A Stone type theorem for one-parameter groups of non-linear automorphisms in Hilbert space

L.L. STACHÓ

Abstract. A commplete parametric algebraic description is given in terms of the inner product for the strongly continuous one-parameter subgroups of the group all biholomorphic automorphisms of the unit ball of a Hilbert space with emphasis to non Jordan type infinitesimal generators.

AMS 2000 classification: 47D03, 32H15, 46G20.

1. Introduction, main results

Throughout this work **H** denotes an arbitrarily fixed infinite dimensional complex Hilbert space with the scalar product $\langle x|y \rangle$ which is linear in x and conjugate linear in y, giving rise to the norm $||x|| = \langle x|x \rangle^{1/2}$. We denote the open unit ball $\{e \in \mathbf{H} : ||e|| < 1\}$ with **B** and for any vector $a \in \mathbf{H}$ we shall write $a^* := [x \mapsto \langle x|a \rangle]$ for its dual functional. Recall that the group Aut(**B**) of all holomorphic automorphisms of **B** consists the biholomorphic maps $\mathbf{B} \leftrightarrow \mathbf{B}$, and the **H**-unitary operators restricted to **B** form the isotropy subgroup of the origin of Aut(**B**). Stone's classical theorem on strongly continuous oneparameter groups of unitary operators can be reformulated in terms of Aut(**B**) as a statement that the infinitesimal generator of a strongly continuous one-parameter subgroup of Aut(**B**) leaving fixed the origin can be identified canonically with the restriction $iA|\mathbf{B}$ where A is a possibly unbounded self-adjoint linear operator with dense domain in **H**. Our purpose will be an analogous description for the strongly continuous one-parameter subgroups of Aut(**B**) formed by possibly non-linear maps, including approximations with norm-continuous one-parameter subgroups. We establish the following main result.

Theorem 1.1. Assume $[\Psi^t : t \in \mathbb{R}]$ is a strongly continuous one-parameter group of holomorphic automorphisms of \mathbf{B}^{1} . Then there exists a vector \overline{x} with $\|\overline{x}\| \leq 1$ along with a constant $\lambda \in \mathbb{R}$ and a densely defined possibly unbounded self-adjoint operator $A : \mathbf{Z} \to \mathbf{H}$ with dense domain such that

(1.2) $\mathbf{B} \cap (\overline{x} + \mathbf{Z}) = \mathbf{D}$ where $\mathbf{D} := \{x \in \mathbf{D} : t \mapsto \Psi^t(x) \text{ is differentiable on } \mathbb{R}\},\$

(1.3)
$$\frac{d}{dt}\Big|_{t=0}\Psi^t(x) = -\langle (iA - \lambda)(x - \overline{x}) \big| \overline{x} \rangle x + (iA + \lambda)(x - \overline{x}) \qquad (x \in \mathbf{D}).$$

Given any tuple $(A, \overline{x}, \lambda)$ consisting of a densely defined self-adjoint operator $A : \mathbb{Z} \to \mathbb{H}$, a vector \overline{x} with $\|\overline{x}\| \leq 1$ and a real number λ , there exists (a necessarily unique) strongly

¹ That is $\Psi^{t+s} = \Psi^t \circ \Psi^s \in \operatorname{Aut}(\mathbf{B})$ for all couples $t, s \in \mathbb{R}$ and the functions $[t \mapsto \Psi^t(x)]$ are continuous $\mathbb{R} \to \mathbf{H}$ for any fixed vector $x \in \mathbf{B}$.

continuous one-parameter group $[\Psi^t : t \in \mathbb{R}]$ satisfying (1.2) and (1.3) if and only if one of the following alternatives holds: (1) $\|\overline{x}\| = 1$; (2) $\|\overline{x}\| < 1$, $\lambda = 0$.

It is tempting to conjecture that all strongly continuous one-parameter groups of holomorphic automorphisms of bounded circular domains in Banach spaces can be reconstructed similarly from a polynomial of second degree defined on some dense algebraic submanifold. However, the techniques we use here depend heavily on Hilbert space structure and the presence of a linear model in the lifting space $\mathcal{H} := \mathbf{H} \oplus \mathbb{C} = \{\begin{bmatrix} x \\ \xi \end{bmatrix} : x \in \mathbf{H}, \xi \in \mathbb{C}\}$. We can formulate the background in terms of this linear representation in \mathcal{H} for the group of the non non-linear maps Ψ^t as follows.

Theorem 1.4. For any triple $\mathfrak{A} = (A, \overline{x}, \lambda) \in \mathcal{L}_{selfadj}^{subded}(\mathbf{H}) \times \overline{\mathbf{B}} \times \mathbb{R}$, the operator

$$\mathcal{A}_{\mathfrak{A}}\begin{bmatrix}x\\\xi\end{bmatrix} := \begin{bmatrix}(iA + \lambda I)(x - \xi\overline{x})\\\langle(iA - \lambda I)(x - \overline{x})|\overline{x}\rangle\end{bmatrix} \quad with \quad \operatorname{dom}(\mathcal{A}_{\mathfrak{A}}) = \begin{bmatrix}\operatorname{dom}(A)\\0\end{bmatrix} + \mathbb{C}\begin{bmatrix}\overline{x}\\1\end{bmatrix}$$

is the infinitesimal generator of a strongly continuous one parameter subgroup $[\mathcal{U}_{\mathfrak{A}}^t : t \in \mathbb{R}]$ of $\mathcal{L}(\mathbf{H})$. A family $[\Psi^t : t \in \mathbb{R}]$ of mappings $\mathbf{B} \to \mathbf{B}$ is a strongly continuous one-parameter subgroup of Aut(\mathbf{B}) if and only if, in terms of the coordinates $[.]_{\mathbf{H}}$ resp. $[.]_{\mathbb{C}}$ in \mathcal{H} ,

$$\Psi^{t}(x) = \left[\mathcal{U}_{\mathfrak{A}}^{t} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbb{C}}^{-1} \left[\mathcal{U}_{\mathfrak{A}}^{t} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbf{H}} \qquad (x \in \mathbf{B}, \ t \in \mathbb{R})$$

for some triple $\mathfrak{A} = (A, \overline{x}, \lambda)$ satisfying (1) or (2) in Theorem 1.1.

As an immediate consequence, with the Yosida approximants [4,p.205] we get the following.

Corollary 1.5. Any strongly continuous one parameter subgroup $[\Psi^t : t \in \mathbb{R}]$ of Aut(**B**) can be approximated pointwise with a sequence $[\Psi_n^t : t \in \mathbb{R}]$ (n = 1, 2, ...) of uniformly continuous one-parameter groups of fractional linear maps of the form

$$\Psi_n^t(x) = \left[\exp(t\mathcal{A}_{\mathfrak{A},n}) \begin{bmatrix} x\\ 1 \end{bmatrix} \right]_{\mathbb{C}}^{-1} \left[\exp(t\mathcal{A}_{\mathfrak{A},n}) \begin{bmatrix} x\\ 1 \end{bmatrix} \right]_{\mathbf{H}}$$

by the aid of the bounded linear operators $\mathcal{A}_{\mathfrak{A},n} := n \mathcal{A}_{\mathfrak{A}} (n \mathrm{Id}_{\mathcal{H}} - \mathcal{A}_{\mathfrak{A}})^{-1}$.

2. Preliminaries: linear model with joint fixed points for one-parameter groups

Recall [5, Ch. VI] that the group of $Aut(\mathbf{B})$ all holomorphic automorphisms of \mathbf{B} admits a matrix representation. Namely each element Ψ of $Aut(\mathbf{B})$ has the fractional linear form

(2.1)
$$\Psi(x) = \frac{Ax+b}{\langle x|c\rangle+d} , \qquad A \in \mathcal{L}(\mathbf{H}), \quad b,c \in \mathbf{H}, \quad d \in \mathbb{C}$$

and we have

$$\Psi_1 \circ \Psi_2(x) = \Psi_1 \left(\Psi_2(x) \right) = \frac{Ax+b}{\langle x|c\rangle+d} \quad \text{whenever} \quad \begin{bmatrix} A & b \\ c^* & d \end{bmatrix} = \begin{bmatrix} A_1 & b_1 \\ c_1^* & d_1 \end{bmatrix} \begin{bmatrix} A_2 & b_2 \\ c_2^* & d_2 \end{bmatrix}.$$

This representation is unique up to a constant, since in (2.1) we necessarily have

$$\begin{bmatrix} A & b \\ c^* & d \end{bmatrix} = d \begin{bmatrix} \mathbf{Q}_a & a \\ a^* & 1 \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & 1 \end{bmatrix} \quad \text{where} \quad a := \Psi(0), \ U = (\beta_a^2 \mathbf{P}_a + \beta_a \overline{\mathbf{P}}_a)^{-1} \Psi'(0)$$

in terms of the the Fréchet derivative Ψ' and the standard notations

 $\mathbf{P}_a := \begin{bmatrix} \text{orthogonal projection } \mathbf{H} \to \mathbb{C}a \end{bmatrix}, \quad \beta_a = \sqrt{1 - \|a\|^2}, \quad \mathbf{Q}_a := \mathbf{P}_a + \beta_a (I - \mathbf{P}_a).$

We call the matrix

$$\widetilde{\Psi} := \begin{bmatrix} \mathbf{Q}_a & a \\ a^* & 1 \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_a U & a \\ (U^* a)^* & 1 \end{bmatrix}$$

corresponding to the case with constant d = 1 the *canonical representation* of Ψ . In the sequel we shall write

$$\mathcal{H} := \mathbf{H} \oplus \mathbb{C} = \left\{ \begin{bmatrix} x \\ \xi \end{bmatrix} : x \in \mathbf{H}, \, \xi \in \mathbb{C} \right\}$$

and identify the matrix $M := [m_{ij}]_{i,j=1}^2$ where $m_{11} \in \mathcal{L}(\mathbf{H}), m_{12} \in \mathbf{H}, m_{2,1} \in \mathbf{H}^*$ and $m_{22} \in \mathbb{C}$ with the linear operator $\begin{bmatrix} x \\ \xi \end{bmatrix} \mapsto M \begin{bmatrix} x \\ \xi \end{bmatrix}$ on \mathcal{H} . Notice that, by (2.1) we have

(2.2)
$$\Psi(x) = \left[\widetilde{\Psi} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbb{C}}^{-1} \left[\widetilde{\Psi} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbf{H}} \quad (x \in \mathbf{B})$$

where $[\cdot]_{\mathbb{C}}$ resp. $[\cdot]_{\mathbf{H}}$ are the standard notations for the canonical projections $\mathcal{H} \to \mathbb{C}$ resp. $\mathcal{H} \to \mathbf{H}$. It is immediate that any $\Psi \in \operatorname{Aut}(\mathbf{B})$ extends holomorphically to the ball $(1 - \|\Psi(0)\|)^{-1}\mathbf{B}$. Hence we can define the group of all automorphisms of the closed unit ball $\overline{\mathbf{B}} := \{x \in \mathbf{H} : \|x\| \leq 1\}$ as

$$\operatorname{Aut}(\overline{\mathbf{B}}) := \left\{ \overline{\Psi} : \ \Psi \in \operatorname{Aut}(\mathbf{B}) \right\} \quad \text{where} \quad \overline{\Psi} := \left[\text{continuous extension of } \Psi \text{ to } \overline{\mathbf{B}} \right].$$

It is also well-known [5, Ch.VI] that any mapping $\overline{\Psi} \in \operatorname{Aut}(\overline{\mathbf{B}})$ is weakly continuous and preserves the Grassmann family $\operatorname{Aff}(\overline{\mathbf{B}})$ of all complex affine closed subspaces intersected with $\overline{\mathbf{B}}$.¹ By Schauder's fixed point theorem, $\operatorname{Fix}(\overline{\Psi}) \neq \emptyset$ since $\overline{\mathbf{B}}$ is weakly compact. Moreover we have the following alternatives:

(1) $\operatorname{Fix}(\overline{\Psi}) \in \operatorname{Aff}(\overline{\mathbf{B}})$, (2) $\operatorname{Fix}(\overline{\Psi})$ consists of two boundary points.

In case (2) from the proof of [5, Thm.VI.4.8] we see even that $\overline{\Psi} = \overline{\Phi} \circ \overline{\Theta}_a \circ \overline{\Phi}^{-1}$ with a suitable automorphism $\Phi \in \operatorname{Aut}(\overline{\mathbf{B}})$ and a *Möbius shift*

(2.3)
$$\Theta_a : x \mapsto \frac{\mathbf{Q}_a x + a}{1 + \langle x | a \rangle}$$

¹ If $x = \sum_{k=1}^{2} \lambda_k x_k$ with $\lambda_1, \overline{\lambda}_2 \in \mathbb{C}$ and $\sum_{k=1}^{2} \lambda_k = 1$ then $\overline{\Psi}(x) = \sum_{k=1}^{2} \alpha_k \overline{\Psi}(x_k)$ for some $\alpha_1, \alpha_2 \in \mathbb{C}$ with $\sum_{k=1}^{2} \alpha_k = 1$ (namely $\alpha_k = \lambda_k [1 + \langle x_k | U^* a \rangle] / [1 + \langle \lambda_1 x_1 + \lambda_2 x_2 | U^* a \rangle]$).

for some $0 \neq a \in \mathbf{B}$ such that $\operatorname{Fix}(\overline{\Theta}_a) = \{-e, e\}$ where e := a/||a||.

The next result is an infinite dimensional extension for a simple special case of a far reaching theorem of Abate [1] established for finite dimensional uniformly convex domains. It seems that Dineen's bidual embedding method [3] is suitable in proving a complete infinite dimensional analogy with uniformly convex domains in Banach spaces. Instead, below we give a short direct proof on the basis of the special algebraic form (2.1).

Lemma 2.4. Abelian subsets of $Aut(\overline{\mathbf{B}})$, in particular one-parameter subgroups, admit common fixed points.

Proof. Assume $\{\overline{\Psi}_j : j \in \mathcal{J}\} \subset \operatorname{Aut}(\overline{\mathbf{B}})$ with $\overline{\Psi}_j \circ \overline{\Psi}_k = \overline{\Psi}_k \circ \overline{\Psi}_j$ $(j, k \in \mathcal{J})$. By weak continuity, for any index family $\mathcal{K} \subset \mathcal{J}$, the set $\bigcap_{k \in \mathcal{K}} \operatorname{Fix}(\overline{\Psi}_k)$ of common fixed points is weakly compact. Thus, according to Riesz' intersection theorem, it suffices to see that $\bigcap_{k \in \mathcal{K}} \operatorname{Fix}(\overline{\Psi}_k) \neq \emptyset$ for finite index families \mathcal{K} . By proceeding to contradiction, let $\mathcal{K} = \{k_1, \ldots, k_N\}$ be a subset of \mathcal{J} with minimal cardinality such that $\bigcap_{k \in \mathcal{K}} \operatorname{Fix}(\overline{\Psi}_k) = \emptyset$. Necessarily N > 1 and $\mathbf{S} := \bigcap_{n=1}^{N-1} \operatorname{Fix}(\overline{\Psi}_{k_n}) \neq \emptyset$ is either a weakly compact convex subset of $\overline{\mathbf{B}}$ or it consists of two boundary points. Since $\overline{\Psi}_{k_N}$ commutes with all the maps $\overline{\Psi}_{k_n}$ (n < N), we have $\overline{\Psi}_{k_N}(\mathbf{S}) \subset \mathbf{S}$. Indeed, if $x \in \mathbf{S}$ then $\overline{\Psi}_{k_n}(\overline{\Psi}_{k_N}(x)) = \overline{\Psi}_{k_N}(\overline{\Psi}_{k_n}(x)) = \overline{\Psi}_{k_N}(x) \Rightarrow \overline{\Psi}_{k_N}(x) \in \operatorname{Fix}(\overline{\Psi}_{k_n})$ (n < N). Hence Schauder's fixed point theorem excludes the case of \mathbf{S} being convex. Suppose $\mathbf{S} = \{p,q\} \subset \partial \mathbf{B}$. Then necessarily $\operatorname{Fix}(\overline{\Psi}_{k_M}) = \{p,q\}$ for some index M < N and $\overline{\Psi}_{k_N} : p \leftrightarrow q$. However, in this case we can write $\overline{\Psi}_{k_N} = \overline{\Phi} \circ \overline{\Theta}_a \circ \overline{\Phi}^{-1}$ with a suitable automorphism $\overline{\Phi} \in \operatorname{Aut}(\overline{\mathbf{B}})$ and a Möbius shift $\overline{\Theta}_a$ of the form (2.3) where $0 \neq a \in \mathbf{B}$. Then, by setting $\overline{\Omega} := \overline{\Phi}^{-1} \circ \overline{\Psi}_{k_M} \circ \overline{\Phi}$ and e := a/|a||, we have $\{\pm e\} = \operatorname{Fix}(\overline{\Theta}_a)$ and $\overline{\Omega} : e \leftrightarrow -e$. On the other hand, it is immediate that $e = \lim_{n\to\infty} \overline{\Theta}_a^n(x)$ for every point $x \in \overline{\mathbf{B}} \setminus \{e\}$. Taking any point $f \in \operatorname{Fix}(\overline{\Omega})$ we get the contradiction $e = \lim_{n\to\infty} \overline{\Theta}_a^n(f) = \lim_{n\to\infty} \overline{\Theta}_a^n(\overline{\Omega}(f) = \lim_{n\to\infty} \overline{\Omega} \circ \overline{\Omega}_n^n(f) = \lim_{n\to\infty} \overline{\Theta}_a^n(0) = -e$.

Remark 2.5. In finite dimensions, it is customary to normalize (2.1) by requiring det $\begin{bmatrix} A & b \\ c^*d \end{bmatrix} = 1$. Thus, in case of dim(**H**) = N, in this manner one can establish a canonical identification of Aut(**B**) with a subgroup of the classical matrix group SL(N+1). Though in infinite dimensions such a normalization is not available, for one-parameter groups with common fixed point there is an alternative way as follows.

Definition 2.6. Let $([\Psi^t : t \in \mathbb{R}], \overline{x})$ be a couple of a one-parameter subgroup of Aut(**B**) with common fixed point \overline{x} for the continuous extensions of its members to $\overline{\mathbf{B}}$: $\overline{x} \in \overline{\mathbf{B}}, \ \overline{\Psi}^t(\overline{x}) = \overline{x} \ (t \in \mathbb{R})$. In terms of the canonical representations define

$$\widehat{\Psi}_{\overline{x}}^{t} := \left[\widetilde{\Psi}_{1}^{t} \begin{bmatrix} \overline{x} \\ 1 \end{bmatrix} \right]_{\mathbb{C}}^{-1} \widetilde{\Psi}^{t} = \frac{1}{1 + \langle U_{t} \overline{x} | a_{t} \rangle} \begin{bmatrix} Q_{t} & a_{t} \\ a_{t}^{*} & 1 \end{bmatrix} \begin{bmatrix} U_{t} & 0 \\ 0 & 1 \end{bmatrix} \qquad (t \in \mathbb{R}).$$

where $a_t = \Psi_t(0) \in \mathbf{B}$, $U_t \in \mathcal{L}(\mathbf{H})$ is a suitable unitary operator and $Q_t := \mathbf{Q}_{a_t} = P_t + \beta_t(I - P_t)$ with $P_t x := \mathbf{P}_{a_t} x = ||a_t||^{-2} \langle x | a_t \rangle a_t$, $\beta_t = \sqrt{1 - ||a_t||^2}$.

Later on, conveniently we shall simply write $\widehat{\Psi}^t$ instead of $\widehat{\Psi}^t_{\overline{x}}$ without danger of confusion.

Remark 2.7. As we have seen $\Psi^t(x) = (1 + \langle U_t x | a_t \rangle)^{-1} [Q_t U^t x + a_t] = [\Theta_{a_t} \circ U_t](x)$. Thus, by construction we have

$$\overline{\Psi^{t}}(x) = \left[\widehat{\Psi}^{t} \begin{bmatrix} x\\1 \end{bmatrix}\right]_{\mathbb{C}}^{-1} \left[\widehat{\Psi}^{t} \begin{bmatrix} x\\1 \end{bmatrix}\right]_{\mathbf{H}} \quad (x \in \overline{\mathbf{B}}), \qquad \widehat{\Psi}^{t} \begin{bmatrix} \overline{x}\\1 \end{bmatrix} = \begin{bmatrix} \overline{x}\\1 \end{bmatrix}.$$

It is worth to notice that the term $\langle U_t \overline{x} | a_t \rangle$ is actually independent of U_t as

(2.8)
$$\langle U_t \overline{x} | a_t \rangle = \frac{\langle \overline{x} - a_t | a_t \rangle}{1 - \langle \overline{x} | a_t \rangle}, \qquad \widehat{\Psi}^t = \frac{1 - \langle \overline{x} | a_t \rangle}{1 - \langle a_t | a_t \rangle} \begin{bmatrix} Q_t & a_t \\ a_t^* & 1 \end{bmatrix} \begin{bmatrix} U_t & 0 \\ 0 & 1 \end{bmatrix}.$$

Proof: In general we have $P_t y = \langle y | a_t \rangle \langle a_t | a_t \rangle^{-2} a_t$ $(0 \neq a_t, y \in \mathbf{H})$. It follows $\langle P_t U_t \overline{x} | a_t \rangle = \langle U_t \overline{x} | a_t \rangle$ with $\langle \overline{P}_t U_t \overline{x} | a_t \rangle = 0$ for any $t \in \mathbb{R}$. Thus multiplying the fixed point equation $\overline{x} = \overline{\Psi}^t(\overline{x}) = (1 + \langle U_t \overline{x} | a_t \rangle)^{-1} (P_t + \beta_t \overline{P}_t) U_t \overline{x}$ with $|a_t\rangle$, we get $(1 + \langle U_t \overline{x} | a_t \rangle)^{-1} \langle U_t \overline{x} + a_t | a_t \rangle = \langle \overline{x} | a_t \rangle$ whence the relations (2.8) are immediate.

The power style indexing of $\widehat{\Psi}^t$ in t is justified by the proposition below.

Proposition 2.9. Given a strongly continuous one-parameter group $[\Psi^t : t \in \mathbb{R}]$ in Aut(**B**) with common fixed point $\overline{x} \in \overline{\mathbf{B}}$, the family $[\widehat{\Psi}_{\overline{x}}^t : t \in \mathbb{R}]$ is a strongly continuous one-parameter group of operators in \mathcal{H} .

Proof. Since $\Psi^t \circ \Psi^s = \Psi^{t+s}$ $(t, s \in \mathbb{R})$, for the representation matrices we have $\widehat{\Psi}^t \widehat{\Psi}^s = d_{t,s} \widehat{\Psi}^{t+s}$ with suitable constants $d_{t,s} \in \mathbb{C}_*$. The fixed point property $\overline{\Psi}^t(\overline{x}) = \overline{x}$ implies

$$\widehat{\Psi}^t \begin{bmatrix} \overline{x} \\ 1 \end{bmatrix} = \begin{bmatrix} \overline{x} \\ 1 \end{bmatrix} \qquad (t \in \mathbb{R}).$$

Hence necessarily $d_{t,s} = 1$ $(t, s \in \mathbb{R})$, thus $[\widehat{\Psi}^t : t \in \mathbb{R}]$ is a one-parameter matrix group. By assumption, the function $t \mapsto a_t = \Psi^t(0)$ is norm-continuous $\mathbb{R} \to \mathbf{B}$. Hence we can deduce the strong continuity of the **H**-unitary operator valued function $t \mapsto U_t$. Namely consider any vector $x \in \mathbf{H}$. To establish the norm-continuity of the function $t \mapsto U_t$, we may assume without loss of generality that $x \in \mathbf{B}$. Then, by the aid of the Möbius shifts (2.3) we can write

$$U_t x = \left[\Theta_{a_t}^{-1} \circ \Psi_t\right](x) = \Theta_{-a_t}\left(\Psi(x)\right) \qquad (t \in \mathbb{R}).$$

Observe that the norm continuity of $t \mapsto a_t$ implies the continuity of $t \mapsto \langle x | a_t \rangle$ and $t \mapsto \beta_t \in [0, 1)$ entailing the norm-continuity of $t \mapsto P_t + \beta_t \overline{P}_t \in \overline{\text{Ball}}(\mathcal{L}(\mathbf{H}))$. Hence the required norm-continuity of $t \mapsto U_t x = (1 - \langle x | a_t \rangle)^{-1}[(P_t x - a_t + \beta_t \overline{P}_t x]]$ is immediate. In general, the product of two bounded strongly continuous linear operator valued functions $\mathbb{R} \to \mathcal{L}(\mathbf{X})$ over a normed space \mathbf{X} is strongly continuous. Hence we conclude that the entries (1, 1), (1, 2), (2, 1) resp. (2, 2) of the matrices $\widehat{\Psi}^t$ are strongly continuous functions $\mathbb{R} \to \mathcal{L}(\mathbf{H}), \mathbb{R} \to \mathbf{H}, \mathbb{R} \to \mathbf{H}^* \simeq \mathbf{H}$ resp. $\mathbb{R} \to \mathbb{R}$ which completes the proof. Q.e.d.

Corollary 2.10. Given a strongly continuous one-parameter group $[\mathcal{T}^t : t \in \mathbb{R}]$ in $\mathcal{L}(\mathcal{H})$, the following statements are equivalent

- (i) for all $t \in \mathbb{R}$, the maps $x \mapsto \left[\mathcal{T}^t \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbb{C}}^{-1} \left[\mathcal{T}^t \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbf{H}}$ belong to Aut(**B**);
- (ii) we have $\mathcal{T}^t = e^{\mu t} \widehat{\Psi}^t$ $(t \in \mathbb{R})$ for some strongly continuous one-parameter subgroup $[\Psi^t: t \in \mathbb{R}]$ of Aut(**B**) and a constant $\mu \in \mathbb{C}$;
- (iii) each operator \mathcal{T}^t maps the cone $\mathcal{K} := \left\{ \begin{bmatrix} x \\ \xi \end{bmatrix} : |\xi|^2 > ||x||^2 \right\}$ onto itself; (iv) each operator \mathcal{T}^t maps $\partial \mathcal{K} := \left\{ \begin{bmatrix} x \\ \xi \end{bmatrix} : |\xi|^2 = ||x||^2 \right\}$ onto itself.

Proof. The implication (ii) \Rightarrow (i) is trivial by (2.2).

Proof of (i) \Rightarrow (ii): By assumption the maps $\Psi^t(x) := \left[\mathcal{T}^t \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbb{C}}^{-1} \left[\mathcal{T}^t \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbf{H}} (t \in \mathbb{R}, x \in \mathbf{B}).$ are well-defined holomorphic automorphisms of the unit ball **B**. By (2.2) we have $\mathcal{T}^t =$ $d_t \Psi^t$ $(t \in \mathbb{R})$ with suitable constants $d_t \in \mathbb{C}_*$. Fixing any point $x \in \mathbf{B}$, the strong continuity of the group $[\mathcal{T}^t: t \in \mathbb{R}]$ implies the continuity of the function $\mathcal{T}^t\begin{bmatrix} x\\1 \end{bmatrix}$ whence we deduce also the continuity of $t \mapsto \Psi^t(x)$ which entails the continuity of $t \mapsto \widehat{\Psi}^t\begin{bmatrix} x\\1 \end{bmatrix} = d_t^{-1} \mathcal{T}^t\begin{bmatrix} x\\1 \end{bmatrix}$ and hence the continuity of $t \mapsto d_t$. By the one-parameter group property, all the relations continuity of $t \mapsto d_t$ establishes the existence of a constant $\mu \in \mathbb{C}$ with $d_t = e^{\mu t}$ $(t \in \mathbb{R})$.

Proof of (i) \Leftrightarrow (iii) \Leftrightarrow (iv): Consider the projective Hilbert space \mathcal{H}_*/\approx associated with \mathcal{H} regarded as the set of all nontrivial punctured complex rays $\mathbb{C}_*\begin{bmatrix}x\\\xi\end{bmatrix}$ with the factor topology.² By homogeneity, any injective linear operator $\mathcal{T} \in \mathcal{L}(\mathcal{H})$ acts holomorphically on \mathcal{H}_*/\approx by its factorization $\mathcal{T}_\approx: \mathbb{C}_*\begin{bmatrix}x\\\xi\end{bmatrix} \mapsto \mathbb{C}_*\mathcal{T}\begin{bmatrix}x\\\xi\end{bmatrix}$. In particular, as admitting a continuous inverse, each map \mathcal{T}^t_{\approx} is a holomorphic automorphism of \mathcal{H}/\approx . Hence the equivalences $(i) \Leftrightarrow (iii) \Leftrightarrow (iv)$ are straightforward consequences of the facts that, with the embedding $\Pi: x \mapsto \mathbb{C}\begin{bmatrix} x\\1 \end{bmatrix}$ and its inverse $\pi(\mathbb{C}\begin{bmatrix} x\\\xi \end{bmatrix}) := x/\xi \ (\xi \neq 0)$, we have $\Pi \mathbf{B} := \mathcal{K}, \ \pi \mathcal{K} = \mathbf{B}$ and $\left[\mathcal{T}^{t}\begin{bmatrix} x\\1 \end{bmatrix}\right]_{\mathbb{C}}^{-1}\left[\mathcal{T}^{t}\begin{bmatrix} x\\1 \end{bmatrix}\right]_{\mathbf{H}} = \pi \circ \mathcal{T}^{t}_{\approx} \circ \Pi\begin{bmatrix} x\\1 \end{bmatrix} \text{ whenever } \left[\mathcal{T}^{t}\begin{bmatrix} x\\1 \end{bmatrix}\right]_{\mathbb{C}} \neq 0.$

Corollary 2.11. Given any $\Theta \in \operatorname{Aut}(\overline{\mathbf{B}})$, the Θ -shifted automorphisms $\Phi^t := \Theta \circ \Psi^t \circ \Theta^{-1}$ form strongly continuous one-parameter group with common fixed point $\overline{y} := \Theta(\overline{x})$ when extended continuously to $\overline{\mathbf{B}}$ and $\widehat{\Phi}_{\overline{y}}^t = e^{\mu t} \widetilde{\Theta}^{-1} \widehat{\Psi}_{\overline{x}}^t \widetilde{\Theta}$ $(t \in \mathbb{R})$ for some $\mu \in \mathbb{C}$.

3. Infinitesimal generators

Throughout this section, let $([\Psi^t: t \in \mathbb{R}], \overline{x})$ be an arbitrarily fixed couple of a strongly continuous one-parameter group in $Aut(\mathbf{B})$ with a common fixed point for the continuous extensions in **B**. Recalling the Hille–Yosida theorem [9, Kap.10], Proposition 2.9 ensures that the differential

(3.1)
$$\mathcal{A}: \mathfrak{h} \mapsto \frac{d}{dt} \widehat{\Psi}^t \mathfrak{h}$$
 with $\mathcal{D}:= \operatorname{dom}(\mathcal{A}) = \{\mathfrak{h} \in \mathcal{H}: t \mapsto \widehat{\Psi}^t \mathfrak{h} \text{ is differentiable on } \mathbb{R}\}$

As usually, $\mathcal{H}_* := \mathcal{H} \setminus \{0\}$ with the equivalence relation $\begin{bmatrix} x \\ \xi \end{bmatrix} \sim \begin{bmatrix} y \\ \eta \end{bmatrix} : \iff \mathbb{C}_* \begin{bmatrix} y \\ \eta \end{bmatrix} = \mathbb{C}_* \begin{bmatrix} x \\ \xi \end{bmatrix}$ where $\mathbb{C}_* := \mathbb{C} \setminus \{0\}$. A subset of $\mathcal{H} \approx$ is open if the union of it members (rays in \mathcal{H}_*) is open in \mathcal{H} .

(called the *infinitesimal generator* of the linear model $[\widehat{\Psi}^t: t \in \mathbb{R}]$ where $\widehat{\Psi}^t \equiv \widehat{\Psi}^t_x$ for short) is a not necessarily bounded linear map with closed graph and $[\widehat{\Psi}^t: t \in \mathbb{R}]$ -invariant domain being dense in \mathcal{H} . Instead of the differential $\mathcal{A} = \frac{d}{dt}|_{t=0}\widehat{\Psi}^t$ of the representations we are primarily interested in the differential

$$\Omega := \frac{d}{dt}\Big|_{t=0} \Psi^t : \mathbf{D} \to \mathbf{H} \quad \text{where} \quad \mathbf{D} = \operatorname{dom}(\Omega) = \Big\{ x \in \mathbf{B} : \left. \frac{d}{dt} \right|_{t=0} \Psi^t(x) \text{ exists} \Big\}.$$

In order that we could regard the vector field Ω as a non-linear infinitesimal generator for $[\Psi^t: t \in \mathbb{R}]$, we should see the density of **D** in **B**. In order to establish a non-linear Stone-type theorem, we should determine precise links to self-adjoint linear operators.

Lemma 3.2. D is
$$[\overline{\Psi}^t : t \in \mathbb{R}]$$
-invariant. We have $\begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathcal{D} \iff x \in \mathbf{D}$ whenever $x \in \mathbf{B}$.

Proof. The $[\Psi^t : t \in \mathbb{R}]$ -invariance of **D** is clear from the group property $\Psi^{t+s} = \Psi^t \circ \Psi^s$ $(t, s \in \mathbb{R})$. Moreover even dom $(\frac{d}{dt}|_{t=0} \Theta \circ \Psi^t \circ \Theta^{-1}) = \Theta(\mathbf{D})$ whenever Θ is any holomorphic automorphism of **B**. Hence, given any point $x \in \mathbf{B}$, we have $x \in \mathbf{D}$ if and only if 0 = $\Theta_{-x}(x) \in \operatorname{dom}(\frac{d}{dt}|_{t=0} \Phi^t)$ with the one-parameter group of the maps $\Phi^t := \Theta_{-x} \circ \Psi^t \circ \Theta_x$ in terms of the Möbius transformations (2.3). That is, without loss of generality, it suffices only to see the equivalence $0 \in \operatorname{dom}(\frac{d}{dt}|_{t=0} \Phi^t) \iff \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in \mathcal{D}$. According to (2.8), by setting $a_t := \Psi^t(0)$ and $\mathfrak{a}_t := \widehat{\Psi}^t \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ we have $\mathfrak{a}_t = (1 - \langle a_t | \overline{x} \rangle (1 - \| a_t \|^2)^{-1} \begin{bmatrix} a_t \\ 1 \end{bmatrix} (t \in \mathbb{R})$. Hence the curves $t \mapsto a_t$ resp. $t \mapsto \mathfrak{a}_t$ are differentiable in the same time, which completes the proof.

For later use we also introduce the notations

$$\mathbf{Z} := \left\{ z \in \mathbf{H} : \begin{bmatrix} z \\ 0 \end{bmatrix} \in \mathcal{D} \right\}; \qquad Bz := \left[\mathcal{A} \begin{bmatrix} z \\ 0 \end{bmatrix} \right]_{\mathbf{H}}, \ \Lambda z := \left[\mathcal{A} \begin{bmatrix} z \\ 0 \end{bmatrix} \right]_{\mathbb{C}} \quad (z \in \mathbf{Z})$$

Lemma 3.3. Z is a dense linear submanifold in H with $\mathbf{D} = (\overline{x} + \mathbf{Z}) \cap \mathbf{B}$ and $\mathcal{D} = \begin{bmatrix} \mathbf{Z} \\ 0 \end{bmatrix} + \mathbb{C} \begin{bmatrix} \overline{x} \\ 1 \end{bmatrix}$. The set **D** is dense in **B** and

$$\frac{d}{dt}\Big|_{t=0}\overline{\Psi}^t(x) = [\Lambda(\overline{x} - x)]x + B(x - \overline{x}) \qquad (x \in \mathbf{D})$$

Proof. By definition, $\begin{bmatrix} \overline{x} \\ 1 \end{bmatrix} \in \mathcal{D}$ with $\mathcal{A} \begin{bmatrix} \overline{x} \\ 1 \end{bmatrix} = 0$ since $\widehat{\Psi}^t \begin{bmatrix} \overline{x} \\ 1 \end{bmatrix} = \begin{bmatrix} \overline{x} \\ 1 \end{bmatrix}$ $(t \in \mathbb{R})$. Since \mathcal{D} is closed for linear combinations, it follows that $\begin{bmatrix} \mathbf{z} \\ 0 \end{bmatrix} + \mathbb{C} \begin{bmatrix} \overline{x} \\ 1 \end{bmatrix} = \mathcal{D}$ and that \mathbf{Z} is the image of \mathcal{D} by the bounded linear operator $\Pi \begin{bmatrix} x \\ \xi \end{bmatrix} := x - \xi \overline{x}$. Since $\Pi \mathcal{H} = \mathbf{H}$ and since \mathcal{D} is dense in \mathcal{H} , $\mathbf{Z} = \Pi \mathcal{D}$ is also dense in $\mathbf{H} = \Pi \mathcal{H}$. From Lemma 3.2 we know that $\mathbf{D} = \mathbf{B} \cap \{x : \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathcal{D}\}$. Hence the relation $\mathbf{D} = (\overline{x} + \mathbf{Z}) \cap \mathbf{B}$ along with the density of \mathbf{D} in \mathbf{B} is immediate. Given any $x \in \mathcal{D}$, the relation $\begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathcal{D}$ implies $\mathcal{A} \begin{bmatrix} x \\ 1 \end{bmatrix} = \frac{d}{dt} \Big|_{t=0} \widehat{\Psi}^t \begin{bmatrix} x \\ 1 \end{bmatrix}$. Since $\overline{\Psi}^t(x) = \{\widehat{\Psi}^t \begin{bmatrix} x \\ 1 \end{bmatrix}\}_{\mathbb{C}}^{-1} \{\widehat{\Psi}^t \begin{bmatrix} x \\ 1 \end{bmatrix}\}_{\mathbf{H}}$ along with $\widehat{\Psi}^0 = \mathrm{Id}$ and $\mathcal{A} \begin{bmatrix} \overline{x} \\ 1 \end{bmatrix} = 0$, we get

$$\begin{aligned} \frac{d}{dt} \Big|_{t=0}^{\overline{\Psi}^{t}}(x) &= -\left[\widehat{\Psi}^{0} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbb{C}}^{-2} \left(\frac{d}{dt} \Big|_{t=0}^{\mathbb{C}} \left\{\widehat{\Psi}^{0} \begin{bmatrix} x \\ 1 \end{bmatrix}\right\}_{\mathbb{C}}\right) \left[\widehat{\Psi}^{0} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbf{H}}^{-1} + \left[\widehat{\Psi}^{0} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbb{C}}^{-1} \frac{d}{dt} \Big|_{t=0}^{\mathbb{C}} \left\{\widehat{\Psi}^{0} \begin{bmatrix} x \\ 1 \end{bmatrix}\right\}_{\mathbf{H}}^{-1} \\ &= -\left[\mathcal{A} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbb{C}}^{-1} x + \left[\mathcal{A} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbf{H}}^{-1} = -\left[\mathcal{A} \begin{bmatrix} x - \overline{x} \\ 0 \end{bmatrix}\right]_{\mathbb{C}}^{-1} x + \left[\mathcal{A} \begin{bmatrix} x - \overline{x} \\ 0 \end{bmatrix}\right]_{\mathbf{H}}^{-1} .\end{aligned}$$

Lemma 3.4. Suppose a Hilbert space \mathbf{W} is the orthogonal sum of the subspaces $\mathbf{W}_1, \mathbf{W}_2$ and \mathcal{C} is the infinitesimal generator of a strongly continuous one-parameter subgroup $[T^t: t \in \mathbb{R}]$ of $\mathcal{L}(\mathbf{W})$. Then, for the cone $\mathbf{K} := \{w_1 \oplus w_2 : ||w_1|| > ||w_2||\}$, we have $T^t\mathbf{K} = \mathbf{K}$ $(t \in \mathbb{R})$ if and only if \mathcal{C} is tangent to the boundary of \mathbf{K} that is if

$$(3.5) \qquad \operatorname{Re}\langle \mathcal{C}(w_1 \oplus w_2) | w_1 \rangle = \operatorname{Re}\langle \mathcal{C}(w_1 \oplus w_2) | w_2 \rangle \quad (w_1 \oplus w_2 \in \operatorname{dom}(\mathcal{C}), \ \|w_1\| = \|w_2\|).$$

Proof. It is immediate that $T^t \mathbf{K} \subset \mathbf{K}$ $(t \in \mathbb{R}) \Rightarrow T^t \partial \mathbf{K} \subset \partial \mathbf{K}$ $(t \in \mathbb{R}) \Rightarrow \frac{d}{dt}|_{t=0} T^t (w_1 \oplus w_2) \in \operatorname{Tan}_{w_1 \oplus w_2}(\mathbf{K})$ for $w_1 \oplus w_2 \in \operatorname{dom}(\mathcal{C}) \Rightarrow (3.5)$. Assume (3.5) and let P denote the canonical projection of \mathbf{W} onto \mathbf{W}_1 and define $T^{t,s} := \exp(t\mathcal{C} + sP)$ $(s, t \in \mathbb{R})$. By the theorem of bounded perturbations [4, p.158] the operators $T^{t,s}$ are all well-defined. Moreover, by [4, Corollary 1.7 p. 161] (applied with B := sP and $A := \mathcal{C}$ there) we have $\lim_{s\to 0} T^{t,s}w = T^tw$ $(w \in \operatorname{dom}(\mathcal{C}), t \in \mathbb{R})$. Therefore, to establish that $T^t\mathbf{K} \subset \mathbf{K}$ $(t \in \mathbb{R})$, it suffices to see only that $T^{t,s}w \in \mathbf{K}$ whenever $w \in \operatorname{dom}(\mathcal{C}) \cap \mathbf{K}$ and t, s > 0. To proceed to contradiction, let s, t > 0 and $w := w_1 \oplus w_2 \in \operatorname{dom}(\mathcal{C})$ with $||w_1|| > ||w_2||$ but $||[T^{t,s}w]_1|| \le ||[T^{t,s}w]_2||$. The function $\delta(\tau) := ||[T^{\tau,s}w]_1||^2 - ||[T^{\tau,s}w]_2||^2$ is differentiable in τ on the whole \mathbb{R} and $\delta(0) > 0 \ge \delta(t)$. Thus there exist a point $t_* \in (0, t]$ such that $\delta(\tau) > 0 = \delta(t_*)$ $(0 \le \tau < t_*)$. Since $\delta(t_*) = 0$, the vector $w_* := T^{t_*,s}w$ belongs to $\partial \mathbf{K}$ and hence $\operatorname{Re}\langle \mathcal{C}w_*|[w_*]_1 \rangle = \operatorname{Re}\langle \mathcal{C}w_*|[w_*]_2 \rangle \ge 2s ||[w_*]_1||^2 > 0$.

Corollary 3.6. Re
$$\left(-\Lambda v + \langle Bv | \overline{x} \rangle + \langle Bv | v \rangle\right) = 0$$
 whenever $v \in \mathbf{Z}$ with $\|\overline{x} + v\| = 1$

Proof. By Corollary 2.10, we have $\widehat{\Psi}^t \mathcal{K} = \mathcal{K}$ $(t \in \mathbb{R})$ where $\mathcal{K} := \left\{ \begin{bmatrix} x \\ \xi \end{bmatrix} : |\xi| > ||x|| \right\} \subset \mathcal{H}$. An application of Lemma 3.4 with $\mathbf{W}_1 := \mathbb{C}$, $\mathbf{W}_2 := \mathbf{H}$, $\mathbf{K} := \mathcal{K}$, $T^t := \widehat{\Psi}^t$, $\mathcal{C} := \mathcal{A}$ establishes that $\operatorname{Re}\left[(\Lambda x)\overline{\xi} \right] = \operatorname{Re}\left\langle Bx|x \right\rangle$ whenever $\begin{bmatrix} x \\ \xi \end{bmatrix} \in \mathcal{D}$ and $||x|| = |\xi|$. We obtain the statement with the choice $x := v + \overline{x}$ and $\xi := 1$ if $v \in \mathbf{Z}$ with $||v + \overline{x}|| = 1$ because then, by Lemma 3.3, we have $\begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathcal{D}$.

Proposition 3.7. For some symmetric linear operator $A : \mathbb{Z} \to \mathbb{H}$ and a suitable constant $\lambda \in \mathbb{R}$ which is necessarily = 0 if $\|\overline{x}\| \neq 1$, we have (1.3) as

$$B = iA + \lambda I, \qquad \Lambda z = \langle (iA - \lambda I)z | \overline{x} \rangle \quad (z \in \mathbf{Z}).$$

Proof. Consider any vector $0 \neq z \in \mathbb{Z}$. Let $\zeta \in \mathbb{C}$ be the (unique) constant such that $\overline{x} + \zeta z \perp z$ and define $\varrho := \sqrt{1 - \|\overline{x} + \zeta z\|^2}$. Actually we have $\zeta = -\langle \overline{x} | z \rangle / \langle z | z \rangle$ and $1 \geq \|\overline{x}\|^2 = \|\overline{x} + \zeta z\|^2 + \| - \zeta z\|^2$ showing that both ζ and ϱ are well-defined. Consider the unit vectors

$$v_{\varphi} := \overline{x} + \zeta z + e^{i\varphi} \varrho z \qquad (\varphi \in \mathbb{R}).$$

According to Corollary 3.6,

$$\operatorname{Re}\left(\left(\zeta + e^{i\varphi}\varrho\right)\left[-\Lambda z + \left\langle Bz \,\middle|\,\overline{x}\right\rangle\right] + |\zeta + e^{i\varphi}\varrho|^2 \left\langle Bz \,\middle|\,z\right\rangle\right) = 0 \qquad (\varphi \in \mathbb{R}).$$

Thus the identity $\operatorname{Re}(\alpha + \beta e^{i\varphi} + \gamma e^{-i\varphi}) = 0$ for all $\varphi \in \mathbb{R}$ holds with the constants $\alpha := \zeta \left[-\Lambda z + \langle Bz | \overline{x} \rangle \right] + (|\zeta|^2 + \varrho^2) \langle Bz | z \rangle, \ \beta := \varrho \left[-\Lambda z + \langle Bz | \overline{x} \rangle + \overline{\zeta} \langle Bz | z \rangle \right]$ and $\gamma := \varrho \zeta \langle Bz | z \rangle$. Since $2 \operatorname{Re}(\alpha + \beta e^{i\varphi} + \gamma e^{-i\varphi}) = 2 \operatorname{Re}(\alpha) + (\beta + \overline{\gamma}) e^{i\varphi} + (\overline{\beta} + \gamma) e^{-i\varphi}$, we have necessarily $\operatorname{Re}(\alpha) = \beta + \overline{\gamma} = 0$. From the relation $\beta + \overline{\gamma} = 0$, it follows

(3.8)
$$\Lambda z - \langle Bz \, | \, \overline{x} \rangle = 2 \, \overline{\zeta} \operatorname{Re} \langle Bz \, | \, z \rangle = -2 \, \langle z \, | \, \overline{x} \rangle \, \frac{\operatorname{Re} \langle Bz \, | \, z \rangle}{\langle z \, | \, z \rangle} \, ,$$

and substituting this into the relation $0 = \operatorname{Re}(\alpha)$, we get

(3.8')
$$0 = (\varrho^2 - |\zeta|^2) \operatorname{Re} \langle Bz | z \rangle = (1 - \|\overline{x}\|^2) \operatorname{Re} \langle Bz | z \rangle.$$

From (3.8) we see also that

$$z \mapsto \frac{\operatorname{Re}\langle Bz \mid z \rangle}{\langle z \mid z \rangle} = -\frac{1}{2} \frac{\Lambda z - \langle Bz \mid \overline{x} \rangle}{\langle z \mid \overline{x} \rangle}$$

is a real valued Gâteaux holomorphic function on the algebraically open and in \mathbb{Z} algebraically dense domain $\{z \in \mathbb{Z} : z \not\perp \overline{x}\}$ which is possible only if being constant on \mathbb{Z} . By writing λ for this constant value, from (3.7) and (3.8') we conclude that

$$\Lambda z = \langle (B - 2\lambda I) z \, \big| \, \overline{x} \rangle, \quad \operatorname{Re} \langle (B - \lambda I) z \, \big| \, z \rangle = 0 \qquad (z \in \mathbf{Z}),$$

and, in particular, if $\|\overline{x}\| < 1$ then necessarily $\lambda = 0$ above. By setting $A := -i(B + \lambda I)$, hence the statement including the symmetry of A is immediate.

The following geometric converse of 3.7 is elementary:

Remark 3.9. Given a dense linear submanifold \mathbf{Z} in \mathbf{H} , a symmetric linear operator $A: \mathbf{Z} \to \mathbf{H}$, a vector $\overline{x} \in \overline{\mathbf{B}}$, the vector field $\Omega_{\lambda}(x) := -\langle (iA - \lambda I)(x - \overline{x} | \overline{x} \rangle x + (iA + \lambda I)(x - \overline{x}) \rangle$ define for $\overline{x} + \mathbf{Z}$ is tangent to the unit sphere $\partial \mathbf{B}$ at the points $x \in \overline{x} + \mathbf{Z}$ with ||x|| = 1 whenever either $||\overline{x}|| = 1$ and $\lambda \in \mathbb{R}$ or $||\overline{x}|| < 1$ and $\lambda = 0$.

In the sequel we proceed to the problem if the operator A in Proposition 3.7 arising from the differential $\frac{d}{dt}\Big|_{t=0}\Psi^t$ of a strongly continuous one-parameter semigroup of Aut(**B**) is necessarily self-adjoint and conversely if every self-adjoint operator may appear in 3.7.

4. The Jordan case

We continue the previous investigations with unchanged notations but under the additional hypothesis that

(4.1)
$$0 \in \mathbf{D} = \operatorname{dom}\left(\frac{d}{dt}\Big|_{t=0}\Psi^t\right).$$

As we know, $\mathbf{D} = \left\{ x \in \mathbf{B} : \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathcal{D} \right\} = \mathbf{B} \cap (\overline{x} + \mathbf{Z})$ where $\mathcal{D} = \operatorname{dom}(\mathcal{A})$ with $\mathcal{A} = \frac{d}{dt} \Big|_{t=0} \widehat{\Psi}_{\overline{x}}^{t}$ and $\mathbf{Z} = \left\{ x \in \mathbf{H} : \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{D} \right\}$ is a dense complex linear submanifold in \mathbf{H} . Thus, as a consequence of (4.1), for the distinguished common fixed point of the extended automorphisms $\overline{\Psi}^{t}$ we have $\overline{x} \in \mathbf{Z} = \operatorname{dom}(B) = \operatorname{dom}(\Lambda)$. Therefore also

$$\begin{bmatrix} 0\\1 \end{bmatrix} \in \mathcal{D} = \begin{bmatrix} \mathbf{Z}\\\mathbb{C} \end{bmatrix}, \quad \mathcal{A} \begin{bmatrix} x\\\xi \end{bmatrix} = \begin{bmatrix} B(x-\xi\overline{x})\\\Lambda(x-\xi\overline{x}) \end{bmatrix} = \begin{bmatrix} B & -B\overline{x}\\\Lambda & -\Lambda\overline{x} \end{bmatrix} \begin{bmatrix} x\\\xi \end{bmatrix} \quad (x \in \mathbf{Z}, \ \xi \in \mathbb{C}).$$

Remark 4.2. Recall [8] that the complete holomorphic vector fields on **B** are the infinitesimal generators of the uniformly continuous one-parameter subgroups of Aut(**B**) and, with suitable $c \in \mathbf{H}$ and a bounded self-adjoint operator $C \in \mathcal{L}(\mathbf{H})$ they can be written in the form $x \mapsto a - \{xc^*x\} + iCx$ by means of the Jordan triple product.

(4.3)
$$\{xy^*z\} := \frac{1}{2} \langle x|y \rangle z + \frac{1}{2} \langle z|y \rangle x$$

In terms of the factorization $\Psi^t = \Theta_{a_t} \circ U_t | \mathbf{B}$ we introduce the following vector resp. not necessarily bounded symmetric linear operator:

$$b := \frac{d}{dt}\Big|_{t=0} \Psi^t(0) = \lim_{t \to 0} \frac{1}{t} a_t, \quad R := -i \frac{d}{dt}\Big|_{t=0} U_t : x \mapsto \lim_{t \to 0} \frac{1}{it} (U_t - I) x$$

Proposition 4.4. Under hypothesis (4.1), we have $\mathbf{D} = \mathbf{B} \cap \mathbf{Z}$ along with dom $(R) \supset \mathbf{Z}$ and the vector field $\Omega := \frac{d}{dt}\Big|_{t=0} \Psi^t$ admits the Jordan form

(4.5)
$$\Omega(x) = b - \{xb^*x\} + iRx \qquad (x \in \mathbf{D}).$$

Proof. The relation $\mathbf{D} = \mathbf{B} \cap \mathbf{Z}$ is clear since $\overline{x} \in \mathbf{Z}$. By the definition of the generator \mathcal{A} ,

$$\mathcal{A}\begin{bmatrix}0\\1\end{bmatrix} = \lim_{t \to 0} \frac{1}{t} (\widehat{\Psi}^t - \widehat{\Psi}^0) \begin{bmatrix}0\\1\end{bmatrix} = \lim_{t \to 0} \frac{1}{t} \Big\{ \frac{1}{1 + \langle U_t \overline{x} | a_t \rangle} \begin{bmatrix}a_t\\1\end{bmatrix} - \begin{bmatrix}0\\1\end{bmatrix} \Big\}.$$

Since $\lim_{t\to 0} a_t = 0$ and $||U_t \overline{x}|| \le 1$ $(t \in \mathbb{R})$, taking (2.8) into account, we see that the limit

$$b := \lim_{t \to 0} \frac{1}{t} a_t = \frac{d}{dt} \Big|_{t=0} \Psi^t(0)$$

is well-defined and

$$B\overline{x} = -\left[\mathcal{A}\begin{bmatrix}0\\1\end{bmatrix}\right]_{\mathbf{H}} = -b, \quad \Lambda\overline{x} = -\left[\mathcal{A}\begin{bmatrix}0\\1\end{bmatrix}\right]_{\mathbb{C}} = \langle \overline{x} \mid b \rangle.$$

As a consequence we also have

$$\beta_t = \sqrt{1 - \|a_t\|^2} = \sqrt{1 - \|tb + o(t)\|^2} = 1 - \frac{1}{2} \|b\|^2 t^2 + o(t^2),$$

$$Q_t = P_t + \beta_t (I - P_t) = I + (1 - \beta_t) P_t = I + o(t) \quad \text{(in operator norm)}$$

Since also $U_t z = z + o(1)$ in norm, hence we deduce that for any vector $z \in \mathbb{Z}$, and $\zeta \in \mathbb{C}$,

(4.6)
$$\widehat{\Psi}^t \begin{bmatrix} z \\ \zeta \end{bmatrix} = \frac{1 - \langle \overline{x} | a_t \rangle}{1 - \| a_t \|^2} \begin{bmatrix} Q_t U_t & a_t \\ a_t^* U_t z & 1 \end{bmatrix} \begin{bmatrix} z \\ \zeta \end{bmatrix} = \begin{bmatrix} U_t z - t \langle \overline{x} | b \rangle z \\ t \langle U_t z | b \rangle + \zeta \end{bmatrix} + o(t) \quad \text{in norm}$$

By definition, $\begin{bmatrix} Bz\\\Lambda z \end{bmatrix} = \lim_{t\to 0} \frac{1}{t} (\widehat{\Psi}^t - I) \begin{bmatrix} z\\0 \end{bmatrix}$. Hence with well-defined limits we conclude that

(4.7)
$$Bz = \lim_{t \to 0} \frac{1}{it} (U_t - I) z - \langle \overline{x} | b \rangle z \qquad (z \in \mathbf{Z}).$$

The strong limit of $t^{-1}(U_t - I)|\mathbf{Z}$ is necessarily symmetric due to the fact that each U_t is unitary. Thus comparing (4.7) with Proposition 3.7 stating that the operator B has the form $iA + \lambda I$ with some $\lambda \in \mathbb{R}$ and a symmetric operator A with dom $(A) = \mathbf{Z}$, we get

(4.8)
$$\lambda = -\operatorname{Re}\langle \overline{x} | b \rangle, \quad A = \lim_{t \to 0}^{\text{strong}} (U^t - I) - \operatorname{Im}\langle \overline{x} | b \rangle I | \mathbf{Z} \quad \text{in 3.7.}$$

We calculate Ω by substituting (4.7-8) into its form $\Omega(x) = [\Lambda(\overline{x}-x)]x + B(x-\overline{x})$ applying also the relations $B\overline{x} = -b$, $\Lambda\overline{x} = \langle x|b\rangle$, $B = iA + \lambda I$, $\Lambda x = \langle (iA - \lambda I)x|\overline{x}\rangle = \langle (B - 2\lambda I)x|\overline{x}\rangle$. Namely, given any vector $x \in \mathbf{D}$, taking into account the antisymmetry of the operator $iA = B - \lambda I$, we can write

$$\begin{aligned} \Omega(x) &= \left[\Lambda \overline{x}\right] x - \left[\Lambda x\right] x + Bx - B\overline{x} = \\ &= \langle \overline{x} | b \rangle x - \langle (B - 2\lambda I) x | \overline{x} \rangle x + Bx + b = \\ &= b + \left[\langle \overline{x} | b \rangle I + B \right] x - \langle (B - \lambda I) x | \overline{x} \rangle x + \lambda \langle x | \overline{x} \rangle x = \\ &= b + iRx + \langle x | (B - \lambda I) \overline{x} \rangle x + \lambda \langle x | \overline{x} \rangle x = \\ &= b + iRx + \langle x | B\overline{x} \rangle x = b + iRx - \langle x | b \rangle x. \end{aligned}$$

Corollary 4.9. $\mathbf{Z} = \operatorname{dom}(R)$ that is $x \in \mathbf{Z}$ if and only if the limit $\lim_{t \to 0} t^{-1}(U^t x - x)$ exists.

Proof. Recall that $\mathbf{Z} = \{x \in \mathbf{H} : \frac{d}{dt}|_{t=0} \widehat{\Psi}^t \begin{bmatrix} x \\ 0 \end{bmatrix}$ is well-defined $\}$. From Proposition 4.4 we know that $iRx = \lim_{t \to 0} t^{-1}(U_t - I)x$ is well-defined for every vector $x \in \mathbf{Z}$. Conversely, suppose $u = \lim_{t \to 0} t^{-1}(U_t x - x)$ is well-defined. Then $U_t x = x + tu + o^{\text{norm}}(t)$ and (4.6) establishes that $\widehat{\Psi}^t \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} + t \begin{bmatrix} u - \langle \overline{x} | a_t \rangle x \\ \langle x | b \rangle \end{bmatrix} + o^{\text{norm}}(t)$.

Lemma 4.10. We have $U_{-t} = U_t^{-1} = U_t^*$, $a_{-t} = -U_t^* a_t$ $(t \in \mathbb{R})$.

Proof. Given any $t \in \mathbb{R}$, we have $\Psi^{-t} = \Psi_t^{-1}$ that is $\Theta_{a_{-t}}U_{-t} = \left[\Theta_{a_t}U_t\right]^{-1} = U_t^{-1}\Theta_{a_t}^{-1} = U_t^{-1}\Theta_{-a_t}U_t\right]U_t^{-1} = \Theta_{U_t^{-1}(-a_t)}U_t^{-1}$. By the unambiguous decomposability of holomorphic automorphisms of circular domains into Möbius and unitary parts [2], hence we deduce that $\Theta_{a_{-t}} = \Theta_{-U_t^{-1}a_t}$ and $U_{-t} = U_t^{-1}$.

Lemma 4.11. The operator R is self-adjoint with $dom(R) = \mathbf{Z}$.

Proof. In view of (4.6), and since $U_t x = x + itRx + o^{\text{norm}}(t)$ for any $x \in \mathbf{Z} = \text{dom}(R) = \text{dom}(\frac{d}{dt}\Big|_{t=0}U_t)$, we conclude that

$$\frac{d}{dt}\Big|_{t=0}\widehat{\Psi}^t \begin{bmatrix} x\\ \xi \end{bmatrix} = \begin{bmatrix} iR - \langle \overline{x}|b \rangle I & b\\ b^* & -\langle \overline{x}|b \rangle \end{bmatrix} \begin{bmatrix} x\\ \xi \end{bmatrix} \quad \text{for any } \begin{bmatrix} x\\ \xi \end{bmatrix} \in \mathcal{D} = \begin{bmatrix} \mathbf{Z}\\ \mathbb{C} \end{bmatrix}$$

The linear operator in $\mathcal{L}(\mathcal{H})$ with matrix $\begin{bmatrix} -\langle \overline{x} | b \rangle I & b \\ b^* & -\langle \overline{x} | b \rangle \end{bmatrix}$ is bounded. Since $\mathcal{A} = \frac{d}{dt} \Big|_{t=0} \widehat{\Psi}^t$ with domain \mathcal{D} is the generator of a strongly continuous semigroup in $\mathcal{L}(\mathcal{H})$, by the theorem of bounded perturbations [4], also the operator with matrix $\begin{bmatrix} iR & 0 \\ 0 & 0 \end{bmatrix}$ with domain \mathcal{D} is the generator of a strongly continuous one-parameter subgroup of $\mathcal{L}(\mathcal{H})$ entailing that iR is the generator of a strongly continuous group $[V_t : t \in \mathbb{R}]$ in $\mathcal{L}(\mathcal{H})$. Since $U_{-t} = U_t^{-1} = U_t^*$, the arguments on sun adjoint semigroups in [4, p. 69] show that $\lim_{t\to 0} t^{-1}(U_t^* - I) = -iR$ is the generator of the sun adjoint group $[V_t^* : t \in \mathbb{R}] = [V_{-t} : t \in \mathbb{R}]$ and we have $-iR = (iR)^*$ which completes the proof.

Theorem 4.12. Any vector field of the form (4.5) where R is a not necessarily bounded self-adjoint operator with dense domain $\mathbf{Z} \subset \mathbf{H}$, is the infinitesimal generator defined on $\mathbf{D} := \mathbf{Z} \cap \mathbf{B}$ of a pointwise continuous one-parameter group $[\Phi^t : t \in \mathbb{R}]$ of holomorphic automorphisms of \mathbf{B}^{3} .

Proof. It suffices to see that there is a strongly (i.e. pointwise) continuous one-parameter group $[\mathcal{V}^t : t \in \mathbb{R}]$ of bounded linear operators of the space \mathcal{H} such that

$$\frac{d}{dt}\Big|_{t=0}\mathcal{V}^t\begin{bmatrix}x\\\xi\end{bmatrix} = \begin{bmatrix}iR \ b\\b^* \ 0\end{bmatrix}\begin{bmatrix}x\\\xi\end{bmatrix} \quad (x\in\mathbf{Z},\ \xi\in\mathbb{C}), \qquad \mathcal{V}^t\mathcal{K}\subset\mathcal{K} := \left\{\begin{bmatrix}x\\\xi\end{bmatrix}:\ \|x\|^2 \ge |\xi|^2\right\}.$$

Namely, in this case the maps

$$\Phi^{t}(x) := \left[\mathcal{V}^{t} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbb{C}}^{-1} \left[\mathcal{V}^{t} \begin{bmatrix} x \\ 1 \end{bmatrix}\right]_{\mathbf{H}} \qquad (t \in \mathbb{R}, \ x \in \mathbf{D})$$

suit the requirements of the theorem since $x \in \mathbf{D} \Rightarrow \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathcal{K} \Rightarrow \mathcal{V}^t \begin{bmatrix} x \\ 1 \end{bmatrix} \Rightarrow \Phi^t(x) \in \mathbf{D}$ and $x \in \mathbf{D} \Rightarrow \frac{d}{dt} \Big|_{t=0} \Phi^t(x) = -[\mathcal{V}^0 \begin{bmatrix} x \\ 1 \end{bmatrix}]_{\mathbb{C}}^{-2} \frac{d}{dt} \Big|_{t=0} [\mathcal{V}^t \begin{bmatrix} x \\ 1 \end{bmatrix}]_{\mathbb{C}} [\mathcal{V}^0 \begin{bmatrix} x \\ 1 \end{bmatrix}]_{\mathbf{H}} + \{\mathcal{V}^0 \begin{bmatrix} x \\ 1 \end{bmatrix}\}_{\mathbb{C}}^{-1} \frac{d}{dt} \Big|_{t=0} [\mathcal{V}^t \begin{bmatrix} x \\ 1 \end{bmatrix}]_{\mathbf{H}} = -[\begin{bmatrix} iR & b \\ b^* & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}]_{\mathbb{C}} x + [\begin{bmatrix} iR & b \\ b^* & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}]_{\mathbf{H}} = -\langle x | b \rangle x + iRx + b = \Omega(x).$ Notice that, by Corollary 2.10, a strongly continuous one parameter group of linear operator leaves the cone \mathcal{K} invariant if all its members map the boundary $\partial \mathcal{K} = \{\begin{bmatrix} x \\ \xi \end{bmatrix} : \|x\| = |\xi|\} = \{\begin{bmatrix} x \\ e^{i\tau} \|x\| \end{bmatrix} : x \in \mathbf{H}, \tau \in \mathbb{R}\}$ into itself. Therefore it suffices to check that there is a (necessarily unique) strongly continuous one-parameter group in $\mathcal{L}(\mathcal{H})$ with domain $\mathbf{Z} \oplus \mathbb{C} = \begin{bmatrix} \mathbf{Z} \\ \mathbb{C} \end{bmatrix}$ such that

$$\frac{d}{dt}\mathcal{V}^t\begin{bmatrix}x\\\xi\end{bmatrix} = \begin{bmatrix}iR \ b\\b^* \ 0\end{bmatrix}\mathcal{V}^t\begin{bmatrix}x\\\xi\end{bmatrix}, \quad \left\|\begin{bmatrix}\mathcal{V}^t\begin{bmatrix}x\\\|x\|\end{bmatrix}\end{bmatrix}_{\mathbf{H}}\right\| = \left\|\begin{bmatrix}\mathcal{V}^t\begin{bmatrix}x\\\|x\|\end{bmatrix}\end{bmatrix}_{\mathbb{C}}\right| \qquad (x \in \mathbf{Z}, \ t \in \mathbb{R}).$$

³ That is, for all $x \in \mathbf{D} := \mathbf{Z} \cap \mathbf{B}$, the functions $t \mapsto \Phi^t(x)$ range in \mathbf{Z} , they are differentiable and satisfy the identity $\frac{d}{dt} \Phi^t(x) = \mathcal{V}(\Phi^t(x))$ $(t \in \mathbb{R})$. By Stone's theorem, the \mathcal{H} -unitary operators $\mathcal{W}^t \begin{bmatrix} x \\ \xi \end{bmatrix} := \begin{bmatrix} \exp(itR)x \\ \xi \end{bmatrix}$ form a strongly continuous one-parameter group whose infinitesimal generator is defined on dom $(R) \oplus \mathbb{C} = \mathbb{Z} \oplus \mathbb{C}$ with the diagonal matrix $\begin{bmatrix} iR & 0 \\ 0 & 0 \end{bmatrix}$. Since the matrix $\begin{bmatrix} 0 & b \\ b^* & 0 \end{bmatrix}$ represents a bounded linear operator in \mathcal{H} , by the theorem of bounded perturbations [4], there is a strongly continuous one-parameter group $[\mathcal{V}^t : t \in \mathbb{R}]$ whose generator is defined on $\mathbb{Z} \oplus \mathbb{C}$ with the matrix $\begin{bmatrix} iR & b \\ b^* & 0 \end{bmatrix}$. In particular $\frac{d}{dt}\mathcal{V}^t \begin{bmatrix} x \\ \xi \end{bmatrix} = \begin{bmatrix} iR & b \\ b^* & 0 \end{bmatrix} \mathcal{V}^t \begin{bmatrix} x \\ \xi \end{bmatrix}$ ($t \in \mathbb{R}$, $x \in \mathbb{Z}$). To complete the proof, we show that necessarily

$$\frac{d}{dt} \left[\left\| \left[\mathcal{V}^t \begin{bmatrix} x \\ \|x\| \end{bmatrix} \right]_{\mathbf{H}} \right\|^2 - \left\| \left[\mathcal{V}^t \begin{bmatrix} x \\ \|x\| \end{bmatrix} \right]_{\mathbb{C}} \right\|^2 \right] = 0 \qquad (t \in \mathbb{R}, \ x \in \mathbf{Z}).$$

Consider any vector $x \in \mathbf{Z}$ and write $\begin{bmatrix} x_t \\ \xi_t \end{bmatrix} := \mathcal{V}^t \begin{bmatrix} x \\ \|x\| \end{bmatrix}$ for all parameters $t \in \mathbb{R}$. Then

$$\begin{aligned} \frac{d}{dt} \Big[\|x_t\|^2 - |\xi_t|^2 \Big] &= 2 \operatorname{Re} \Big[\langle dx_t/dt | x_t \rangle - (d\xi_t/dt)\overline{\xi_t} \Big] = \\ &= 2 \operatorname{Re} \left\{ \langle \Big[\begin{bmatrix} iR \ b \\ b^* \ 0 \end{bmatrix} \begin{bmatrix} x_t \\ \xi_t \end{bmatrix} \Big]_{\mathbf{H}} \Big| x_t \rangle - \Big[\begin{bmatrix} iR \ b \\ b^* \ 0 \end{bmatrix} \begin{bmatrix} x_t \\ \xi_t \end{bmatrix} \Big]_{\mathbb{C}} (d\xi_t/dt)\overline{\xi_t} \right\} = \\ &= 2 \operatorname{Re} \left[\langle iRx_t + \xi_t b | x_t \rangle - \langle x_t | b \rangle \overline{\xi_t} \right] = \\ &= -2 \operatorname{Im} \langle Rx_t | x_t \rangle + 2 \operatorname{Im} (\langle \xi b | x_t \rangle - \langle x_t | \xi b \rangle) = 0. \end{aligned}$$

5. Proof of Theorems 1.1 and 1.4

Consider any pointwise continuous one-parameter subgroup $[\Psi^t : t \in \mathbb{R}]$ of Aut(**B**) and let us fix any common fixed point $\overline{x} \in \overline{\mathbf{B}}$ of the continuous extensions of the maps Ψ^t $(t \in \mathbb{R})$ (guaranteed by Lemma 2.4). From Proposition 3.7, we know already that (1.2-3) hold for some dense linear complex submanifold **Z** of the underlying Hilbert space with a symmetric linear operator A with dom $(A) = \mathbf{Z}$. We have to see that A is even self-adjoint in any case and, conversely every self-adjoint operator with domain **Z** may appear in (1.3) with any constant $\lambda \in \mathbb{R}$ if $\overline{x} \in \partial \mathbf{B}$ or $\lambda = 0$ if $\overline{x} \in \mathbf{B}$. In order to establish a link to the Jordan case, fix any point $c \in \mathbf{D} = \operatorname{dom}\left(\frac{d\Psi^t}{dt}\Big|_{t=0}\right)$ and let

$$\Phi^t := \Theta_{-c} \Psi^t \Theta_c \quad (t \in \mathbb{R}), \quad \overline{y} := \Theta_c(\overline{x})$$

by means of the Möbius transformations (2.3). Clearly $[\overline{\Phi}^t : t \in \mathbb{R}]$ is a strongly continuous one-parameter subgroup of Aut(**B**) such that

(5.1)
$$0 = \Theta_{-c}(c) \in \Theta_{-c}\left(\operatorname{dom}\left(\frac{\partial\Psi^{t}}{dt}\Big|_{t=0}\right)\right) = \operatorname{dom}\left(\frac{\partial\Phi^{t}}{dt}\Big|_{t=0}\right), \quad \overline{y} \in \bigcap_{t\in\mathbb{R}}\operatorname{Fix}\left(\overline{\Phi}^{t}\right).$$

Thus we can apply the results of Section 4 in particular Lemma 4.11 to $[\Phi^t : t \in \mathbb{R}]$ to conclude that there is a dense complex linear submanifold $\mathbf{Y} \subset \mathbf{H}$ along with a self-adjoint operator R with dom $(R) = \mathbf{Y}$ and a vector $b \in \mathbf{H}$ such that

$$\widehat{\Phi}_{\overline{y}}^{t} = e^{-\langle \overline{x} | b \rangle t} \exp\left(t \begin{bmatrix} iR & b \\ b^{*} & 0 \end{bmatrix}\right) \qquad (t \in \mathbb{R}).$$

Hence Corollary 2.11 establishes the existence of a constant $\nu \in \mathbb{C}$ with

$$\widehat{\Psi}_{\overline{x}}^{t} = e^{\nu t} \beta^{-2} \widetilde{\Theta_{c}} \widehat{\Phi}_{\overline{y}}^{t} \widetilde{\Theta_{-c}} \qquad (t \in \mathbb{R})$$

due to the identity $\widetilde{\Theta_c}\widetilde{\Theta_{-c}} = \beta^2 \mathcal{I} = (1 - \|c\|^2) \begin{bmatrix} I & 0\\ 0 & 1 \end{bmatrix}$ for the canonical representations

$$\widetilde{\Theta_{\pm c}} = \begin{bmatrix} Q & \pm c \\ \pm c^* & 1 \end{bmatrix} \quad \text{where} \quad Q := \beta I + (1 - \beta)P, \ \beta := \sqrt{1 - \|c\|^2}, \ P := \mathbf{P}_c.$$

By passing to infinitesimal generators, with $\mu := \nu - \langle \overline{x} | b \rangle$, we get

(5.2)
$$\frac{d\widehat{\Psi}_{\overline{x}}^{t}}{dt}\Big|_{t=0} \begin{bmatrix} x\\ \xi \end{bmatrix} = \mu \begin{bmatrix} x\\ \xi \end{bmatrix} + \beta^{-2} \widetilde{\Theta_{c}} \begin{bmatrix} iR & b\\ b^{*} & 0 \end{bmatrix} \widetilde{\Theta_{-c}} \begin{bmatrix} x\\ \xi \end{bmatrix} \quad \text{for} \quad \begin{bmatrix} x\\ \xi \end{bmatrix} \in \text{dom} \left(\frac{d\widehat{\Psi}_{\overline{x}}^{t}}{dt}\Big|_{t=0}\right).$$

From Lemma 3.3 and (5.1) we see that

$$\begin{bmatrix} \mathbf{Z} \\ 0 \end{bmatrix} + \mathbb{C} \begin{bmatrix} \overline{x} \\ \xi \end{bmatrix} = \operatorname{dom} \left(\frac{d\widehat{\Psi}_{\overline{x}}^t}{dt} \Big|_{t=0} \right) = \widetilde{\Theta_c} \operatorname{dom} \left(\frac{d\Phi_{\overline{y}}^t}{dt} \Big|_{t=0} \right) = \widetilde{\Theta_c} \begin{bmatrix} \mathbf{Y} \\ \mathbb{C} \end{bmatrix}.$$

Thus, given any vector $z \in \mathbf{H}$, we have $z \in \mathbf{Z}$ if and only if $\begin{bmatrix} z \\ 0 \end{bmatrix} = \widetilde{\Theta_c} \begin{bmatrix} y \\ \eta \end{bmatrix}$ for some $y \in \mathbf{Y}$ and $\eta \in \mathbb{C}$ that is if $z = Qy - \langle y | c \rangle c = [Q - ||c||^2 P]y$ for some $y \in \mathbf{Y}$. It follows

(5.3)
$$\mathbf{Z} = \left[Q - \|c\|^2 P\right] \mathbf{Y} = Q^{-1} \mathbf{Y}$$

because the operators P, Q commute, we have $\beta^2 = 1 - ||c||^2 > 0$ and $Q[Q - ||c||^2 P] = [\beta I + (1 - \beta)P][\beta I + (\beta^2 - \beta)P] = \beta^2 I$. We are now ready to establish the self-adjointness of the operator A in (1.3). By (5.2) we have

$$(iA + \lambda I)z = \left[\frac{d\widehat{\Psi}_{\overline{x}}^{t}}{dt}\Big|_{t=0} \begin{bmatrix} z\\0 \end{bmatrix}\right]_{\mathbf{H}} = \mu z + \beta \begin{bmatrix} iQRQz - Qbc^{*}z + cb^{*}Qz \end{bmatrix} \quad (z \in \mathbf{Z})$$

That is, with the bounded self-adjoint operator $S := i\beta[Qbc^* - cb^*Qz] = [iQbc^*] + [iQbc^*]^*$ we have $A = \beta QRQ + S + i(\lambda - \mu)I$. We know the symmetry of A already entailing the relations $\mu = \lambda$ with $A = \beta QRQ + S$. Here the operator QRQ self-adjoint with $\operatorname{dom}(QRQ) = Q^{-1}\operatorname{dom}(R) = Q^{-1}\mathbf{Y} = \mathbf{Z} = \operatorname{dom}(A)$ since R is a self-adjoint operator with $\operatorname{dom}(R) = \mathbf{Y}$ while Q is an invertible bounded self-adjoint operator, Therefore, as being the bounded self-adjoint perturbation, the operator A is necessarily self-adjoint.

To see the converse, we need only to check the reversibility of some of our previous arguments. Assuming A to be self-adjoint in (1.2-3), it is the theorem of bounded perturbations [4] ensures that the operator $\mathcal{A}\begin{bmatrix} z+\xi\overline{x}\\ \xi\end{bmatrix} := \begin{bmatrix} (iA+\lambda I)z\\ \langle (iA-\lambda I)z|\overline{x}\rangle(z+\xi\overline{x})\end{bmatrix} (z \in \mathbb{Z}, \xi \in \mathbb{C})$ is the infinitesimal generator of a strongly continuous one-parameter subgroup $[\mathcal{U}^t : t \in \mathbb{R}]$ of $\mathcal{L}(\mathbf{H}$ with graph being tangent to the boundary of cone \mathcal{K} in Corollary 2.10(iii) and we have $\mathcal{K} = \mathcal{U}^t \mathcal{K}$ $(t \in \mathbb{R})$. Hence the holomorphic maps $\Psi^t(x) := [\mathcal{U}^t \begin{bmatrix} x\\ 1 \end{bmatrix}]_{\mathbb{C}}^{-1} [\mathcal{U}^t \begin{bmatrix} x\\ 1 \end{bmatrix}]_{\mathbf{H}}$ are well-defined on the

unit ball \mathbf{B} leaving it invariant, and form a strongly continuous one-parameter subgroup in Aut(\mathbf{B}).

Acknowledgements. The autors's research was supported by the project TÁMOP-4.1.1.C-12/1/KONV-2012-0005 Impulse Lasers for Use in Materials Science and Biophotonics of the European Union and co-financed by the European Social Fund.

References

- M. Abate, Common fixed points of commuting holomorphic maps, Math. Ann. 283 (1989) 645-655.
- [2] H. Braun W. Kaup H. Upmeier, On the automorphisms of circular and Reinhardt domains in complex Banach spaces, Manuscripta Math., 25 (1978), 97-133.
- [3] S. Dineen, Complete holomorphic vector fields on the second dual of a Banach space, Math. Scand. 59 (1986) 131-142.
- [4] K.-J. Engel R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics Vol. 194, Springer-Verlag, New York, 2000.
- [5] T. Franzoni E. Vesentini, Holomorphic Maps and Invariant Distances, North Holland Math. Studies 40, North Holland Publ. Co., Amsterdam-New York-Oxford, 1980.
- [6] K. Goebel, Fixed points and invariant domains of holomorphic mappings of the Hilbert ball, Nonlinear Analysis, Theory, Methods and Applications, 6/12 (1982) 1327-1334.
- T.L. Hayden T.J. Suffridge, Biholomorphic maps in Hilbert space have a fixed point, Pacific J. Math., 38 (1971) 419-422.
- [8] W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I., Math. Ann., 357 (1981), 463–481.
- [9] F. Riesz B. Sz.-Nagy, Vorlesungen über Funktionalanalysis, VEB Deutscher Verlag der Wissenschaften, Berlin, 1968.

L.L. STACHÓ Bolyai Institute University of Szeged Aradi Vértanúk tere 1 H-6720 SZEGED, HUNGARY E-mail: stacho@math.u-szged.hu