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Four characterizations of scalar-type operators
with spectrum in a half-line

by

PETER VIETEN {Kaigerslautern)

Abstract. C”-scalar-type spectrality criterions for operators A whose resolvent set
contains the negative reals are provided. The criterions are given in terms of growth
conditions on the resolvent of 4 and the semigroup generated by A. These criterions
characterize scalar-type operators on the Banach space X if and only if X has no subspace
isomorphic to the space of complex null-sequences.

0. Introduction. This paper is written in the spirit of Kantorovitz’ [14]
work on the characterization of scalar-type spectral operators with spectrum
in [0, 00), and the reader is referred to that article for a brief introduction
into the history and the importance of this subject.

A possibly unbounded linear operator A on a Banach space X is called
a scalar-type spectral operator on [0, co) if there exists a strongly countably
additive spectral measure 5 on the Borel subsets of [0,00) so that

n

D(4)={aexX: lim gtE(dt)m exdists |

and

Th

Az = lim {tE(dt)z  for © € D(4).
=00
0

Let us denote by Cpl0, 00) the space of complex-valued continuous fune-
tions on [0,00) which vanish at infinity. X always stands for a complex
Banach space, X* for the dual space of X and Ux for the unit ball of X.
The space of bounded linear operators on X is denoted by L{X). The main
result of this paper is the following characterization of scalar-type spectral
operators on [0, 00).

TuporeM 1. Let X be a Banach space which has no subspace isomorphic
to the space cp of complea-valued null-sequences. Let A be a linear operafor
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40 P. Vieten

on X whose resolvent set contains the half-line (—o0,0). Then A is speciral
of scalar type on [0,00) if and only if one of the following conditions is
satisfied:

(i) A is of CY-scalar type on [0, 0c); that means there exists a continuous
algebra homomorphism @ : Col0,00) ~— L(X) with (ps) = (s + Ayt for
5> 0, where g5(t) = 1/(s +1).

(il} There exists My > 0 so that for all x € Ux and % € Uy«

o0
sup e | 71 |a* A (¢ 4 A) o] de < M,
B=12,

where ¢ = (2k — D)/ (k{(k—2)) if k> 2 and ¢; = 1.

(iii) There exists My > 0 so that for all z € Ux and x* € Uxx,

LI .
w ™ d m < .
1 2 (et <

(iv) —A generates a strongly continuous semigroup (U(t))izo with
U)X C D(A) for every t > 0, and there ezists M3 > 0 so that for all
zelUx and z* € Ux-,

oQ
sup ! S 7L |2* AU (8)s| dt < M.

k=12, (k= 1}

Note that the assumption U(t)X C D(A4) for all ¢ > 0 implies U()X C
D(A™) for every natural number n (see e.g. [1], Proposition 1.1.10).

Dowson [10] showed that bounded scalar-type spectral operators in
weakly complete Banach spaces can be characterized by criterion (i), and
Kantorovitz and deLaubenfels [7] were the first to recognize that this equiv-
alence, for possibly unbounded operators, is true in any Banach space not
containing co. That (ii) is equivalent to A being of scalar type on [0, co),
provided the underlying Banach space is reflexive, is due to Kantorovitz [14].
The proof of Kantorovitz’ criterion is based on Widder’s [18] characterization
of Stieltjes transforms. The latter was also used by Ricker [15] to derive a
description of scalar-type operators in quasi-complete locally convex spaces.
Criterions (iii) and (iv) are related to deLaubenfels’ work on scalar-type
spectral operators on Banach lattices [2] and on cyclic spaces [3]. The proof
of these criterions uses respectively characterizations of complex-valued mo-
ment sequences and Laplace transforms. Some other characterizations of
possibly unbounded operators on reflexive spaces being of scalar type on
[0, 00) may be found in [3], [6] and [13].

In the first section of this paper we study Cp-scalar-type operators. In
particular, it is shown that A is of Cp-scalar type on [0, 0o) if and only if 4
satisfies condition (ii) or (iii) of Theorem 1, and if, in addition, A generates
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a strongly continuous semigroup then also condition (iv) is equivalent to A
being of Cp-scalar type. In the second section we show that the classes of
scalar-type operators on X and of Cp-scalar-type operators on X coincide
in exactly those Banach spaces X which have no subspace isomorphic to co.

Before we start our study of Cp-scalar-type operators let us present the
following results of Widder’s which are the main tools for our investigations.

Let k be a natural number. If f: (0,00) — C is infinitely often differen-

tiable let
k-1

Sulf(8) = de(—) o (1)) for 0 <t < oo,

dt2k—1
where dy = 1/(kl(k—2)!) if k > 2 and d; = 1, and let

k1
= -1l = 0<t< oo.
Liifie) = 19 () (3 or
The formal operators Sy and Ly are called the Widder inversion operators
for the Stieltjes and Laplace transforms, respectively.

If 1t = (ln)n=0,1,... 1S a complex-valued sequence then

Aplp)m = (:;)(—l)k_mzﬂk_m[u]m for k,m =0,1,... with m < k,
where A denotes the difference operator Alp]n = pins1 — fn-

Let I be a closed interval which is bounded from below by b =infI. A
complex-valued function ¢ of bounded variation on [ is said to-be normalized
if ¢(t) = (6(t™) + ¢(t))/2 for all ¢ in the interior of I and if #(b) = 0. The
total variation of ¢ is denoted by Var(¢).

TuroreM 2. Let f : (0,00) — C be an infinitely often differentiable
function and p a compler-valued sequence.

(i) (Widder inversion of the Sticltjes transform) There ezists a unigue
complez-valued normalized function ¢ of bounded variotion on [0,00) with
F(s) = {77 =& dé(t) for 0 < s < oo if and only if

0 s+t
(1) | M= sup {ISulfl(0)ds < oo
=1,2,... g

In this case M < Var(¢) < M + |A|, where A = lim,_o+ tf(1). .

(if) (Widder inversion of the Laplace transform) There exisis a unique
complez-valued normalized funetion ¢ of bounded variation on [0,00) with
f(s)= SSQ e dé(t) for 0 < s < co if and only f

(2) M= sup [ 1Le[f1(0)] dt < o0,
=1,2,...

In this case M < Var(¢) < M + |B|, where B = limy..o f(1).
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(iif) (Widder characterization of moment sequences) There ezists «
unique complex-valued normalized function ¢ of bounded variation on [0,1]
with pn = {0 t™ dg(t) forn=10,1,... if and only if

k
M= sup Y |Ag[plm| < oo

=0,1,... .. Th
In this case M < 2Var(¢) < 2M.

For proofs of these statements we refer to Widder [18], Theorem VIII. 16,
Theorem VII.12a, and Theorem II1.2b, respectively. Widder stated the re-
sults for real-valued functions and sequences, but the complex case is a
trivial consequence. The estimates follow easily from the proofs in the cited
reference. Note that the existence of the limits 4 in (i} and B in (ii) follows
from the conditions (1) and (2), respectively,

1. Characterization of Cy-scalar-type operators with spectrum
in [0, 00). In the sequel linear mappings between (complex) vector spaces
are called operators. Let A be a bounded operator on X and D a bounded
set of complex numbers. Following deLaubenfels [2] we say that A4 is of
C%scalor type on D if there exists a continuous algebra homomorphism
¢ defined on the space of continuous complex-valued functions C'(D) into
L{X) with &(7) = Id and $(7) = A, where 7,(z) = 2" for n. == 0,1,... and
z € D. We want to extend this definition to possibly unbounded operators

with spectrum in the half-line [0, 00). For this reason we make the following
observation.

LevMmA 3. If A is o bounded operator on X and if D C C is closed and
bounded then A is of C%-scalar type on D if and only if o(A) C D and
there ezists a continuous algebra homomorphism @ = C(D) — L(X) with
P(o,)=(z+A)! forall z ¢ —D.

Proof. If A is of Cscalar type on D with the corresponding algebra

hemomorphism ¢ then, since D is closed, g, € C(D) for all z ¢ —D, and
(z+ A)B(0.) = B((270 + 1) 0z) = B(70) = Id,
and similarly @(g.)(z+ A) = Id. Hence —z is contained in the resolvent set
of A and (24 A4)™" = &(p.}. Conversely, if & : C(D) — L(X) is a continuous
algebra homomorphism with $(g,} = (2 + A)~! for all z & —D then
P(ro)(z+ A)7F = B(0.) = (z+ 4)7,
whence &(7p) = Id. Moreover,
(24 4) Mz + 8(n1)) = B(p.(z70 + 1)) = (o) = Id,

whence $(y) = A. » '
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Motivated by this lemma we define (O_gcalar-type operators on [0, 00)
as follows:

DEFINITION 4. A possibly unbounded operator A on X is of CP-scalar
fype on [0,00) if o(A) C [0,00) and there exists a continuous algebra ho-
momorphism @ : Co[0,00) — L(X) with ${g;) = (2 + A4)* forall z €
C\ (—o0,0].

The next lemma shows that A is of CV-scalar type on [0, oo) if and only
if A admits a Cp[0, 00) functional calculus in the sense of deLaubenfels [4].
Moreover, if A is densely defined, then A is of (CP-scalar type in the sense
of Definition 4 if and only if A is C%-scalar in the sense of deLanbenfels [2]
(see Remark 7 below).

LEMMA 5. An operator A on X is of C%-scalar type on [0,00) if and
only if its resolvent set contains the half-line (—o0,0) and there exists o
continuous algebra homomorphism & : Co[0,00) — L{X) with B(gs) =
(s+ A)7t for all 0 < 5 < oo.

Proof That the first assertion implies the second is trivial. So let P
Co[0,00) — L(X) be a continuous algebra homomorphism with &(gs) =
(s+ A)~ for all 0 < s < oc. Let 2 € C\(—co,0}. Ifz € D(A) then

(14 4) 7 @)z + A)z = Fle)(1+ A)H(z -1+ L+ A)e

=B(0:((z — Der + 1))z
=&(p1)z = (L + A) 7'z,

whence $(0,)(z + A)z = 2. If x € X then

B(o.)e = B(e)((1—2) + (z + A1+ 47"z
— (14 4) (1 - 2)B(e:) + ) € D(A).
Applying z + A = (# — 1) + (1 + A) to both sides of the last equation yields
(2 A)B{o)z = (z — (o) + (1 — 2)8(a:) + 5 = .
Consequently, z is contained in the resolvent set of A and B(o.)=(z+A)" L u

If T is a closed interval with inf I = 0 and if ¢ is a complex-valued function
of bounded variation on I, then, for t > 0, let Vary(f) be the variation of ¢
in the interval [0, ), provided ¢ is not the right end point of LI = [0,.a],
then Vary(a) is the variation of ¢ on the whole inte:rvlal [0, a]. The function
Varg : I — R is of bounded variation on I, the variations of ¢ and of Varg
are equal, and for every f € Co(I),

| F(t) ety < §15()] dVary(2).
I I

This is proven for example in. [17].
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THEOREM 6. Let A be an operator on X whose resolvent set contains
the half-line (—o0,0). Then A is of CC-scalar type on [0,00) if and only if
one of the following conditions (i} or (ii) is satisfied:

(i) There exists My > 0 so that for all z € Ux and z* € Ux~,

oo
sup ¢ S o z* AR (¢ + AY 2| dt < My,
k=1,2,... 0
where ¢ = (2k — DI/ (K1 —=2)]) ifk > 2 and ¢, = 1.
(ii) There exists My > 0 so that for all z € Ux and z* € Ux+,

o, Z( )'ﬁ*Am(l+A)"km|3Mz.

k=0,1,.. 27

If, in addition, A is densely defined then A is of C®-scalar type on [0, 00)
if and only if

(ili) —A generates a Cq-semigroup (U(t))s>o such that U(t)X € D(A) for
every t > 0, and there exists Mg > 0 so that for all z € Ux and z* € Ux-~,

w=12,.. (k=11 ] Stk Ha" AU (t)o dt < M.
"“1 2 -

Proof. (i) Let A be of C’-scalar type on [0, c0) with the corresponding
algebra hbomomorphism @. Given z € X, z* € X* and f € (5[0, 00) we
put l[z, 2*]f = 2*@(f)z. Then Iz, z*] is a continuous linear functional on
Gol0, 00) with [1[z, 2| < @] - o] - fa~]|. So we may apply the Riesz rep-
resentation theorem to find a complex-valued function ¢fz, 2*] of bounded
variation on [0, co} with Var(d[z, z*]) € M||z| -|z*|, and so that [z, z*](F)

= S f(u) dolz, z*](u) for all f € Cyl0,00). We then have

o0
Rt AR 4 A) g = bt S uP(t + u) "2 dolz, 2%)(u).
0
Hence, by changing the order of integration and integrating by parts we get

0o

o | 7z AR (1 + A) 2ka:|dt<ckS St""‘ “uR(t + u) T2 d Var g, g (u) dt

a 00
= | | 657 (s + 1) ds d Vary, oo ()
0 0
. = Var(glz, o)) < 1)1 1] - flz*]-

Conversely, assume that (i) holds. For the prdof that A is of C%scalar
type on [0, o), we need Widder’s inversion theorem for the Stieltjes trans-
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form. Therefore, given z € X and z* € X* we calculate Si[z*Rz] where
R(t) = (t+ A)™". For every k= 1,2,... we have

d2k 1 . 1
T+ 4™
2k— —1-!
_ Z (%“1> =G )%ﬁ((t—l—fn‘l)
5 2k -1\ K2k —1~1)! -l j)2E-1-1 (2%—1)
= EASR T 2 el (t+ A)
()
= (2k — DI(-1)*? Z (’;) (=51t + A) (£ + A)7*
I==0
= (2% — D=1kt ARt + A) %

whence
' Sk[ *R$](t) _thk——l *Ak(t+A)—2k

Hence by Widder's theorem z* Rz is the Stieltjes transform of a unique nor-
malized function qﬁ[fc z*] of bounded variation on [0, 0o} with Var(¢[z, z*]) <
M z|-||z*|| -+ Alz, z*]|, where Ajz, z*] = lim,_,o+ t2" R(t)z. For every t > 0
the operator tR(¢) is bounded and

o]

eemtyel = || L dile o7l < Verlo o)
Q

for every z € X and z* € X*. Hence A = sUPgr<oo IltR(t)|| < oo by the
uniform boundedness principle. Consequently,
+Var(gle, z]) < M|zl - 2],

where M = M + A. Now let &(f)z be the linear functional on X* which
assigns to every * € X* the complex number {o f(t) dplz,=*](t). Then
& : C[0,00) — L{X, X**) is linear and we have the estimate

((@(f)z,z*)| < f]| Ver(ele, 2*]) < MIF] - 2] - ll27]
So we infer ||| < M. Moreover, $(g,) = (s + A)~' € L(X) because

oo

(#(ou)era") = | o dglaa'l(t) = 2" (s + A7

Since {ps : 0 < § < oo} is a total subset of [0, 0c) we infer that $(f) €
L{X) for every f & Cp[0,00), that is, @ 5[0, 00} — L{X).
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We now claim that @ is an algebra homomorphism. By the resolvent
equality, for all 0 < 7,5 < oc with r % 5 we have

P(oros) = (r— 5)" 0(0s ~ &r)
(=) s+ AT = AT =+ A )
and
#(¢5) = Jim &(h™" (s — 0s41))
= %1_1&) R (s + A~ (s+h-+A)"Y = (s+A4)~%
So we may conclude &(fg) = &(f)P(g) for all f,g € Cy[0,00) because the

set {5 1 0 < s < 0o} is total in Cp[0, co).

. (ii) Let again @ be the continuous algebra homomorphism correspond-
ing to A. Given z € X, z* € X* and f € C[0,1] put I[z,2"]f = z*&(f)a.
Then [z, z*] is a continuous linear functional on C0, 1] with ||{[z, z*]|| <
[]1 - [l=i| - flz*||- So we may apply the Riesz representation theorem to get;
complex-valued function ¢z, z*] of bounded variation on [0, 1] which repre-
sents I[z, z*], and with Var(¢fz, z*]) = |/l[z,z*]||. Consequently,

: [=+]
2;0 (’i) AT A = mé; C;)\ §, t™(1+1)"* dg[z, 2] (t)
= c:s]cmz:] (.,—i) (1 + t)_k dVa.rd,[m,m\,1 (t)

= Var(g[z, &*]) < || - |[=] - ="].

Thus, if A is of C%-scalar type on [0, o), then (i) follows.

' Assume now that (ii) is satisfied. We show first that this assumption
implies that (1 +.A4)7! is of C-scalar type on [0,1]. To this end put P =
{1+A4)7". Then by induction it follows that A%y, = (~1)k 451 +A)“(’?’*"“)
for k,n=10,1,..., whence '

k -
Aplpplm = (m)Ak L+ A% for k,m=0,1,... with k > m.

Hence (ii) implies, for every z € X and z* € X*,

k

S D7 x| < Mfel] - |la”).
- ’1’“"m.=0

So we may conclude from Widder’s Theorem 2(iii i
: : ] iii) that there exists a unique
complex-valued normalized function ¢z, 2*] of bounded variation on [(i 1]
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with Var(¢[z,z*]) < M|jz|| - ||z*|| and so that
1
™k = St" délz, 7] (t).
0

Since
1

{6401z, 5"1)] < 11w Varglo, =] < M ool - I
0
and since ¢[z,z*] depends linearly on z and z*, we can define a continuous
linear operator ¥ : C[0, 1] — L(X, X**) by
(T(f)e, z)=| £(t) dolz, 2" ().
a
We then have, for every n=20,1,...,
1
(@ (rn)z, &%) = | #" dglz, 2*](t) = =" (1 + A) ",
0
whence @(r,) = (14 A)™ € L(X). Since the set {r, : n = 0,1,...} is
total in C[0,1] we conclude that ¥ is an operator from C[0,1] into L(X).
Moreover, for every I,n=0,1,...,

Frirn) = Flman) = (L+ A7) = (14 A7 1+ 4)7" = F(m)¥ (7).
This equation shows that the bounded operator ¥ is, in addition, an algebra
homomorphism, because the set {r, : n=0,1,...} is total in d[0,1]. Note
that ¥(ro) = (1+4)~% =1d and ¥(r;) = (14 4)~*, so that (1+ A)~is of
C%-scalar type on [0,1].

To show that A is of GP-scalar type on [0,00) put I'f(t) = f(1/t — 1)
for 0 < t < 1 and I'f(0) = 0. Then I' : Cp[0, 00) — €[0,1] is a continuous
algebra homomorphism. Hence & = ¥ o I' : Gyl0,00) — L(X) is also a
continuous algebra homomorphism, and for every 0 < s < co we have

B(0,) = ¥(I(0a)) = T(ra(1+ (s = 1)) ")
=1+ A A+ (s- DA+ AT = (s + AT
It follows, by Lemma 5, that A is of C%-scalar type on [0,00).
(iii) Let A be of C-scalar type on [0, co) with the corresponding algebra
homomorphism @ and assume A to be densely defined. Since
A+ A7 = 120ea)l] < 1121 - [Aealleo < 1]
for all A € C with |arg())| < 3m/4, Theorem 5.3 of [12] tells us that —A
generates an analytic semigroup. In particular, DAY C U)X forallt >0

and
U™ () = (1" AU (2)-
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We denote by & € C[0,00), ¢ > 0, the function &(u) = e™%. Put V(¢) =
@(gq) for t > 0 and let V(0) = Id. We next show that U = V.

‘ Given z € X and z* € X* let ¢[z, %] be the complex-valued normal-
ized ?unctzon of bounded variation on [0, c0) which represents the linear
functional z*®z on Cy[0, 0c). Then for 5 > 0 we have

[

S etV () dt = | e 2" d(ey)x di
0

g~ S e ™ dolz, =] (u) dt
D

et gt dz, %) (u)

O!——-ag

20
oo o0
[e9]
00

1
S+ U

§,
)
|
Q
| doz, o] (u)
Q

= 2" (05 )z = «*(s + A) 'z

Hence the function s — (s + A) ! is the Laplace transform of V. Since —4
generates the Cp-semigroup U we know, by [12], p. 17, that s — (s+A4)~Lis
also the Laplace transform of U. By the injectivity of the Laplace transform
V(t) = U(t) follows for all ¢ > 0, since U and V are strongly continuous in,
(0,00). In particular, (™ (2) = (~1)"@(r"e,) for all ¢ > 0.

Now, by Widder’s Theorem 2(ii) the inequality

sup _1,_ S -1 * Ak
es,. (k-1 ) e ARU ()] dt < ||B)] - |1z - |=*

follows, because Ly [U](#) = HARU(k /) (k/t)* 1. We have thus proved that

(iii) helds if A is a densely defined operator of Cp-scalar type on [0, c0)
Conversely, assume that 4 is densel ince T(:

. rersely, y defined and (iii) holds. Since T'(£)X

is contained in 'D(A) for every t > 0 it follows, by [1], Proposition 1.5.)10

th&t) U is infinitely often differentiable in ¢ > 0, U(6)X C D(4") a,nd’

U™ () = (~1)"A"U(t). Hence condition (iii} is equivalent to ’

= §) [ Le[UN ()] dt < M- [l2*].
So Widder’s theorem implies that for every £ € X and z* € X* there

exists a unique complex-valued normalized function ¢z, z*] on [0, co) with
? 7

Var{g|z, z*]) < M||z| - {[z* * i
and(SO[ 1:hat]) < M|zl - [[=*|| + | B[z, z*]|, where Blz,2*] = limy, 0o z*U (t)z,
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oQ
U (t)z = S e " dplz,z*)(u) for all 0 <t < oo
0

We deduce from this equation that sup,.q |z*U(t)zi < Var(¢[z, z*}). Thus
the uniform boundedness principle implies B = sup,,o |U )] < o0 and we
infer that Var(¢[z,z*]) < Ml|z| - [|z*], where M = M + B. It follows that
& : Cg[0,00) — L(X, X**) defined by (#(f)z,z") = §o f(t) dglz,27](t) is
a continuous linear operator with ®(g;) = U(t) € L(X). Since the set {e; :
0 <t < oo} is total in Cp[0,0c) we infer &f € L(X) for all f € Cp[0, 00).

From &(c,) = U(s), and from the fact that U is generated by —A, we
deduce

z*(s + A)“]-;'n = S ewﬁrﬂ*U(t)mdt — S =5t 0§> e—te dg[z, :c*](u) dt
0 0 0
= { g ol 1) = 7o)

Hence &(g,) = (s + A)~!. That & is an algebra homomorphism follows as
in the proof of (i). Consequently, 4 is of CP-scalar type on [0,00). m

Remark 7. (i) If 4 is a bounded operator with spectrum contained
in some interval [m, ] then A is of C%-scalar type on im, M1 if and only
sup ||p(A4)]| < oo, where the supremum is taken over all polynomials p on
[m, M with sup,<.<as [P()] < 1. This follows immediately from the obser-
vation that the polynomials are dense in Cfm, M].

Following an idea of Schéfer [16] we can give a second characterization of
bounded operators being of C°-scalar type on [m, M], which uses Widder’s
characterization of moment sequences. It is clear that A is of C9-gcalar type
on [m, M] if and only if B = (M — m)~}(m — A) is of C%scalar type on
[0, 1]. Now consider the operator-valued sequence fin == B*, n=2012,...
Then Aujplm = (F)B™(1 — B)t=™ for m,k = 0,1,2,... with m < k. Now
applying Widder’s characterization of moment sequences it can be seen as
in the proof of Theorem 6(ii) that B is of CP-scalar type on [0,1] if and only
if there exists M > 0 such that

k :
sup Z (k> lz* B™(1-B)F 2| < M|z||lz"|| forall z€ X, zre X
k=01, .70 m _

(ii) deLaubenfels [2] defined an operator A to be CPscalar on [0,c0) if
A generates a uniformly bounded semigroup and (1-+ A)~* is of C%-scalar
type on [0, 1]. From the proof of Theorem B(iii) we see that a densely defined
operator A with (—oo,0) C o(4) is of Cp-scalar type on [0, 00) in our sense
if and only if A is C%scalar on [0,c0) in the sense of deLaubenfels.
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We note that not every operator of Cj-scalar type on [0,00) gener-
ates a Cy-semigroup. Consider the operator A on Cpy[0,c0) with D(A) =
{v € Co[0,00) : limg_p+ v(t)/t exists} and Av{t) = y(t)/t for ¢ > 0 and
Av(0) = limy_ o+ v(t}/t. Since (z + A)~Yw(t) = (t/(tz + 1))u(t) we see
that every z € C\ [0,00) is contained in the resolvent set of A. Indeed,
o(A) = [0,00). Moreover, 4 is of Co-scalar type on [0, oo}, because the op-
erator & : Coll, 00) — L(X) defined by &(flu(t) = f(1/t)u(t) if ¢t > 0,
and &(f)v(0) = 0, is a continuous algebra homomorphism with Pos)v(t) =
(t/(ts+ 1))u(t). But A does not generate a Cr-semigroup, because A is not
densely defined.

(iti) The proof of Theorem 6 shows that for densely defined operators
the condition (iii) in this theorem is equivalent to

(iv) —A generates an analytic semigroup U, and there exists My > 050
that for all z € Ux and 2* € Ux., '

1 o0
k—1|..#% 4k
kmsllgi G {S) T 2" AU (H)2) dt < My,

2. Characterization of scalar-type operators. In this section we
prove the main theorem. The key for the preof is the relationship between
vector measures and operators on spaces of continuous functions. For a
deeper discussion of this relationship we refer the reader to the monograph
of Diestel and Uhl [8). Here we only recall some basic facts concerning the
representation of operators on spaces of continuous functions.

I ¥ is a o-algebra and F : 5 — X has the property

F( fj B) = iF(Bk)
k=1 k=1

whenever (B}) is a sequence of pairwise disjoint members of X, then F is
called a eountably additive vector measure on. 5. If ¥ is the Borel o-algebra
on a locally compact Hausdorff space then wé call F weakly reqular if z* o F
is a regular complex Borel measure for avery z* € X*,

The following theorem would be a combination of results presented in
(8] if we considered operators on C(K), where K is a compact Hausdorff

space. But for our investigation of scalar-type operators we have to study
operators on Cp0, 0o).

THEOREM 8. If T : ([0, o0} — X is a bounded operator, then T is
weakly compact if and only if T can be represented by a unique weakly regular
countably additive vecior measure F' on [0,00), that is, Tf = {7 F(¢) F(dt)
for f € Cy[0,00). In particular, if X has no subspace isomorphioc to ¢g, then
every bounded operator from Cy [0, 0) into X can be represented by a unique
weakly regular countably additive vector measure F. :
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Proof In this proof we identify the dual space of Cgl0,00) with the
space of regular Borel measures on [0, oo) endowed with the variation norm.
This is possible by the Riesz representation theorem. Thus every Borel func-
tion g on [0,00) can be identified with a member in the second dual of
Cy[0, c0) by putting {g,») = Sgﬂ g(t)v(dt) for all regular Borel measures v,
In particular, this identification is possible for characteristic functions x g of
Borel sets E.

IET : Cgl0,00) — X is weakly compact then the second dual T™ of T
takes all its values in X. Given a Borel set B let F(B) = T**(xg). Then for
every x* € X* we have

5" F(B) = (xp, T"z") = T*z*(B).

Here we identify T*z* € (5[0, 00)* with a regular Borel measure on [0, co).
Hence F is weakly regular. Moreover, it follows that ' is weakly countably
additive, and by the Orlicz-Pettis theorem [8], Corollary 1.4.4, we infer that
F'is countably additive. Since for all z* ¢ X*,

2T =T"z"(f) = | /(&) =" F(at),
¢]

we gee that T is represented by F.

Conversely, if there exists a countably additive vector measure F' on
[0, 00) which. represents T, then define T, f = {7 f(£) F(dt) for every natural
number n. The operators T, from Cy[0, 00) into X are weakly compact,
by the Bartle-Dunford-Schwartz Theorem [8], Theorem VI1.2.5, and they
converge in norm to T'. Since the operator ideal of weakly compact cperators
is closed with respect to the operator norm, the weak compactness of 7" is
established.

Now assume that ¢p is not contained in X and let T be a bounded
operator from Cy[0,00) inte X. To prove the second part of the theo-
rem, by the first part it is sufficient to establish the weak compactness
of 7. We extend T continuously to an operator Ty : 4[0,00) — X by
Ti(f) = T(F — foo), Where foolt) = lim; oo f(s) for all 0 <t < 0. Define
I';: CJ0,1] — Ci[0,00) by I'f(t) = f(1/(1+¢)) and let § = Tyol : C[0,1} —
X. Since ¢p is not contained in X the operator S is weakly compact by [8],
Theorem VI1.2.15. Hence T} is also weakly compact because I” is continu-
ously invertible. Now the weak compactness of T' follows from the equality
of the ranges of T and T7. m

If & : Cpl0,00) — L(X) is a bounded operator, let @[x]f = &(f)z for
z € X and f € Cp[0,00). We call the operators &{z] : Cpi0,c0) — X the
components of P. :
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THEOREM 9. Let A be a linear operator on X with (—o0,0) C p(4).
Then A is of scalar type on [0, 00) if and only if A is of C%-scalar type on
[0, 00) and the components $[z] of the corresponding algebra homomorphism
$ are weakly compact for every x € X. In particular, if X has no subspace
isomorphic to cy then A is of scalar type on [0,00) if and only if A is of
C°-scalar type on [0, 00).

Remark 10. For bounded A, the first half of this theorem is shown in
[10], Theorem 4.6.24, and the second half first appeared in [9]. For possibly
unbounded A the second half of Theorem 9 is an imumediate consequence
of [6], Theorem 3.3 and Corollary 3.5.

Proof of Theorem 9. If A is a scalar-type operator with spectral
measure E on [0, 0o) then it is well known that &f = {7 f(¢) B(dt) defines
a continuous algebra homomorphism & : Cy[0,00) — L{X) with &{p,) =
(s + A)~'. This is proven for example in [11]. Moreover, for every z € X
the X-valued measure E[z] with E[z](B) = E(B)z is countably additive by
assumption. Since $z]f = {° f(t) E[z}(dt) it follows, by Theorem 8, that
[z is weakly compact.

Conversely, assume A is of C%scalar type on [0, 0o} with the correspond-
ing algebra homomorphism @. If $ has weakly compact components or if
X has no subspace isomorphic to ¢p then, by Theorem 8, for every 2 € X
there exists a countably additive X-valued measure E[z] on [0,00) with
@[z]f = {3 f(t) E[z](dt). Given a Borel measurable set B in [0, 0o) we now
define B(B) : X — X by E(B)x = E[z](B). Then E(B) is linear and, by [8],
Proposition I.1.11 and Theorem 1.1.13,

(3) [E(B)| = sup |E[](B)|| < sup ||$fa]] < [\2].
=l ol <1

Hence F' is an operator-valued, strongly countably additive bounded mea-
sure defined on the Borel subsets of [0, c0) with

T 1
s+ Ay e = | ——
(s+A4) 'z [S] s+tE(dt)m'
Moreover, we have [|t(t + A)~' [} = ||B(tos)|| < [|B]].
Now proceed as in Kantorovitz’ proof of Theorem 1.1 in {14] to show
that P is a spectral measure for 4 with

n

D(A) = {:n €X: lim StE(dt)m exists}

n—ro0

and Az = lim, .o, [ t E(dt)z for ¢ € D(A). »

The proof of the main theorem now follows from Theorem 6 combined
with Theorem 9.

icm

Scalar-iype aperators 53

Proof of Theorem 1. Let A be of scalar type on [0,c0). Then A
is of C%-scalar type on [0,00); that is, assertion (i) of Theorem 1 holds.
Moreover, —A, by deLaubenfels [2], generates a Cy-semigroup, whence A
has to be densely defined. Hence the assertions (ii)-(iv} of Theorem 1 follow
from Theorems 6 and 9.

If, conversely, one of assertions (i)-(iv) of Theorem 1 holds then, by
Theorem 6, A is of C%-scalar type on [0,00). Since X has no subspace
isomorphic to g, the operator A is of scalar type on [0, 50), by Theorem 9. =

We finally note that the condition cg ¢ X in Theorem 1 cannot be
omitted; more precisely:

TueoreM 11. If X contains an isomorphic copy of cp, then there exists
a bounded operator A on X which is of C®-scalor type, but not of scalar
type. In particular, this operator A satisfies each of conditions (1)—(iv) of
Theorem 1, but it is not o scalar-type operalor.

The first part of this theorem is proved in [9] (see also [5]) and the second
part is an immediate consequence of Theorem 6.
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Purely non-atomic weak [P spaces
by

DENNY H. LEUNG (Singapore)

Abstract. Let ({2, T, u) be a purely non-atomic measure space, and let 1 < p < co.
If LP°° (2, X, i) is isomorphic, as a Banach space, to P 5 ") for some purely
atomic measure space (§2', 5, p'}, then there is a measurable partition 2 = {2;U {23 such
that (£21, N 1, plgnn,) is countably generated and o-finite, and that ulo) =0orco
for every measurable o C {Z3. In particular, L#*°(£2, I, 11} is isomorphic fo i

1. Introduction. In [3], the author proved that the spaces L#>°[0, 1]
and LP*°{0, co) are both isomorphic to the atomic space £P:°°, Subsequently,
it was observed that if ({2, 2, u) is countably generated and o-finite, then
IP=°(£2, 5, 1) is isomorphic to either £7°° or £% [4, Theorem 7]. In the
present paper, we show that the isomorphism of atomic and non-atomic weak
L? gpaces does not hold beyond the countably generated, o-finite situation.

Before giving the precise statement of the main theorem, let us agree on
some terminology. Throughout this paper, every measure space under discus-
sion is assumed to be non-trivial in the sense that it contains a measurable
subset of finite non-zero measure. A measurable subset o of a measure space
(2,5, ) is an atom if u(o) > 0, and either p(o’) =0 or p(o \¢’) =0 for
cach measurable subset o' of o. A purely non-atomic measure space is one
which contains no atoms. We say that a collection S of measurable sets gen-
erates a measure space (2, X, u) if £ is the smallest o-algebra containing
9 as well as the p-null sets. A measure space ({2, L, u) is purely atomic if
it is generated by the collection of all of its atoms; it is countably generated
if there is a sequence {oy,) in ¥ which generates ({2, ¥, u). For any measure
space (£2,X,u4), and 1 < p < oo, the weak L space LP(2, 3, 1) is the
space of all (equivalence classes of) Z-measurable functions f such that

I £ll = sup c(u{|f| > H? < 0.

Tt is well known that |- || is equivalent to a norm under which L2, 2, 1)
is a Banach space. However, since we are only concerned with isomorphic
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