iR b
b∗ 0

][
x
1

]]
Cx+

[[
iR b
b∗ 0

][
x
1

]]
H

= −⟨x|b⟩x+ iRx+ b = Ω(x). Notice that, by Corollary
2.10, a strongly continuous one parameter group of linear operator leaves the cone K
invariant if all its members map the boundary ∂K=

{[
x
ξ

]
: ∥x∥=|ξ|

}
=
{[

x
eiτ∥x∥

]
: x∈H, τ∈R

}
into itself. Therefore it suffices to check that there is a (necessarily unique) strongly
continuous one-parameter group in L(H) with domain Z⊕ C =

[
Z
C
]
such that

d

dt
Vt

[x
ξ

]
=

[ iR b

b∗ 0

]
Vt

[x
ξ

]
,

∥∥∥∥[Vt
[ x

∥x∥

]]
H

∥∥∥∥ =

∣∣∣∣[Vt
[ x

∥x∥

]]
C

∣∣∣∣ (x ∈ Z, t ∈ R).

3 That is, for all x ∈ D := Z∩B, the functions t 7→ Φt(x) range in Z, they are differentiable
and satisfy the identity d

dtΦ
t(x) = V

(
Φt(x)

)
(t ∈ R).
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By Stone’s theorem, the H-unitary operators Wt
[
x
ξ

]
:=

[
exp(itR)x

ξ

]
form a strongly contin-

uous one-parameter group whose infinitesimal generator is defined on dom(R)⊕C = Z⊕C
with the diagonal matrix

[
iR 0
0 0

]
. Since the matrix

[
0 b
b∗ 0

]
represents a bounded linear op-

erator in H, by the theorem of bounded perturbations [4], there is a strongly continuous
one-parameter group

[
Vt : t ∈ R

]
whose generator is defined on Z ⊕ C with the matrix[

iR b
b∗ 0

]
. In particular d

dtV
t
[
x
ξ

]
=

[
iR b
b∗ 0

]
Vt

[
x
ξ

]
(t ∈ R, x ∈ Z). To complete the proof, we

show that necessarily

d

dt

[∥∥∥[Vt
[ x

∥x∥

]]
H

∥∥∥2 − ∣∣∣[Vt
[ x

∥x∥

]]
C

∣∣∣2] = 0 (t ∈ R, x ∈ Z).

Consider any vector x ∈ Z and write
[
xt

ξt

]
:= Vt

[
x

∥x∥
]
for all parameters t ∈ R. Then

d

dt

[
∥xt∥2 − |ξt|2

]
= 2Re

[⟨
dxt/dt

∣∣xt

⟩
−
(
dξt/dt)ξt

]
=

= 2Re

{⟨[[ iR b

b∗ 0

][xt

ξt

]]
H

∣∣∣xt

⟩
−
[[ iR b

b∗ 0

][xt

ξt

]]
C

(
dξt/dt)ξt

}
=

= 2Re
[⟨
iRxt + ξtb

∣∣xt

⟩
−
⟨
xt

∣∣b⟩ξt] =
= −2 Im

⟨
Rxt

∣∣xt

⟩
+ 2 Im

(⟨
ξb
∣∣xt

⟩
−
⟨
xt

∣∣ξb⟩) = 0.

5. Proof of Theorems 1.1 and 1.4

Consider any pointwise continuous one-parameter subgroup
[
Ψt : t ∈ R

]
of Aut

(
B
)
and

let us fix any common fixed point x ∈ B of the continuous extensions of the maps Ψt

(t ∈ R) (guaranteed by Lemma 2.4). From Proposition 3.7, we know already that (1.2-3)
hold for some dense linear complex submanifold Z of the underlying Hilbert space with a
symmetric linear operator A with dom(A) = Z. We have to see that A is even self-adjoint
in any case and, conversely every self-adjoint operator with domain Z may appear in (1.3)
with any constant λ ∈ R if x ∈ ∂B or λ = 0 if x ∈ B. In order to establish a link to the
Jordan case, fix any point c∈D=dom

(
dΨt

dt

∣∣
t=0

)
and let

Φt := Θ−cΨ
tΘc (t ∈ R), y := Θc(x)

by means of the Möbius transformations (2.3). Clearly
[
Φ

t
: t ∈ R

]
is a strongly continuous

one-parameter subgroup of Aut
(
B
)
such that

(5.1) 0 = Θ−c(c) ∈ Θ−c

(
dom

(∂Ψt

dt

∣∣∣
t=0

))
= dom

(∂Φt

dt

∣∣∣
t=0

)
, y ∈

∩
t∈R

Fix
(
Φ

t)
.

Thus we can apply the results of Section 4 in particular Lemma 4.11 to [Φt : t ∈ R] to
conclude that there is a dense complex linear submanifold Y ⊂ H along with a self-adjoint
operator R with dom(R) = Y and a vector b ∈ H such that

Φ̂t
y = e−⟨x|b⟩t exp

(
t
[ iR b

b∗ 0

])
(t ∈ R).
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Hence Corollary 2.11 establishes the existence of a constant ν ∈ C with

Ψ̂t
x = eνtβ−2Θ̃cΦ̂

t
yΘ̃−c (t ∈ R)

due to the identity Θ̃cΘ̃−c = β2I = (1− ∥c∥2)
[
I 0
0 1

]
for the canonical representations

Θ̃±c =
[Q ± c

±c∗ 1

]
where Q := βI + (1− β)P, β :=

√
1− ∥c∥2, P := Pc.

By passing to infinitesimal generators, with µ := ν − ⟨x|b⟩, we get

(5.2)
dΨ̂t

x

dt

∣∣∣
t=0

[x
ξ

]
= µ

[x
ξ

]
+ β−2Θ̃c

[ iR b

b∗ 0

]
Θ̃−c

[x
ξ

]
for

[x
ξ

]
∈ dom

(dΨ̂t
x

dt

∣∣∣
t=0

)
.

From Lemma 3.3 and (5.1) we see that

[Z
0

]
+ C

[x
ξ

]
= dom

(dΨ̂t
x

dt

∣∣∣
t=0

)
= Θ̃cdom

(dΦ̂t
y

dt

∣∣∣
t=0

)
= Θ̃c

[Y
C

]
.

Thus, given any vector z ∈ H, we have z ∈ Z if and only if
[
z
0

]
= Θ̃c

[
y
η

]
for some y ∈ Y

and η ∈ C that is if z = Qy − ⟨y|c⟩c =
[
Q− ∥c∥2P ]y for some y ∈ Y. It follows

(5.3) Z =
[
Q− ∥c∥2P

]
Y = Q−1Y

because the operators P,Q commute, we have β2 = 1 − ∥c∥2 > 0 and Q
[
Q − ∥c∥2P

]
=[

βI+(1−β)P ]
[
βI+(β2−β)P

]
= β2I. We are now ready to establish the self-adjointness

of the operator A in (1.3). By (5.2) we have

(iA+ λI)z =

[
dΨ̂t

x

dt

∣∣∣
t=0

[z
0

]]
H

= µz + β
[
iQRQz −Qbc∗z + cb∗Qz

]
(z ∈ Z).

That is, with the bounded self-adjoint operator S := iβ[Qbc∗−cb∗Qz] = [iQbc∗]+ [iQbc∗]∗

we have A = βQRQ + S + i(λ − µ)I. We know the symmetry of A already entailing
the relations µ = λ with A = βQRQ + S. Here the operator QRQ self-adjoint with
dom(QRQ) = Q−1dom(R) = Q−1Y = Z = dom(A) since R is a self-adjoint operator with
dom(R) = Y while Q is an invertible bounded self-adjoint operator, Therefore, as being
the bounded self-adjoint perturbation, the operator A is necessarily self-adjoint.
To see the converse, we need only to check the reversibility of some of our previous argu-
ments. Assuming A to be self-adjoint in (1.2-3), it is the theorem of bounded perturbations

[4] ensures that the operatorA
[
z+ξx

ξ

]
:=

[
(iA+λI)z

⟨(iA−λI)z|x⟩(z+ξx)

]
(z ∈ Z, ξ ∈ C) is the infinites-

imal generator of a strongly continuous one-parameter subgroup [U t : t ∈ R] of L(H with
graph being tangent to the boundary of cone K in Corollary 2.10(iii) and we have K = U tK
(t ∈ R). Hence the holomorphic maps Ψt(x) :=

[
U t

[
x
1

]]−1

C

[
U t

[
x
1

]]
H
are well-defined on the

14



unit ball B leaving it invariant, and form a strongly continuous one-parameter subgroup
in Aut(B).
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