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Abstract

There are two different practical ways of global path-following (PF) on potential energy surfaces (PESs) of molecular
reactions: (i) the Elber—Karplus (EK) method (and its improvements), and (ii) the family of DDRP methods. The early versions
of the methods under (i) are based on minimizing a functional of the entire path and applying penalty functions as constraints,
and are evaluated only for molecular mechanical (MM) PESs. The first true improvement in the EK sequels is the method of
Chiu et al. who—instead of using penalty functions—introduce a redistribution of the grid points to substitute the constraints
employed in former versions of the EK method, and perform PF on quantum mechanical (QM) PESs. In the present paper the
mathematical foundations and the performances of the above methods have been compared. The superiority of the DDRP
method in accuracy and stability over the other methods has been verified and tested by a difficult mathematical function
simulating the conformational change in the catechol molecule. © 2000 Elsevier Science B.V. All rights reserved..

Keywords: Elber-Karplus methods; DDRP method; Global path-following; Potential energy surfaces

1. Introduction

In the discussion of reaction mechanisms and
especially of the course of a chemical reaction or
conformational change in a molecular system, the
reaction path (RP) concept plays a most important
role. The RP is a sequence of steepest descent paths
(SDP) that joins the minima pertaining to the stable
states of reactants and products through saddle points
(SPs) or transition states (TSs). Fukui’s RP, the intrin-
sic reaction coordinate (IRC), is a SDP in mass-
weighted Cartesian coordinates, assuming that the
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reaction takes place infinitely slowly. However, this
definition can be extended to any coordinate system
by defining the RP as a minimum energy RP (MERP)
connecting the minima of reactants and products via
the SP/TS. Naturally, from the chemical point of
view, the most significant parts of the RPs and/or
the potential energy surfaces (PESs) are the critical
(or stationary) points (minima and SPs/TSs). Never-
theless, recently theoretical investigations of entire
RPs (or reaction profiles) on PESs of molecular
systems also attract considerable attention. PF pro-
cedures can be classified as local and global ones.
Local PF procedures start by searching for a TS and
then walking downhill on a SDP towards the minima
belonging to reactants and products. Such procedures
require many energy and gradient calculations due to
the small steps to be taken to avoid leaving the MERP.
However, in the majority of cases the location of the
TS may not at all be a simple task. The other

0166-1280/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved

PI: $0166-1280(99)00465-0



510 Gy. Domotér et al. / Journal of Molecular Structure ( Theochem) 501-502 (2000) 509-518

disadvantage of local procedures is that only a well-
predefined part of the PES can be searched for and
serious problems are arising when bifurcations of RPs
take place or very deep and winding canyons occur on
the PES or if the RP passes through more than one TSs
as it almost surely happens in the case of large
molecular systems. Global methods can “scan” a
wide region of the PES thoroughly and can find simul-
taneously a great number of stationary points,
however, at the expense of countless calculations. In
the following we are going to compare the theoretical
foundations and functioning of the two main families
[1] of global PF methods: the Elber—-Karplus (EK)
method [2] and its improvements [3-6] with special
interest to Chiu’s method [7], and the family of DDRP
methods [8~19]. '

2. Discussion

In a former paper [17] we observed incorrectnesses
in the mathematical formulation of the PF methods
based on the EK strategy. In later articles [20,21]
we carried out a rigorous mathematical analysis of
the foundation of this stratégy and showed through
examples that one cannot expect useful results by
such methods even for mathematical test functions
and small chemical systems, to say nothing of large
molecules with hundreds of atoms and degrees of
freedom. In the present paper we give a short
- comparative summary of the mathematical bases of
the global PF methods under consideration and a new
aspect of their uses.

2.1. Mathematical description

The RP in a given system of N atoms is a smooth
curve C: [0,1] — R* with arc length proportional
parameterization in the coordinate configuration
space R*Y connecting two local minima of the energy
function U : R* — R in a manner such that at each
point C(s) of the curve C, the function U has a local
minimum on the hyperplane H, = {p € R* . (p—
C(0), (d/ds)C(s)) = 0) approaching orthogonally to
the tangent vector of C through the point C(s), when-

ever such a curve exists uniquely. For the sake of
‘ unambiguity throughout this section we are going to
consider only simple systems where the graph surface
of the energy function U admits only one reaction

A: g

valley. EK developed a method [2] for finding a RP
on the basis of the hypothesis that the RP minimizes
the functional

| vislostost s
. (1)
L |0g/3s|| ds

of the energy average for all smooth curves g:
[0,1] — R* with arc-length proportional parameter-
ization joining the two minima of the energy function
U.

We have already proved theoretically [21] that

infA=inf U 2)

and this infimum (i.e. the largest lower bound of the
given infinite set of numbers—the average functional
values) will never be attained if the energy function
has only two local minima (at the configurations of
reactants and products) as is the case in most simple
reactions. Moreover, the RP is no Stationary curve in
the sense of variational calculus. The average func-
tional A if U has only two local minima and the shape
of a curve at low energy average values is in general
very far from that of the RP. Naturally, these results
can easily be extended to local minima of any dis-
cretional numbers. Therefore it can be stated that
the mathematical foundation of the EK method for
searching RP is incorrect.

In this paper we investigate in detail the behaviour
of the original EK method [2] and its best Improve-
ment, i.e. the algorithm .of Chiu et al. [71, and also
provide two further variants (called CHIU1 and
CHIU2) of the latter. The numerical computer experi-
ments lead to the following conclusion: most points of
the resulting polygons are clustered near the points of
minima a, b while the remaining ones can be regarded
as an approximation of some smooth curve between g
and b. Let us consider any procedure & with the
following properties:

1. 2 produces for each n = 2,3,... a polygon C, :=
{ pﬁ”’, s D} with edges (p, pg’fl) of equal length
8, such that p = g, p® = p, ‘ _

2. P, minimizes some approximate form of the func-
tional A for polygons of n equidistant points joining
a with b.

3. There exists a curve C Joining a with b such that

[ N I - T N S ~ -t P —



Gy. Démétir et al. / Journal of Molecular Structure (Theochem) 501-502 (2000) 509518 511

approximately length (C)/§, consecutive points of
the polygon C, lie on C while the remaining points
of C, are clustered at a distance = §,/2 from the
endpoints a and b.

Notice that this. is the case in some numerical
1 methods (e.g. in that of Chiu et al.) which minimize
. some (approximate) path integral average in accor-
1| dance with our numerical experiences. We can esti-
mate the value of &, as follows. Fix n and consider all
v polygons {p},...,p,} of n points possessing the prop-
: erties (1) and (3) with some unknown value 8 instead
‘ of §,.

{  Thené,is approximately the minimum place in the
4 variable & of the estimate numerical path integral
average A,(8) for a d-equidistant n-point of which
| approximately length (C)/8 terms lie on C and the
1 remaining points are located in a (6/2)-neighbourhood
of a and b, towards the direction of the smallest cur-
vature of the graph of U, the direction of the eigen-
1 vector of the Hessian of U. If we write

lE= J (U-minU)ds, ~ L=Ilength(C)  (3)
C

and if U(x) — U(a), Ux) — Ub) = k8 around the

4 minima then

E + <n - %)k(a/z)’z

14,0~

+ min U. 4)
nd
Thus 8, can be estimated as
9, ~[6: A(8) =minAd,] =2 o (5
n

Thus the value 8, which measures the accuracy of the
approximation is proportional to 1/\/z with the
smallest eigenvalue k as follows. The curve C is
near the RP only when @ and b are joined by a narrow
valley. If the RP passes on ridge segments, the curve C
1 will not approximate the RP. In light of the above
observations we can interpret the results so far
1 regarded as positive proofs for the use of the EK
method and its numerical variants as follows. To our
| knowledge all the numerical examples were carried
out with a relatively small number of points n = 10
1 such that length (C)/n =~ §. In case of narrow reaction
{ valleys (as with the Miiller—Brown function [22]) one
1 can really verify that the points obtained lie near the

RP. However, no computer experiments with signif-
icantly larger number of points (e.g. with n = 100)
were formerly reported. From our experiences, in
such cases the resulting sequence of points does not
become clustered quickly in contrast with previous
expectations suggested in the literature. In particular,
even if the points outside some neighbourhoods of the
minima fit the RP well, only the highest SP on the RP
can be expected identifiable with some member of the
resulting point sequence of an accuracy proportional
to 1/4/n. Thus by increasing the number of points we
can only slowly improve the density of the sequence
below a critical and practically non-negligible value
(denoted above by §,) even in the most harmless case
of a uniquely deep narrow reaction valley. We remark
that our DDRP method provides an equidistant
sequence distributed on C and hence it gives an
accuracy &, = length (C)/n for the same numerical
effort in the case of n points.

In worse cases with ramified reaction valleys and
ridge sections on the RP (as with the “catechol” func-
tion) the approximating point sequences cannot
“climb” up to these ridge sections because moving
towards them with the point sequence the energy
average associated increases. In such cases the result-
ing sequence of points can pass arbitrarily far from
some SPs located on the RP.

2.2. A short comparison of the methods based on the
EK strategy and the family of DDRP methods

2.2.1. The EK strategy
The general problem is to minimize the line integral

1 (R
SR, R = = | [ER)-dER)], (6)
L Jg,

of the EK method [2] where E(R) is a function (the
total energy of the system in the Born-Oppenheimer
approximation) dependent upon the N-dimensional
nuclear position vector R. d€(R) is a line element
on the path L of length L between the initial and
final configurations R; and Ry. To find the path L
that minimizes S(R;,Ry), a discretized form of the
line integral

1 M+1
SRy Ry = 7 > ER)AL, (7
j=1

2
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Fig. 1. The entire path of the SB (“catechol™) function as calculated by the DDRP method, starting from the open tetragon joining the minima
M3, My, M, and My, as indicated by the broken line, showing the seven critical points and the two bifurcations (100 points).

is employed which includes M intermediate grid
points. For eliminating the problems arising from a
straightforward minimization of the discretized form
of the line integral two penalty functions as
constraints have been introduced. Unfortunately, the
minimization of the original EK functional was found
to be extremely sensitive to the choice of the para-
meters in the penalty functions, and later amendments
[3~6] of the original EK method [2] did not set the
method free from its inherent basic problems essen-
tially. To overcome the problems remained Chiu et al.

[7} evenly distributed the grid points along the path,

nevertheless, also they minimized the discretized line
integral.

2.2.2. The DDRP method

The algorithm for the simplest case based on the
theory [8—10] is characterized by the following steps.
Given a curve connecting two local minima of the
energy function, the phase flow of the negative
gradient takes it to converge to some sequences of
the steepest descent (and ascent) paths between the

two minima. In practice the successive phase curves

can be approximated by the following algorithm.
Choose Py, ..., P, to be consecutive points represent-
ing a polygon C. First calculate the effect of the flow

of —VU on the points for some (@irtual) time. Thus we
have to calculate the solutions of the ordinary differ-
ential equation (d/dr) x(f) = —VU(x(r)). After some
steps we homogenize the polygon by placing further
points on or taking off in order to maintain the
distance between the consecutive points approx-
imately equal. The procedure consisting of two alter-

- nating steps (the production of a new approximation

polygon followed by its homogenization) is continued
by iteration and stops when the changes between two
subsequent approximation polygons remain within a
predetermined limit. The DDRP method does not start
from the line integral or its discretized form and does
not use penalty functions as constraints. The use of
such criteria leads in the EK method and its sequels
[2-6] to the controversial results we argue against.
Chiu et al. [7] also starts from the line integral or its
discretized form and use minimization. However,
instead of employing penalty functions they introduce
a redistribution of the grid points. Unfortunately, this
redistribution is essentially the same as the homo-
genization procedure described earlier in Refs. [8-

_12]. On the other hand, instead of the minimization

technique, the DDRP method is using the negative
gradient to guide and contro] the shifts of the points
thus giving uniquely the really safe direction for the
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Fig. 2. Path segment 1 starting from the digon Jjoining the minima M and M, using the'DDRP method (100 points).

PF. Besides it must be emphasized that if calculating
the subsequent new approximation curves by the
DDRP method computation times would be enor-
mously decreased, especially in ab initio calculations,
when we apply analytical gradients. The DDRP
method produces the (n + 1)th approximation curve

0.80

0.30

-0.20

—-Q0.70

ll|lllll‘|llllllllllllll!l!l'lll]llll!lll!lllll

My

from the nth one in such a manner that the progression
takes place in the direction of the negative gradient,
and proportionally to it. The use of Hessians is
unnecessary during the DDRP procedure. Moreover,
complete, exact and unambiguous mathematical foun-
dation exists only for the DDRP method in which the
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Fig. 3. Path segment 1 starting from the digon joining the minima M; and M, using the EK method with parameters A = A’ = 0.0001 (25 points).
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Fig. 4. Path segment 2 starting from the digon joining M, and M, using the EK method with parameters A = A' = 0.1 (25 points).
mathematical basis and the numerical realization are mathematical reformulation [24]—it may give a
in consistent union and the result of the search is useful additional description of the RP.

always a true SDP. Here we want to draw the attention

to a new path concept occurring in a more recent

version ‘based on the EK strategy [23]. Although the 2.3. Comparative results

path found by Olender and Elber is not a true SDP (as

stated by the authors), nevertheless—after proper As a test example the Stach6—Bin (SB) function
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Fig. 5. Path segment 3 starting from the digon joining M, and M; using the EK method with parameters A = \' = 0.1 (25 points).
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Fig. 6. Path segment 4 starting from the open tetragon joining the minima M, M;, M, and M,, as indicated by the broken line, using the EK
method with parameters A = A’ = 1 (31 points).

[8-10] ‘ has been employed. This is a two-variable mathema-
‘ tical function which has four minima (M,, M,, M3 and
flx) = n [ — ((-—1)1,(—1)"‘)[[2 My at(—1,1); (1,1); (=1, — D)and (1, — 1), three SPs
k=01 (SP;, SP, and SP;) at (0, 0.37213), (0,0) and
5 3 5 3 (0, — 0.37213) and two symmetrical bifurcations at
R CTE Yl Co R Y ) SP; and SP;, and it simulates quite well the
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Fig. 7. Path segment 1 starting from the digon joining the minima M and M, using the CHIU1 method. (100 points).
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Fig. 8. Path segment 2 starting from the digon joining M, and M, using the CHIUI method (100 points).

conformational change in the catechol molecule. We
tried to find the entire path (Fig. 1) from different
starting polygons using three different global PF
methods: the EK method [2], Chiu’s method [7] and
the DDRP method [8-16]. For minimizing the dis-
cretized form of the line integral in the methods of
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EK and Chiu et al. the Powell minimization technique
[25] was used. For the DDRP method only two trials
(displayed in Figs. 1 and 2) were made regarding that
the remaining cases had already been discussed in
Refs. [8,10]. The EK method was employed in its
original form and in the legends of figures the
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Fig. 9. Path segment 3 starting from the digon joining M, and M; using the CHIUI method (100 points).
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Fig. 10. Path segment 4 starting from the open tetragon Jjoining the minima M,, M|, M, and M,, as indicated by the broken line, using the CHIU1

method (100 points).

parameter values and the number of points used (in
parentheses) have been indicated. Four trials
(displayed in Figs. 3-6) starting from different
minima connected with one another (indicated by
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broken lines) have been made. Since the original
Chiu algorithm has not been described with proper
thoroughness the principles of the method was used
to prepare two algorithms on our own, denoted by
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Fig. 11. Path segment 4 starting from the open tetragon joining the minima Ms, M, M, and M,, as indicated by the broken line, using the CHIU2

method (100 points).
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CHIUI1 and CHIU2. In CHIU! the discretized line
integral in the form modified by Chiu et al.

1 %EER) + ERy_y ))

SRo, R+ = 7 ]:ZI 5 AL, (9)

was used, and employing two constraints (fixed
endpoints and equilateral approximation polygons)
was minimized by the Powell method [25]. In
CHIU2 the PF procedure used in the DDRP method
was applied to Eq. (9). In this case we have not used
minimization, however, we carried out instead the
redistribution of the grid points along the path. Four
trials for CHIU1 (Figs. 7—-10) and one trial for CHIU?2
(Fig. 11) are shown.

As one can see from the comparisons of the RPs in
the figures only the DDRP method could produce the
entire path with all its exact characteristics, starting
from an open tetragon (Fig. 1). From the same starting
position neither the EK method nor the Chiu variants
could reproduce the entire path, and no points of the
curves are even in the vicinity of the SPs (see Figs. 6,
10 and 11). The DDRP method starting from a digon
connecting M, and M3 reproduces the central part of
the SB function with all the three SPs (Fig. 2) however the
EK and Chiu’s methods do not (Figs. 5 and 9). Nothing
better comes out when starting from other minima (see
Figs. 3,4, 7 and 8). The points of the final curves are quite
far from those of the true RP and from the SPs.

3. Conclusion

-

Our numerical computer experiments have shown
that a single global PF method (from amorig the three
investigated ones) has the ability to reproduce the
entire true RP with all the critical points and bifur-
cations while the final curves produced by the other
two methods (the EK method and the method of Chiu
et al.) pass quite far from the true RP and no points of
them get in the proximity of the SPs. This fact clearly
indicates the superiority of the DDRP method over
other global PF methods.
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