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Abstract

Brief accounts of the theoretical background of the dynamically defined reaction path (DDRP) method and algorithm
are presented. By employing mathematical functions used for testing reaction path-following algorithms and by simple
chemical examples, applications of the procedure have been illustrated.

1. Imtroduction

Most of the conventional reaction path (RP)
calculations [1-12] start at a saddle point (SP)
and take successive steps in the direction of the
negative gradient. With decreasing step sizes the
calculations lead to a converged RP regarded as a
minimum energy reaction.path (MERP). If the
coordinate system is mass-weighted, the RP is
called the intrinsic reaction coordinate (IRC). The
conventional RP-following algorithms are globally
unstable especially when the RP is curved and/or
twisted. Moreover, they are aimed at treating the
differential-topological simplest case where two
steepest descent paths in a reaction valley lead
from an SP of rank 1 to two local minima. Such
an approach tends to be problematic if the RP
bifurcates or is very curved. Another disadvantage
of these methods is that they cannot essentially be
developed any further and cannot be run effectively
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on the most modern vector computers. In previous
papers [13,14] we proposed a new, theoretical
global searching procedure which seems to
overcome these problems. The algorithm [15]
developed on the basis of Theorem 2.1 in Ref.
[13] and a simple computer program [16,17] based
on this algorithm were tested by some very compli-
cated artificial mathematical functions [13,15]
constructed to demonstrate the high stability of
the procedure, and by illustrating some traits of
the H; system [18]. In this work, after summarizing
the main features of the dynamically defined
reaction path (DDRP) method and the algorithm,
we present further applications showing the
functioning and use of our procedure. Experiences
with such complicated mathematical surfaces as
determined by the functions of Miiller and
Brown (MB) [5] and Gonzalez and Schlegel
(GS) [12] further demonstrate the efficiency and
stability of the procedure. Examples of the chemi-
cal systems HHH, HHCI, HCIH, CIHCl and
CICIH presuming collinearity are also used to illus-
trate the method.
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2. Algorithm

One of the chief merits of Fukui’s IRC concept
[19] is that it provides us with quite a faithful
picture of chemical reactions using geometrical
considerations concerning the potential energy
hypersurface (PES). Originally an IRC was
defined as a piecewise smooth curve joining two
local minima whose tangent vector is always
orthogonal (in the mass-weighted cartesian coordi-
nate system) to the level sets of the PES.? To be
more precise, if U : R” — R is the potential energy
function then a curve ¢ : [a,b] — R” between two
local minima of U is an IRC if and only if for some
scalar function A : (a,b) — R. Note that this con-
cept is independent of parametrization; moreover,
it only depends on the level set structure of U. This
latter observation has not yet been fully explored

and exploited. As we shall see below in the example -

of the MB-surface [5], a monotonic transformation
of U does not change the level sets but will drasti-
cally reduce the numerical costs of following the
IRC.

The algorithm for the simplest case based on the
theory described in detail in Ref. [13] is character-
ized by the following main steps. Given a curve
connecting two local minima of the energy func-
tion, the phase flow of the negative gradient takes
it to converge to some sequences of steepest descent
and ascent paths between the two minima (which
are not affected by the flow) under not very

restrictive conditions on the energy function (see -

Theorem 2.1 in Ref. [13]). In practice, the suc-
cessive phase curves (the “‘time-resolved RP”) can
be approximated by the aid of the following
algorithm. Choose Py,...,P, to be consecutive
points representing the polygon c. First calculate
the effect &7 of the flow of —V U on the points for
some (virtual) time 7. Thus we have to calculate the
solutions of the ordinary differential equation
d/dtx(t) = =VU(x(¢)) with the initial values
x(0) = P; for t = n. Since for large values of 7 the
obtained points P; approach the set of stationary
points of U, it is advisable to take only a small

# Throughout this paper mass-weighted (or mass-scaled) coordi-

nates are considered.

value for 7 and then to homogenize the polygon
P{,...,P,. This can be done by placing further
points onto the segments P/, P/,; whenever the
distance ||P; — P/, || exceeds some given value of
¢ and by deleting points P/, P/, ..., P,/ whenever

IH 1P/ = P/, <e in order to obtain an
approximating polygon for the curve ®7(c) whose
consecutive vertices have distances between the
values /2 and e. It is indeed not necessary to try
to find a very precise approximation for the solu-
tion of the initial problems d/d¢ x(1) = —VU(x(2));
x(0) = P;. In most cases it is sufficient to take
P/ = P, —nVU(P,). If very large values of VU
can occur it is advisable to use Euler’s simple
method of steps (see, for example, Ref. [20]) with
a given maximum admissible step-length o to con-
struct the point P;/. The homogenized polygon
P{,...,P, can then be used to obtain a polygon
approximation of the curve ®27(c) = ®7(®"(c)),
and iterating the procedure we get the time-
resolution pattern (or ‘“‘stroboscopic view”) of
IRC in the succession of approximate polygons
®37(c), ®*7(c),..., etc. The choice of the three
governing parameters €, and o requires some
familiarity with the function U. With “brute
force” we may apply arbitrarily small values to

- ensure a good approximation for some IRC (this

is guaranteed for ¢, 7,0 — 0). However, if the IRC
is not very curved, the use of too small e-values is
unnecessary and the optimum choice of 7 and ¢ can
be in the order of ¢/ max ||[VU]|.

In practice, first a polygon is defined in the

. multidimensional configurational space of the

actual (chemical) problem and points are taken
up on this polygon.® When starting the pro-
cedure, these points are determined by the vertices
of the chosen polygon. In the second step, depend-
ing on the choice of parameter ¢, the number of
points will change: if the distance between the
two neighbouring vertices is smaller or larger,
respectively, than that determined by e, points
will be deleted or created on the polygon. In the
third step, by executing a homogenizing procedure,

®The number of points is not determined by the number of
atoms involved in the chemical reaction, aithough it is depen-
dent on the mathematical (differential-topological) complexity
of the PES.
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uniform distribution of points will be achieved.
Then the points, directed by the actual vector
field generated by any quantum chemical (or
other) method suitable for energy calculations,
will be moving on the PES. After a number of
iterations, a new approximate polygon is gener-
ated from the former one and simultaneously the
previous uniform distribution of the points will be
changing: near the SP the number of points will be
becoming exhausted and towards the minima the
points will be crowding. So again a homogeniz-
ation must follow to ensure the uniform distri-
bution of points thus facilitating the generation
of a following new polygon. Consequently, the
two main steps, namely (i) the determination of a
new polygon and (ii) the homogenization of the
points of the new polygon, will be carried out alter-
nately until the procedure converges. In fact,
the frequency of iteration cycles commencing
always with the generation of a new polygon is
controlled by the two parameters n and o. The
criteria of convergence (see details in Ref. [14])
can easily be determined theoretically by estimat-
ing the Hausdorff distance [16]. In simple cases
such as hydrogen abstraction (presumed to be
collinear) reactions, it is practical to start from a
closed polygon (see Applications below). The
fusion of the sides of the polygon into a curved
line (i.e. into the converged RP) will then indicate
the convergence of the procedure.

3. Applications

The MB-function [5] is formed by the linear
combination of four simple exponential functions
and it has three minima and two first-order
SPs; therefore, it is very suitable for testing RP-
following algorithms. As a starting curve we
chose a straight line determined by the points
(—2;2) and (2;-2) in such a way that it crossed
broadly the steep and curved surface (top view,
Fig. 1(a), curve 1). We found that the determina-
tion of the IRC could be facilitated and accelerated
by taking into account this special case, e.g.

¢ Without Lomogenization the RP would separate into parts.

log(160 + U) in place of U. The “RP” determined
by this function lies in a deep and winding canyon.
Despite the rather rough choice, far from ideal, our
algorithm easily “followed” the path and the suc-
cessive sets of approximate curves 1-6, converging
rapidly to the true sought-after path; it reached
practical convergency in the 57th step, the run
time being 1354 s.¢ The surface showing the strobo-
scopic view of the IRC with the time-resolved evo-
lution polygons in the canyon is displayed in Fig.
1(b) (curves 1-6; rotation about the z-axis: 40°, tilt
after rotation: 20°).

The GS-function [12] is quite interesting from
another point of view in comparison with the
MB-function; now the analytical form of the
meta-IRC is known: y =sinx, and the RP has
neither minima nor SPs. Starting from a straight
line defined by the points (0; 0) and (0; 2) (Fig. 2(a),
curve 1) and fixing its one end® at the origin, we
determined the evolution phases of the RP (see F ig.
2(a), curves 1-3). Since following the meta-IRC
described by the GS-function, the function value
is decreasing monotonously, and only a certain
part of the infinite symbolic RP can be reproduced
(Fig. 2(a), curve 3). In each cycle of iterations we
passed over beyond the periodically recurring
regions [0, 27] when following the RP. When con-
tinuing the procedure, increasingly longer parts of
the RP could be determined; therefore, down from
the fixed origin the successive approximate curves
reproduced the RP in arbitrary lengths (the arrows
in Fig. 2(a) show the approximate numbers of
iteration steps and run times). Note that in similar
cases the length of the initial polygon could be
reduced at any rate and the whole RP would still
be reproduced. In our case this means that starting
from a digon defined by the points (0;0) and (x; 0)
(for any x; > 0) and fixing its one end at the origin,

d By using identical parameter values, the IRC of the unmodified
MB-function U could not be determined at all. Reducing drasti-
cally the values of the controlling parameters, the IRC can
obviously be determined but at the price of much longer run
times and a much higher cost of computation. In Ref. [21] we
will show the technique for these modifications and their con-
sequences in the gain of computational time.

®If this is not done then the sine wave, like a streamlet varying in
length, would wimple along further down in the narrow, deep
canyon hollowed in the surface (Fig. 2(c)).
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Fig. 1. (a) Plan-view of the Miiller—Brown surface showing evolution phases (1-6) of the RP started from a digon. (b) Stroboscopic view
of the time-resolved RP embedded in the Miiller—Brown surface profile.
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Fig. 2. (a) The time-resolved Gonzales—Schlegel RP started from
a digon. Arrows on the curves show numbers of iterations and
corresponding run times of some evolution phases. (b) Plan-view
of the Gonzales—Schlegel surface showing the sinusoidal RP. (c)
Side-view of the Gonzales—Schlegel surface profile with the
sinusoidal RP.
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Fig. 3. (a) Plan-view of the H, + H reaction surface showing the
time-resolution of the RP starting from a digon. (b) Side-view of
the Hj surface profile with the evolution phases of the IRC
starting from a digon.

the periodical parts of the RP can be reproduced at
any length. Since the starting point can be chosen
anywhere, any part of the infinitely long RP
can easily be determined by the DDRP algorithm.

Figures 2(b) and 2(c) display a section of the RP

on the plane and on the crumpled (rotation about
z-axis: 165°, tilt after rotation: 65°) GS-surface,
respectively. Starting from a digon defined by the
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Fig. 4. (a) Starting tetragon for the chemical reactions H, + H,
H + HCI, HCI+H, Cl+HC! and HCl+Cl. (b) Converged
RPs for the chemical reactions 1: H, + H, 2: H+ HCl, 3:
HCl+H, 4: C1+HCL, 5: HCl + CL

points (0.66,2.00) and (2.00,0.66), approximate
time-resolved IRC curves for the H, + H reaction
were computed and embedded in the PES of the H,
system (top view and surface profile are shown in
Figs. 3(a) and 3(b), curves 1-4). In order to
make easy comparisons in the evolution curves and
run times for the different chemical examples the
same closed tetragon (Fig. 4(a)) defined by the

Table 1
Comparisons of step numbers and run times for some collinear
reactions

Reaction Convergence in the iteration
Number of steps Time (s)

l. HH+H 4 3460

2. HH+Cl 10 29286

3. HCI+H 6 8463

4. CIH+Cl 21 68719

5. HC1+Cl 25 125268
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Fig. 5. The Miiller-Brown RP indicating saddle points in the
representation of function value vs. reaction coordinate.

points (1.20,1.20), (1.20,2.50), (1.50,1.50) and

(2.50,1.20) was also used to start with. The con-

verged RPs are displayed in Fig. 4(b), curves 1-5
for the systems H,+H, H+ HCI, HCl+H,
Cl+HCI and HCl+ Cl computed as collinear
reactions.” The number of iteration steps and the
corresponding convergence run times are summa-
rized in Table 1. As by-products of searchings for
RPs, one can, of course, easily obtain plots of
energy vs. reaction co-ordinate and energy vs.
nuclear distances with arbitrary accuracy (see

demputational results for the same systems allowing devi-
ations from collinearity are also described in Ref. [22].
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Figs. 5 and 6 for the MB-function and the H, +H
reaction, respectively). By using the MNDO [23]
quantum chemical approximation the computa-
tions were carried out by an IBM compatible AT
286 PC equipped with an 80287 mathematical
coprocessor.®

4. Supplementary material

Individual evolution polygons, stroboscopic
views and time-resolution curves for the examples,
etc. can be obtained on request from the authors.
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& The use of the DDRP procedure is not limited to the employ-
ment of a semiempirical quantum chemical method. Ab initio or
even classical methods suitable for calculating the total energy of
a system can equally be used in connection with the procedure.

Our choice was influenced by the requirements concerning

simplicity, ease and rapidity.
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