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Abstract. We provide a characterization of generalized bi-circular projec-
tions on spaces of operators supporting only a particular type of surjective
isometries. We also characterize the hermitian operators and hermitian pro-
jections on this class of spaces.

1. Introduction

Fosner, Illisevic, and Li in [7] have introduced an interesting class of projections
on Banach spaces. Their work generalizes earlier results by Stacho and Zalar on
bi-circular projections, see [17] and [18]. A projection P on a Banach space X
is said to be a bi-circular projection if eiaP + eib(I − P ) is an isometry for all
choices of real numbers a and b. These projections are in fact norm hermitian,
see [11]. Fosner, Illisevic, and Li in [7] only require that P + λ(I − P ) be an
isometry for some λ ∈ T \ {1}. In [7], the authors obtained nice results in the finite
dimensional setting. In this paper, we study such projections for spaces of bounded
operators between pairs of Banach spaces. We call these operators generalized bi-
circular projections. Operators of the form J (T ) = UTV on B(X,Y ) with U and
V surjective isometries on Y and X, respectively, are clearly surjective isometries
on the B(X,Y ). Isometries of this type are referred, throughout this paper, as
isometries of type I. The isometry group of B(X, Y ) is known to be particularly
simple for certain pairs of Banach spaces. It has been shown that several spaces
of operators support only isometries of type I, see e.g. [9] and [14]. In this paper,
we provide a characterization of generalized bi-circular projections on spaces of
operators supporting only isometries of type I.

2. Generalized bi-circular projections on some Functional Banach
Spaces

The next theorem is our main result for generalized bi-circular projections on
spaces of operators supporting only isometries of type I.

Theorem 2.1. If X and Y are complex Banach spaces so that B(X,Y ) supports
only isometries of type I, then a projection P on B(X,Y ) is a generalized bi-circular
projection if and only if P (T ) = PY T or P (T ) = T PX with PX and PY generalized
bi-circular projections on X and Y respectively.
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Proof. If the projection P is as stated in the proposition then clearly it is a gener-
alized bi-circular projection on B(X,Y ). Conversely, we assume that the operator
P is a generalized bi-circular projection, then the isometry J = P + λ(Id − P )
satisfies

(2.1) J 2 − (λ+ 1)J + λId = 0.

This last equation is equivalent to

(2.2) U2TV 2 − (λ+ 1)UTV + λT = 0,

for all T ∈ B(X,Y ). Given a nontrivial v ∈ Y we consider the rank one operator
T of the form T (x) = ϕ(x)v, with ϕ ∈ X∗. We first observe that every x we
must have that {x, V (x), V 2(x)} is linearly dependent. If for every x {x, V (x)} is
linearly dependent then there exists a modulus one constant a so that V = aIdX .
The equation 2.2 implies that

(2.3) a2U2 − (λ+ 1)aU + λId = 0.

A theorem due to Taylor, see [13] pg. 317, asserts the existence of two projections
P1 and P2 on Y so that P1 + P2 = Id, P1 P2 = P2 P1 = 0 and U = aλP1 + aP2.
Consequently J (T ) = (λP1 + P2)T and P (T ) = P2 T. We observe that P2 is a
generalized bi-circular projection on Y . If there exists x0 so that {x0, V (x0)} is
linearly independent then V 2(x0) = ax0+b V (x0). A convenient choice of ϕ ∈ X∗ so
that ϕ(x0) = 0 and ϕ(V (x0)) = 1 reduces the equation 2.2 to bU2v−(λ+1)Uv = 0,
for all v ∈ Y. Hence U = γIdY for a constant γ of modulus 1. In this case, the
equation 2.2 becomes γ2V 2 − γ(λ+ 1)V + λIdX = 0 and Taylor’s theorem asserts
the existence of projections Q1 and Q2 on X such that V = γλQ1 + γQ2. This
implies that J (T ) = T [λQ1 + Q2] and thus P (T ) = T Q2, with Q2 a generalized
bi-circular projection on X. �

Remark 2.2. Grza̧ślewicz, in [8], showed that the surjective isometries on B(lp, lr),
with 1

p + 1
r 6= 1 and p, r ∈ (1, ∞), are of type I. For r 6= 2, the bi-circular projections

on lr are just the average of the identity and an isometric reflection. This holds
true for symmetric sequence spaces with 1-symmetric basis, as a consequence of
Arazy’s characterization of isometries on such spaces, see [1].

We now turn our attention to the problem of characterizing bi-circular projec-
tions on B(X,Y ). Since bi-circular projections are hermitian, we start by charac-
terizing hermitian operators on B(X,Y ). We observe that whenever X and Y are
the same Hilbert space H, then B(H) is a C∗ algebra. In this situation, the surjec-
tive isometries are not only of type I, hence the forthcoming Theorem 2.3 does not
include this case. In [16], the structure of hermitian operators on B(H) was derived
relying upon intrinsic algebraic properties of B(H). Here, we derive a similar result
using techniques depending on basic Banach space properties of B(X,Y ), given
that B(X,Y ) supports only surjective isometries of type I. The characterization of
bi-circular projections on B(X,Y ) will follow as a corollary.

Theorem 2.3. If X and Y are complex Banach spaces so that B(X,Y ) supports
only isometries of type I, then S is a hermitian operator on B(X,Y ) if and only if
S is a real multiple of the Id or there exist hermitian operators L and R on Y and
X, respectively, so that ST = LT + TR.
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Proof. We first show that S is a hermitian operator, if S is of the form stated. It
is sufficient to prove that Tt = eitS is a uniformly continuous one-parameter group
of isometries. Indeed, since

eitS(T ) = T + it(LT + TR) + · · ·+ (it)k
1
k!

k∑

i=1

(
k
i

)
LiTRk−i + · · · ,

we have that eitS(T ) = eitLTeitR. By assumption, {eitL} and {eitR} are uniformly
continuous one parameter groups of isometries, hence so is eitS , and S is hermitian.

Conversely, if S is a hermitian operator on B(X,Y ), then Tt = eitS is a uniformly
continuous one-parameter group of isometries. For each t ∈ R, there exist isometries
on X and Y , denoted by Rt and Lt respectively, so that eitST = LtTRt. Without
loss of generality, we assume that R0 = IdX and L0 = IdY . We show that both
families are uniformly continuous functions of t. We first assume that S is not a
multiple of Id. For every positive ε, there exists δ > 0, so that for |t − t0| < δ we
have that ‖eitS − eit0S‖ < ε. We also have that

‖eitS − eit0S‖ ≥ sup{‖ϕ(Rt(x))Lt(y)− ϕ(Rt0(x))Lt0(y)‖Y : ‖y‖ = ‖ϕ‖ = 1} =

sup{‖ϕ(Rt(x))[Lt(y)− Lt0(y)] + ϕ[Rt(x)− Rt0(x)]Lt0(y)‖Y : ‖y‖ = ‖ϕ‖ = 1}.
If for every t, such that |t − t0| < δ, we can find unit vectors xt ∈ X for which
{Rt(xt), Rt(xt) − Rt0(xt)} is linearly independent, then there exist norm 1 func-
tionals ϕt ∈ X∗ so that ϕt(Rt(xt)) = 1 and ϕt(Rt(xt)−Rt0(xt)) = 0. Consequently
we have

ε > ‖eitS − eit0S‖ ≥ sup{‖Lt(y)− Lt0(y)‖ : ‖y‖ = 1} = ‖Lt − Lt0‖
and therefore ‖Lt − Lt0‖ < ε.

On the other hand, we also have that

‖ϕ(Rt(x))[Lt(y)−Lt0(y)]+ϕ[Rt(x)−Rt0(x)]Lt0(y)‖ ≥ |ϕ(Rt(x)−Rt0(x))|−‖Lt−Lt0‖
and hence

‖Rt − Rt0‖ = sup{|ϕ(Rt − Rt0)(x))| : ‖ϕ‖ = 1} ≤ 2ε.

Similarly, the inequality

‖eitS − eit0S‖
≥ sup‖y‖=‖ϕ‖=‖ψ‖=1{|ϕ(Rt(x))ψ[Lt(y)− Lt0(y)] + ϕ[Rt(x)− Rt0(x)]ψ(Lt0(y)|}

implies that ‖Rt − Rt0‖ < ε, if for every t there exists yt (of norm 1) so that
{Lt0(yt), Lt(yt)− Lt0(yt)} is linearly independent. Therefore it follows that ‖Lt −
Lt0‖ ≤ 2ε.

It remains to assume that there exists a sequence {tn} converging to t0 so
that for every x ∈ X and y ∈ Y we have that {Lt0(y), Ltn(y) − Lt0(y)} and
{Rtn(x), Rtn(x) − Rt0(x)} are linearly dependent. In such case, we have that
eitnS = c eit0S . The Theorem 6, in [15], implies that S is a multiple of the Id,
contradicting our initial assumption. We have established the continuity of both
families.

Now, we show that Lt and Rt are weakly differentiable functions of t. Since

lim
t→t0

LtTRt − Lt0TRt0
t− t0 exists,
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then the following limit also exists

ψ(Lt0(y)) lim
t→t0

ϕ

(
Rt(x)− Rt0(x)

t− t0

)
+ ϕ(Rt0(x)) lim

t→t0
ψ

(
Lt(y)− Lt0(y)

t− t0

)
,

for every ϕ ∈ X∗ and ψ ∈ Y ∗.
We assume that for every t near t0 there exists xt so that

{
Rt(xt)−Rt0 (xt)

t−t0 , Rt0(xt)
}

is linearly independent, then Hahn-Banach Theorem asserts the existence of ϕ ∈
X∗, attaining the value 0 at Rt(xt)−Rt0 (xt)

t−t0 and the value of 1 at Rt0(xt). Therefore
we have that

lim
t→t0

Lt(y)− Lt0(y)
t− t0 exists for all y ∈ Y.

Similarly, if we assume that for every t near t0 there exists yt so that
{
Lt(yt)− Lt0(yt)

t− t0 , Lt0(yt)
}

is linearly independent.

There exists ψ ∈ Y ∗ attaining the value 0 on Lt0(yt) and the value 1 on Lt(yt)−Lt0 (yt)

t−t0 .
This implies that

lim
t→t0

φ

(
Rt(x)− Rt0(x)

t− t0

)
exists for all x ∈ X.

If there exists a sequence {tn} converging to t0 so that for every x ∈ X
{
Rtn(x)− Rt0(x)

tn − t0 , Rt0(x)
}

is linearly dependent and if, in addition, there exists a subsequence {tnk} of {tn}
so that

{Ltnk (y)−Lt0 (y)

tnk−t0
, Lt0(y)

}
is linearly dependent for every y ∈ Y. With-

out loss of generality, we may assume that both sets
{
Rtn (x)−Rt0 (x)

tn−t0 , Rt0(x)
}

and{
Ltn (y)−Lt0 (y)

tn−t0 , Lt0(y)
}

are linearly dependent. Hence there are sequences of scalars
an and bn, complex numbers of modulus 1, for which Rtn = anRt0 and Ltn = bnLt0 .
Therefore eitnS = anbne

it0S or ei(tn−t0)S = eln(an bn)Id. Since the operator S is her-
mitian, it has real spectrum (σ(S)), the spectrum of ln(an bn)Id is clearly ln(an bn).
Theorem 6, in [15], implies that an bn = 1 or S − ln(an bn)Id = (2knπi)Id, for some
integers kn. If for every n, an bn = 1 then ei(tn−tm)S = Id, which is impossible.
Therefore S is a multiple of the Id.

We show that both families define one-parameter groups of isometries.
The group condition Tt1+t2 = Tt1Tt2 implies that Lt1+t2 = λ(t1, t2)Lt1Lt2 and

Rt1+t2 = λ(t1, t2)Rt1Rt2 , for some modulus 1 scalars. We prove that λ(t1, t2) = 1,
for every t1 and t2. Since we have assumed that L0 = IdY and R0 = IdX , then
L0 = IdY = λ(t1,−t1)Lt1L−t1 = λ(−t1, t1)L−t1Lt1 and Lt1 = λ(t1,−t1)L−1

−t1 . This
implies that IdX = λ(−t1, t1)L−t1Lt1 = λ(−t1, t1)λ(t1,−t1)L−t1L

−1
−t1 . Therefore

λ(−t1, t1) = λ(t1,−t1) and L−t1Lt1 = Lt1L−t1 .
We clearly have λ(0, t) = λ(t, 0) = 1, for all t.
First, we observe that λ(t1, t2) = λ(t2, t1) if and only if Lt1Lt2 = Lt2Lt1 . In order

to prove this last statement we proceed as follows:

L3t = λ(2t, t)LtL2t = λ(2t, t)λ(t, t)LtLtLt = λ(2t, t)LtL2t
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and
LtL2t = L2tLt.

This last statement is equivalent to λ(2t, t) = λ(t, 2t). Inductively we show that
LmtLnt = LntLmt and λ(nt,mt) = λ(mt, nt), for n, m integers and t a real number.
Therefore we have Lr1Lr2 = Lr2Lr1 for rational values r1 and r2 and continuity
implies that Lt1Lt2 = Lt2Lt1 and λ(t1, t2) = λ(t2, t1).

Furthermore, for arbitrary values of t, say t, t1, t2 we have that λ(t+t1, t2)λ(t, t1) =
λ(t1 + t2, t)λ(t1, t2). The weak differentiability previously established implies the
differentiability of λ, then we have

∂tλ(t+ t1, t2)λ(t, t1) + λ(t+ t1, t2)∂tλ(t, t1) = ∂tλ(t, t1 + t2)λ(t1, t2).

Hence, for t = t2, the equation above implies that ∂tλ(t2, t1) = 0 and λ(t2, t1) =
C(t1), a constant depending on t1. For t2 = 0, we have that 1 = λ(0, t1) = C(t1)
and we have established that λ = 1.

The families {Lt} and {Rt} are one-parameter groups of uniformly continu-
ous families of isometries, hence there exist hermitian operators L and R so that
Lt = eitL and Rt = eitR. Therefore we have that Tt = eitST = eitL T eitR and the
corresponding generator satisfies

S = −i
(
d

dt
eitST

)

t=0

= LT + TL.

This completes the proof of the statement, provided that {Tt} is a nontrivial family.
If we assume that, for some t0, Tt0 is a multiple of the Id, then Theorem 6, in

[15], implies that λ = 1 or S − ln(λ)Id = (2kπi)Id, for some integer k. In either
case S is a multiple of the identity. This completes the proof of the theorem. �
Corollary 2.4. P is a hermitian projection on B(X,Y ) if and only if, for every
T ∈ B(X,Y ), PT = TR1 or PT = L1T, where R1 and L1 are hermitian projections
on X and Y, respectively.

Proof. P is a hermitian operator on B(X,Y ) then the previous theorem asserts the
existence of L and R, hermitian operators on the Y and X respectively, so that

PT = LT + TR,
for every T ∈ B(X,Y ). Since P is a projection, we have that

(2.4) L2T + 2LTR+ TR2 = LT + TR
and

ϕ(x)ψ(L2(y)) + ϕ((2R− Id)(x))ψ(L(y)) + ϕ((R2 − R)(x))ψ(y) = 0,(2.5)

for every ϕ ∈ X∗ and ψ ∈ Y ∗. We first observe that for every x ∈ X, {x,R(x), R2(x)}
is linearly dependent. If we assume that, for every x ∈ X, {x,R(x)} is also lin-
early dependent, then R = a IdX for some scalar a of modulus 1. In this case,
the equation 2.4 reduces to L2 + (2a − 1)L + (a2 − a)Id = 0 and Taylor’s theo-
rem implies the existence of projections L1 and L2 so that L1L2 = L2L1 = 0 and
L = (1−a)L1−aL2. Since L1 +L2 = Id, we have that L = L1−aId. Consequently
PT = L1T, with L1 and hermitian projection on Y .

If, there exists x ∈ X so that {x,R(x)} is linearly independent, then R2(x) =
ax+bR(x) , for some scalars a and b. The equation 2.5 implies that 2L+(b−1)Id =
0. Hence L is a multiple of the Id and a similar argument proves the existence of a
hermitian projection R1 on X so that PT = TR1. �
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Remark 2.5. The bi-circular projections on B(X,Y ), if B(X,Y ) supports only
isometries of type I, are of the form: PT = TR1 or PT = L1T, where R1 and L1

are bi-circular projections on X and Y, respectively.

Remark 2.6. Pairs of Banach spaces (X, Y ) for which B(X,Y ) supports only
surjective isometries of type I are:

(1) X = lp and Y = lr, with p, r ∈ (1,∞) and 1
p + 1

r 6= 1, see [8]
(2) Khalil and Saleh ideal pairs, see [9].
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