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ON THE SPECTRUM OF INNER DERIVATIONS
IN PARTIAL JORDAN TRIPLES

L. L. STACHO*

1. Introduction.

Let D be a bounded balanced domain in a complex Banach space E. In contrast
with the fact that the complete holomorphic classification of bounded domains of
general type seems to be hopeless, Kaup-Upmeier [9] proved that for bounded
balanced domains holomorphic equivalence is the same as linear equivalence.
They achieved this result by a systematic study of the group G of all biholomor-
phic automorphisms of D, which makes it possible to give further refinements of
this statement. They showed there exists a closed complex subspace E, and
a continuous real trilinear map

E X Egx ESE (x,a,y)— {xa*y}

symmetric complex bilinear in x, y and conjugate linear in a such that, regarding
holomorphic vector fields as differential operators [ 7], for every a e E, the vector
field (a — {xa*x})0/0x is complete in D and that furthermore

G = GL(D)- {exp[(a — {xa*x})d/0x]: ae Eo}, G(0)= DN E,

where GL(D):= {x€ GL(E): «(D) = D}. It would be a remarkable step, also with

a possible independent interest in theoretical physics, characterizing those triple

products which arise from the biholomorphic automorphism group of some

bounded balanced domain in the above way. It is well-known [4] that the triple

product {*} satisfies the following topological algebraic postulates

(J1) {E¢E}Ey} < E,

(12) {ab*{xy*z}} = {{ab*x}y*z} — {x{ba*y}*z} + {xy*{ab*z}}
(a,b,yeEy,x,z€E)

(I3) ada*eHer(E) (acEp)

where a (J b* is the operator x+— {ab*x} and Her(E) stands for the family of all

E-Hermitian operators [2]. Such algebraic structures are called partial her-

* Supported by the Alexander von Humboldt Foundation
Received December 27, 1988; in revised form May 3, 1989



ON THE SPECTRUM OF INNER DERIVATIONS IN PARTIAL ... 243

mitian Jordan triple systems or partial J*-triples (resp. J*-triples if E = E,) for
short in the following. We say that a partial J*-triple (E, E,, {*}) is positive if for
every a€ E, the spectrum Sp(a [J a*) is non-negative and geometric if all vector
fiels (a — {xa*x})0/0x (ae E,) are complete in some bounded balanced domain
in E. In 1983 Kaup [8] settled the case E = E, completely: A J*-triple is
geometric if and only if inf),, -, || {aa*a|| % 0 and

(1.1) 0=Sp@0a*) =3Q,+1Q, (acE=E,)

where Q,:= {0} U Sp(a O a* | Cy(a)) and Cy(a) is the smallest a [l a*-invariant
subspace containing a. It was a far-reaching consequence of (1.1) that the
Harish-Chandra realization of a bounded symmetric domain in a Banach space
is always convex [7], [8].

The proof of (1.1) uses some properties of the quadratic representation which
are not available for arbitrary geometric partial J*-triples. The aim of this paper
is to develop a technique based on the ultrapower imbedding due to Dineen [5]
to the study of the spectrum of the inner derivations a (I a*. As main result we
prove the following:

THEOREM 1.2. Every geometric partial J*-triple is positive.

The idea of the proof is the observation that a suitable ultrapower extension
[5] of the abelian family {b [J b*: b & %,(a)} admits convenient joint eigenvectors
and its span is linearly homeomorphic to %,(2,) by a mapping which can be
factorized through the tensor square of the Gelfand representation of %o(a). With
this method we give also a new and Jordan theoretically very simple proof for
Kaup’s spectral estimate (1.1) for geometric J*-triples. .

The analog of (1.1) for arbitrary geometric partial J *-triples is false: To every
p>0 the space C2 endowed with the triple product {({,,&,)(a, 0)*
(€2, 82)} 1= #1051 &y + L2€1) p) defined on C? x (C x {0}) x C? is a geo-
metric partial J*-triple corresponding to the 2-dimensional Reinhardt domain
{(&, O 101 + 1&1*7 < 1} (cf. [11], [1, p. 162]). Here we have Q41,0) = {0,1} and
Sp((1,0) 01 (1,00 = {1, p}.

2. Joint eigenvectors of box opertors.

Throughout this section let E be a geometric partial J*-triple with triple
product {*} on E x E, x E and assume that D is a bounded balanced domain in
E in which the vectors fields (b — {zb*z})0/dz are complete for all be E,. Let us
also fix ae E, arbitrarily. We denote by T the Gelfand representation [8], [6, Th.
10.38] of %y(a)s i.e. T %o(R,) —— %,(a) is a topological isomorphism such that

Tloxy) = {T@TW*TW)} (. 1¥ %), T =a
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where &(w):= \/Ez; (we,) and %(Q,):= {@ e 4(R2,): 9(0) = 0}. Recall [8] that
Q, 2 0 and that {b U b*: be %y(a)} is a commutative family of bounded E-her-
mitian operators. Define #(a):= Span{b O b*: b e G,(a)}.

LEMMA 2.1. L(a) = %o(a) O %,(a)* and there exists a linear homeomorphism
L: %,(Q,) =— L(a) such that

2.3) Ligy) = T(@) D TW* (0, ¥ € %o()).

PROOF. Let 9:= {¢ € 6,(Q,): ¢ vanishes in a neighbourhood of 0eQ,}. We
may define Lo(¢) := T(¢/&) O T(E)* (¢ € D). It is well-known [4] that

T(p) O T(@* = T(pg/&) O T(&)* for p,qe?:= {odd polynomials of &).

Given ¢, € 2, we can find sequences (p,), (¢,) in 2 tending uniformly to ¢/&2 and
W/&?, respectively. Then Lo(py) = T(py/&) O T(&* = lim, T(¢3p,q,) O T(E)* =
lim, T(&%p,) O T(8?q)* = T(9) O TW)*.  Hence  [Lo(@)ll = [ T($*) O
T('2) | < Mll¢|l (€ 2.)where M := sup{||T(¢) O TO))*|: llo|l = Iyl = 1}
< 0. Decomposing the functions of 2 into linear combinations from 9, , it
follows ||Lo || < 4M. By the density of 2 in %,(£2,) there is a unique continuous
linear extension L: %,(2,) » Z(a) of L, satisfying (2.3). On the other hand every
¢ € 6(£2,) can be written in the form ¢ = @ for some ¢, € %,(Q2,). Hence with
d:= max{|| T|l, | T~"|} we get

d- L@ 2 sup [LHT =

lixlf=1

| I 1
= sup |T(@TW)*T(W} =z sup 7 loval =1l
Hxfl=1 =1
Thus L is a linear homeomorphism. In particular the range of L is a closed
subspace of £(a) and ran(L) = L{oy: ¢, Y € %y(R,)} = T(%(R2.)) O T(%p(R,))*
= %la) U Gla)*

The following fact seems to be known. We sketch a proof because we do not
know a reference.

LEMMA 2.2. Let F be a Banach space and o/ a separable linear subspace of %(F)
consisting of commuting operators and let age L. Then to every approximate
eigenvalue Ao of , there exist a sequence (x,)in F and a continuous linear functional
A on o such that Ay = A(ag) and

“xn “ - 1’ “O(X,, - A(a)xn “ -0 (n —> 0, 0‘6&{)‘

PrOOF. Every aes acts on ¢*(N,F) by (x,)—(xx,) and hence also on
F:= (N, F)/M where M : = {(x,)€£*(N, F):lim, x,, = 0}. Denote this operator
by & Then o := {G:a€ .o/} is a commutative subspace of Z(F). It suffices to
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show that the operators in <7 admit a joint eigenvector in the A, -eigenspace of ot,.

It is clear that Fy:= {Xe F: 3% = 40X} ¥+ 0 and that F, is left invariant by all
Ge . Let (x,) be a dense sequence in 7 and for each neN define an
</ -invariant subspace F, and A, C recursively in the following way: Let 4, be an
approximate eigenvalue of the operator a,|F,_; and let F= {xeF,_,:
&@,% = 4,%}. This is possible since the approximate point spectrum of every
bounded linear operator on a Banach space is not empty [11, p. 310]. The only
thing we have to verify is that

N F % 0.

First we show by induction that F, & 0 (n=0,1,...). Assume F,_, + 0. By
the definition of 1, there is a sequence (%) in F,_, with 1] =1 (keN) and
G, %* = 0(k - 00).Since Fy > ... > F,, wealso have X = 1;%* (0 £ j < n)forall
keN. For any k chose a representing sequence (y5:meN)in F for 2. It follows
that for each £ e N we can find k() such that, by setting z, ,:= yk4), we have

Hznel =11 <27% and |8z, — Aizn ol <¢7' (0 <j<n).

Hence the relation F, & 0 is immediate.

We complete the proof by observing that the vector e F which is represented by
the diagonal (z,,) of the double sequence (z, ,) constructed above satisfies
IZl =1 and &;2 = 4;2 (jeN).

Let % be a non-trivial ultrafilter on N and E% the % -ultrapower of E that is
#%(N, E)/N where N : = {(x,)e/°(N, E): limg, x,, = 0}. The elements of E? are the
cosets (x,)y - = (x,) + N with the norm (xp)all := limg, [|x,]| ((x,) € £°(N, E)). We
regard E as a subspace of E¥ by the imbedding x> (x, x, .. ). Taking E¥:=
{(an)a: (@,) € £2(N, E,)}, the canonical extension

{(xn)%(an ”’lI; i= ({xna;lkyn})"ll ((X,,), (yn) € {m(Na E): (an) efm(N’ EO))

of the triple product makes (E?, EZ, {*}a) into a partial J*-triple. We denote it
also by E” and write simply {*} instead of {*}4. Note that the vector fields
(b — {zb*2)0/0z are complete in the closed set D:= {(z,)q: Z1,23,...€ D} (the
arguments of [5, Th. 97 apply with straightforward modifications). Since these
vecctor fields are locally bounded it follows that they are complete also in the
interior of D.

Since the spectrum of a hermitian operator is real [2], by [11, p. 310] it
coincides with the approximate point spectrum. Therefore we can summarize the
previous results as follows:

PROPOSITION 2.3. Let E be a geometric partial J *-triple and % a non-trivial
ultrafilter on N. Then E¥ is also a geometric partial J*-triple. Given ac E, and
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Ao €Sp(a O a*) there exists a complex Radon measure y of bounded variation on Q,
and O + %€ E¥ such that

(2.4) Ag = fcu du(w)
(2.5) {T(@TW)*x} = ffp!p du % (o, ¥ € %o(a))-

3. Proof of Theorem 1.2.

Assume D is a bounded balanced domain in E in which the vector fields
(b — {zb*z})0/0z are complete for all be E,. Let us fix acE, arbitrarily and
denote by T the Gelfand representation of %,(a) (see Section 2). Let % be
a non-trivial ultrafilter on N and regard E as a subtriple of E% Set
Ap:= Sp(a O a*).

Suppose that 1o < 0. According to Proposition 2.3 choose 0 & $e E% and
a Radon measure p of bounded variation on , satisfying (2.4) and (2.5).

We shall establish that in this case necessarily

3.1) {(X%y(Q.)*%) = 0.

Assuming (3.1) for the moment, we finish the proof of the theorem as follows: We
may assume X € D (defined in Section 2). Then given any @ € %y(Q2,), the solution
Z,: R — E” of the initial value problem

d g S s .
E{Z(a(t) = T((P) - {th(t)T(q))*Z(p}, Z(p(o) =X
must stay in D for all time. One verifies directly [cf. [4]) that for ¢ = O we have

Z,(t) = T(tanh(tg)) + exp [ -2 Jlog cosh(te) du] x.

Since D is bounded, this means that sup {exp[ —2 flogcosh(y) dul: v € 6o(Q.)+ }
= sup{exp[— [P dul: p € %(2,)+} < co.Hence [ du = 0(¢h € %(8,)+) which
contradicts (2.4).

PROOF OF (3.1): Choose & > 0 such that || T(¢) O T(@)* — a [l a*|| < —Ao/3
for all pe%,(R,) with o — & £ 6 where &:= \/;(—i on Q,. Since %,(Q2,) =
Span { € %,(€,): diam suppy < 8}, it suffices to see that {£T())*X} = 0 when-
ever the support of y € %,(£2,) has diameter < §.

Let I:= (4,4 + 6%) = R, be an interval of length 62 and \ € %,(£2,) such that
suppy < I. Let ¢ denote the function ¢(w): = length([0, w]\I)*? (weQ,) and

define b := T(p),e:= T(y). We have o(I) = ﬁ and hence (b (1 b¥)e = T(p*}))
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= 1 e. On the other hand, (b O b*)% = % where : = flol* duand [Ag — 5| =
@O a* — b ObMEY/IZ] < lla Oa* — b0 b*| < Ay/3 since lo — &l £6.1In
particularn < 24,/3. Observe that, by (J2), the eigen-subspaces S(x):= {je E%: (b
O b%)j = kj}, So(k) := {F e EY: (b O b*)j = )} satisfy
{80c1)S0(1c2)*S(xc3)} = S(rey — 1, + K3) (k1,2 k3 €R).

In particular {Xe*X} € {S#)So(A)*S(n)} <= 2 — A). According to Sinclair’s The-
orem fla O a* — v id|| = radSp(a O a* — v-id) = v — min Sp(a 1 a*) and
similarly [|[b O b* — v-id| = v — minSp(b [I b*) whenever v 2 |la [0 a*||,
ib I b*||. By the triangle inequality it follows |min Sp(a O a*) — min Sp(b (I b¥)|
SllaOa* —bOb*| < —Ag/3. Hence 2y — A < 2 < 40/3 < min Sp(b (1 b*).
Thus (27 — 2) = 0 which completes the proof.

4. New proof of Kaup’s spectral estimate (1.1) for geometric J *-triples

Let Eo = E be a geometric J*-triple and fix a€E, 1,e Sp(a O a*) arbitrarily.
Choosing any non-trivial ultrafilter % on N, from Proposition 2.3 we see that
there exists a Radon measure of bounded variation on Q, and 0+ XcE?
satisfying (2.4) and (2.5) where T is the Gelfand representation of %o(a).

Consider any ¢ € 6,(,)+ and sete:= T(¢). Since E% equipped with the binary
product u e v:= {ue*v} is a commutative Jordan algebra, by [3, p. 145. (3.3)] (or
for an elementary proof see [6, Prop. 10.42])

{{{ee*e}e*e}e*s} = 3{{ee*e}e*{ee*%}} — 2ee O e¥)3%
{T@)T(e)*3} = 3{T@I)T (@) T(P) T(@)*3}} — AT() O T(p)s

Hence from (2.5) we obtain

3
J(pﬁdu = 3f<p“duf<p2du = 2<f¢2du) (¢ e%(2,)+).

Given a compact subset S<, we can find a bounded sequence
®1, 92, - - €%6o(£2,) 4 converging pointwise to 1g. Therefore

1(S) = 3u(S)> — 2(8)°
4.1 #(8)e{0,3,1} (Scompact c ).

This is possible only if the support of i consists of at most 2 points, and hence
(4.1) and (2.4) entail 1,e3Q, + 1Q,.
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