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CRAMER-VON MISES STATISTIC
S. cs6rRGS - L. sTacub

1. INTRODUCTION

The present note is a continuation of [13J. The
notation used there will be kept here. Let us first
review these notations. Ul""’Un denote independent
r.v.-s uniformly distributed on [O0,131, and Fn(t) the
empirical distribution function of this sample. wi =
= né(Fn(t)—t)zdt is the Cramér-von Mises statistic, and
VH(X) = P(wi < x) is its distribution function, while
fn(t) denotes the characteristic function of wi. Let
v(x) be the (limiting) distribution function of the
square integral of the Brownian bridge process. As a
starting point in [I1], the first author has given a
complete asymptoticiexpansion for the Laplace-Stieltjes
transform of Vn(x)—V(x) in powers of %, and then tried
to invert this expansion, without reaching the final goal.
The last result (Theorem 3) of [11 reads as follows: For

a natural number s and positive number ¢,



(%1 !
: 2 1k - 5(s+1)+¢
(1.1) v (x)-v(x) = k.zl ()74, (x)+0(n )+

+ B¥(s,e)
n
where the coefficient functions ¢k are completely

specified by terms of expectations of certain functionals

of the Wiener process and by the derivatives of V(x)

and
) fn(t)
(1.2)  B¥(s,e) = 0<£ |——ldat),
In
where
T(s+2) (s+4)
r =T (s,e) = {t: n < el <
1
-e+ +(s+1)
< n 2 1.

Thus, in order to prove the asymptotic expansion
in question, it remained to prove that Bﬁ(s,e)

— + + . .
(s+1)/2+e ). Unfortunately, we still cannot estim-—

= 0(n
ate Bﬁ on this desirable way. All we can do now is a
first step in this estimation procedure, the result of
which will be another form of the remainder term in
(1.1). This new form (derived in Sec. 2) lends itself
for further analysis better than Bi of (1.2), and
results from the fact that Vn(x) is (exactly) entier
% times continuously differentiable. The latter fact,
in turn, is a consequence of a recurrent formula for the
n—-dimensional volume of the intersection of an n-dimen-
sional simglex and an n-dimensional ball. This geomet-—

ric formula (proved in Sec.3) is of independent interest

and provides a good hope to compile tables of exact
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distribution and percentage points for Vn(x) and for
the distribution functions of similar statistics. Some

notes concerning this is contained in Sec.4.

2. THE OTHER FORM OF B;';(s,e)

Denote the ordered sample by Ugn),...,Uén). A

simple integration gives the well-known alternative form

of our statistic

2

n
2 _ (n)_ 2k-1, 1

(2.1) wo o= z (Uk 7 + o

k=1

. 1 2 n
From here it follows that Ton < W, < 3 hence
1 _ ny .

74 (ng) = 0, Vn(3) 1. Let Sn denote the simplex
{(xl,...,xn):O < x, < ... = X, £ 1} in the unit cube of

the n-dimensional real coordinate-space R®. Put
¢ = 1 3 2n-1
n 2n® 2n’° """ 2n

n-dimensional ball with center c, and radius p(x).

y. Let B (c_,p(x)) denote the
n' n
From (2.1) follows that

= pn!
Vn(x) n! . dx ...dxn,

I.. 1
s NB (¢ ,p(x)}
n n n

1+
where p(x) =VV(x— T%;) . Here, for a real number y,
(y)+ = max(0,y). If voln[-] stands for the n-dimen-

sional Lebesgue measure, then this means that
= n! n .
(2.2) Vn(x) n voln[Sn Bn(cn,p(x))]

cneinterior(sn), and the distance of c. from two

faces of Sn is equally —Ly and from the other n-1

2n
faces, equally —l—. Thus, for T%E < x < n+32 , V. (x) =
YIn 12n n
= nilvol [B (¢ _,p(x))], and, if nt3 < x £ ntb , then,
n n n 2 2
12n 12n

to get Vn(x)/n!, we have to subtract the volume of two
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ball-hats from the volume of the ball. For larger «x
the situation becomes extremly complicated, this is why

we do not know exactly Vn(x). If x = g, then
1
C =
Sn_pn(cn,p(x)), and voln[Sn] oo At the ?resent
stage we are interested only in smoothness properties of
Vn(x). It is quite clear that Vn(x) is piecewise

analytic on the whole line. We can have trouble only
n+3 n+6

bl b
12n2 12n2

the ball knocks against the (n-2)~,(n-3)-,..., 1-dimen-

at x = and at all further x's, for which

sional boundary of the simplex. However, in all these
exceptional points the function behaves quite well,
since, from (2.2) and the Corollary to Lemma 10 in

Section 3 it follows

LEMMA 9. Vn(x) is everywhere [g] times contin-
uously differentiable.

A look at the exact results in case of n=1,2,3
shows that this result is sharp.

Now put 6=6(s,e)=%(s+2)(s+4), and let a=a(s,e)
s+ 1

be the smallest integer for which %( -e)+1 £ a. Let

2
(k) ax
n  be larger than 2a, and set V (x)=—— Vv_(x). Then,
n dxk n
integrating by parts (a-1) times,
n/3 :
£.08) = 1 D yax -
n 1/12n
n/3 ,
= -__lEtTA S eltxvéa)(x)dx,
(it) 1/12n
whence
n/3
1 (a) 1
l£ ()] < - S v ¥ (x)ax = — 0 .
n !t!a 1 1/1212 n 1t‘a 1 n



Thus

£_(t) o
dt 2 1

J|E2—lat <0 [, 5= = 0

T t n n? £ a-1 “n n6(a—1)
. 2 0 n— ‘2‘(S+1)+€
T oa-1 n ?

that is
. ) - %(s+l)+e
BT = Bn(s,e) = QDO(n ).

In this way we have the following variant of Theorem 3

in C131:

THEOREM 3'. For any natural number s and positive

number €

Ls/21 |k
Vn(x)—V(x) = kfl (HJ ¢k(x) +
i
- —(s+l)+e n/3
+ 0 ? yis 1 v P Golan,
1/12n

where a depends only on s and ¢.

Thus, to prove the Conjecture in [13, i.e. the
complete asymptotic expansion in question, it would be
enough to show that, for an arbitrary (but fixed) na-

_ n/3 (a)
tural number a, the sequence @ = J !V (x)!dx
n n
1/12n
is bounded. The first reasonable such a 1is a=49. The

boundedness of the corresponding Qn would prove a
one-term expansion, and, in particular, the % rate of
convergence. Quite certainly, there is no difference
between 49 and a general a if we want to solve the
problem, and this estimation question still seems to be

not quite easy.



3. THE RECURRENT FORMULA

Let distk(-,-) denote the Euclidean distance in
Rk. A function S:R” - {subsets of Rn} is said to be
upper semicontinuous if for any € > O there exist a
6 > 0 such that for x,yeRm we have
S(y)E{VERn:distn(v,S(x)) < €} whenever distm(x,y) < 6.
Also, it is said to be concave if for each 0 < g < 1
and  x,yER", as(x)+(1-a)s(y)Cs (ax+(1-a)y).

Let o = (0,...,0) denote the origin of R and
we write simply B” for the closed unit ball in R”

. n -
centered in o. For <c¢€R" and a positive number o

B (c,p) = c+pB”

is then the ball with center ¢ and radius p. For a
real §, f£'(£) denotes the first derivative of a func-
tion f and for t,uGRn, (t,u) stands for their inner

product.
The following result (with n+1 replaced by the

number of the (n~1)-dimensional faces) holds true if
T 1is any (not necessarily bounded) convex polyhedron,

but for our purpose a simplex suffices.

LEMMA 10. If T is any simplex in R, and A (p)=

=voln[TﬂBn(c,p)], then one can find simplices T

s e e
n-1 !

"’Tn+l in R and constants Bn’al" hQ L SO that
n-1
with the functions An_] i(p)=voln_][TinDB ] we have
b
An(p) =
G- n n n+l 0 1
= - IV F
o [B iflui é T An_l’i(/(i a2)F)ag].

Here the value of An-l i(p) equals to the (n-1)-
L4

dimensional volume of the intersection between the i-th
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face of T 4dnd the (n-1)-dimensional ball of radius

o centered at the projection c,; of the center ¢ of
the original n-dimensional ball on the supporting
(n-1)-dimensional hyperplane of the i-th face. Furth-

ermore,

distn(c,ci), if c,-¢ is a non-negative

o, = multiple of u,

—distn(c,ci), if ¢;-c is a non-negative

multiple of u,s,

where u, is the normal vector of the i-th face of T,

pointing outward from T. At last,
0, if cékr
T if cET,

where T, is the n-dimensional spatial angle of the
cone formed by the rays issued from ¢, having an
intersection with T of positive length. In particular,
if ¢ 1is an inner point of T then Bn=volan=

= (DTG ).

PROOF., Without any loss of generality we suppose

that the cernter of the ball is the origin, i.e. c¢=o0,
n
Bn(c,p)=pB .

Let u€R"™ be a unit vector and KERH

be a compact
convex set. Assume that the two supporting hyperplanes of
K which are ortogonal to wu have intersection figures
with K of less than n-1 dimension. Then it is easily
seen that the function f(E)=voln[Kﬁ{t€Rn:(t,u) < £}]

is differentiable and, for all &, £'(g) =
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voln_][Kﬂ{t:(t,u)= £3]. From here it follows directly
that if u,,...,u €r”™ are unit vectors with u.#*u
1 m b k
(j#k) such that the intersection figures of K with
those of its supporting hyperplanes lying orthogonally
to some of the ui's (i=l,...,m) are of less then n-I

dimensions, then for the function F:R™ = R defined by

(3.2) F(El,...,Em) = voln[KﬂA(gl)n...ﬁA(an)],

where A(Ei)={t:(t,ui) < E;l.}CRn (i=1,...,m), we have
3F
agi = voln_l{KﬂA(gl)ﬂ...ﬂA(gi_l)ﬂ

(3.3)

ﬂ{t:(t,ui)=£i}ﬂA(£i+l)n...nA(£n)] (i=1,...,m).
. . . . aF
Now we claim that the partial derivatives 5EL
in (3.3) are continuous on the whole Rm. Indeed, Fitn
the notations Dj(El,...,Em)=A(Ej), Ej(El,...,gm)=

={ti{t,u.)=£.} and k(g or
J J

agi

can be considered by (3.3) as the (n-1)-dimensional

1,...,Em)=K, the function

Lebesgue measure of the intersection of the set-valued

concave and upper semicontinuous functions DI(-),...
aF

""Di_l(.)i D me(.)yEi(') and K('). ThUS e

i+1’ e d¢g;
. n
1s the voln measure of some compact convex R -subset

-1
valued concave and upper semicontinuous function on R
Hence, by the well-known Brunn-Minkowski theorem (e.g.

in £231) one can write

9F
7L, = voln_l[K(F,l,...,Em)ﬂEi(EI,---,Em)n
m
D.(E ,...,E )] =
j=1 b 1 m



n-1 .
R G 0 B N S Ll

. m
0 elsewhere in R,

m

where Qi={x€Rm:K(x)ﬂEi(x)ﬂ n Dj(x)#¢} and Gi is some
j=1

suitable continuous concave function on the compact

convex domain Qi. Now our assumption on the vectors U,

clearly ensures that Gi vanishes on the boundary of

Qi which, in turn, shows the continuity of the func-—
OF

3E,
totally differentiable at any point of rR™.

tions Consequently, the function F in (3.2) is

In what follows, let K=Bn, m=n+1, and let the
vectors ul,...,un be the normal vectors of the. faces
of the given simplex TERn, directed outward from T.
Denote by T? the face of T orthogonal to uss and by
E? the supporting hyperplane of T?. Let o? be the
(orthogonal) projection of o (the origin of rR™) to
E?, and define o, by o.= (u,,o?) (i=1,...,n+1). By

i i
(3.3) we have for p > O that

__i(__ll___ = _i(_]; Voln[ Tﬁan] ) =

Y

d 1 n
= —r =
3 (vol [—TNB ])

T Bl W L1

PECECSEIEY

do p p
n+l ai

- — vol Tt =2
i§1 02 n—I[B {t:lt,u) p}n

n+1 o,
NN felt,ud<s ~431 =
j=1 J p
n+1 o .

n
— N{t: Y = a,iN
n+1V01n—l[pB {t (t,ui al}

I p

1



n+l e
nn {tx{t,urs 0.}] = -3
=1 J 7 :

1 o,

i % n
(hn

ey VOln-][Ti pB].

i=1 p

oo n . .
Observe now that T;ﬂpB here can be written in the
KN oo o Il - ole
form T;ﬂ(Ezﬂan) where EzﬂpB is a ball of center o;

and radius sz—ai in the (a-1)-dimensional affin sub-

O > = g1 % :
space E7 if p 2 [ai[ dlstn(o,oi), and is ¢ for
0 < p < [ai . Hence, considering an isometry H,:E, =~
- . % -1 .
- g™ ], with Hi(og) = o €r” (i=1,...,n+1) (other~
wise arbitrary), for the choice T, = Hi(Ti) we have

*Mn Tl = *n,pH =
voln_I[Ti pB] voln_l[Hi(Ti pB )1

2 2.+ _n-1 .
= voln_l[TiHV(p -a;) B 1 (i=1,2,...,n+1).

Hence, the case c¢=o0 of formula (3.1) follows with

B = lim(A_(p)/p™) = lim vol [ 7npa"],
n n n
px0 p20
i.e.,
0, if o¢T,
B =
n 1
= Tn, i1f o€rT,

where T is the n-dimensional spatial angle of the
cone (0,2)xXT. But then the lemma also follows in the
stated generality.

Viewing now the volume as a function of the radius

we immediately have the following

COROLLARY. A (p) is d(n) = [%] times contin-

uously differentiable.



N
PROOF. For =n=1, d(n)=0, i.e. the claim is only the

continuity of Al(p), and this is true. Suppose that for

some k 2 2 the assertion holds for %k-1. This means

that the functions Aéfszl) (i=1,...,k+1), the deriv-
b
atives of order d(k-1) of Ak—l i exist and continuous.
H]
It follows then from (3.1) that Ak is d(k-1)+1
(= d(k)) times continuously differentiable over the set
[ 2 2.+
@ RN . < - =
(0,)\{o,, 0,43 For & <, Ak_l,l.(]/(ﬁ @) ) 0,
and to prove that Ak is d(k) times continuously
differentiable also in the points UpsenesOp s it is
enough to show that
(3.4) lim A(d(k).'l)( E2°52) = 0 (i=1,...,k+1),
k-1,1 i
Ena
i
. _ k- .
But, by (3.1) again, Ak—l,i(T) = Ck-],iT with some
constant Cro1.1° if t 1is small enough. Hence, to show
s
(3.4) is the same thing as checking
N k-1
(3.5)  1lim (e%-a?)y 2 =0 (veato-1[%]-1).
v 2
Exo  dE
But
y k-1 [%]—I k-t
7 2 2. 2 2 2, 2
S—(g%-a") = T p.(E)(E°-a") ,
dg j=1 7

where the pj'—s are some polynomials, whence (3.5)
follows, By induction the Corollary is proved.

Taking the simplex Sn of Section 2 as an example
we see that the Corollary cannot, in general, be improv-
ed. On the other hand, we saw that we have troubles with
differentiability in those p's only, where the ball
knocks against different dimensional (n~1,n-2,...,n)
faces of the boundary of the simplex. In fact, it is

easy to prove that An(p) is piecewise analytic on
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(0,=).

4, COMMENTS ON Vn(x)

Because of (2.2) and Lemma 10, Vn(x) has the

following form

Vn(X) = n!An(p(X)) =

(4.1)
n+l p(x)
=" ({8 - o, [ ——h (V(EZ=a2)¥) ak)
n . i n+l " n-1,1 i ’
i=1 0 g
1
=/ =TT : o =a,. = - .= -
where op(x)=Y(x-1/12n)7; @ =0,=5—, 0y LT
1
—/jn’ An—l,l—An—l,Z’ An-l,3-"'_An—1,n+l and 8n a
=nn/2/F(% +1), since c is an inner point of S - It

is easily seen that Sn do not have obtuse angles. It
follows then, that the projections of c. will be inner
points of the (n-l1)-dimensional faces, the projections
of these projections will be inner points of the (n-2)-
~dimensional faces of the (n-1)-dimensional faces, etc.
So, when evaluating A ,i(/T23?&§7¢) by (4.1), the

n-1
corresponding constants B ., will again be the

-1,1
volume of the (n—l)—dimens?onél unit ball i=1,...,n+1,
and all the corresponding constants @ (ij=1,...,n)
will be positive, and this phenomenon ig persistent with
the decrease of dimension. In this sense the recursion
in (4.1) is "homogeneous'. But one also notes that in
the second step it will not be true that two of the
a's is the same and the rest is again the same (i.e.
the ball reaches two faces at the same time, and, a bit
later, it reaches the other faces again at the same

time). This "regularity" disappears after the step, as
g

seen starting out from three dimensions.
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Much work has been done to compile tables of percen-

tage points for wi and similar statistics, in partic-
ular by STEPHENS. A survey and comparison can be found
in KNOTT [£33. In fact, Knott's results are proved to be
the most accurate. All these results, tables, are based
on some kind of approximation of Vn(x). In principle,
formula (4.1) gives the possibility of the exact tab-
ulation. Lemma 10 is also applicable for other similar
statistics, e.g., for the Mﬁ statistic of Durbin and
Knott. n=20 seems to be accessible on a computer.
Unfortunately, our computer facilities here are not

adequate at present to do this work.
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