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Abstract

We study the natural partial ordering in the set of all tripotents of a real JB*-triple. We prove
some characterizations of real-minimal tripotents and an atomic deocmpostion theorem for real
IBW*-triples is given.

1. Introduction

The class of complex Banach spaces called JB *-triples has been the object of intensive investigations
in the last two decades. By Kaup’s Riemann mapping theorem [14], a holomorphically symmetric
bounded domain is holomorphically equivalent to the unit ball of some complex JB*-triple and,
conversely, the unit ball of any complex JB*-triple is a symmetric domain. This fact made it possible
to apply complex geometric arguments very successfully in the study of complex JB*-triples as well
as the standard techniques of functional analysis. In particular a deeply elaborated geometric theory
of dual complex JB*-triples (the so-called complex JBW*-triples) appeared, shedding new light on
von Neumann algebras and the Gelfand-Naimark theorem.

Recently, considerable attention is paid to real JB*-triples introduced in [13] as isometric
copies of closed real subtriples of complex JB*-triples, objects which can conveniently be studied
as invariant subspaces of conjugations in complex JB*-triples. In this manner several results
concerning complex JB*-triples have been extended to the real case [6,13,15,17].

In the complex case JBW*-triples split into the direct sum of an ideal free of indecomposable
tripotents (called atoms) and the direct sum of a family of Cartan factors, the latter coinciding
with the w*-closed linear hull of all atoms. One of the main purposes of the present paper is the
real analogue of this decomposition. For this first we investigate briefly the natural ordering of
tripotents with respect to orthogonal decomposability. We complete the result of [3, 6, 8] proving
that the minimal tripotents of a real JBW*-triple are the support functionals of the extreme points
of the unit ball of its predual. As a key point to the atomic decomposition we show in particular that
real atoms (indecomposable tripotents in the bidual) are the same as real minimal tripotents in the
terminology of [15] and every real atom is the real part of some complex minimal tripotent from the
complexification. We conclude our work obtaining an atomic decomposition for real JBW*-triples.
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2. Tripotents in real JB*-triples

By a complex JB*-triple we mean a complex Banach space V equipped with a triple product { , , } :
V x V x V — V which is bilinear symmetric in the outer variables and conjugate-linear in the
middle one satisfying

(1) (Jordan identity) {a, b, {x, y, z}} = {{a,b,x},y,2} — {x,{b,a, v}, 2} + {x,y,{a, b, 2}},

(i) L(x,x) is an Hermitian operator on V with non-negative spectrum, and || {x, x, x} || = ||x|]3,
forallx, y,z,a,b € V, where L(a, b) is the linear operator defined by L(a, b)y := {a, b, y}.

A real JB*-triple is a real Banach space E with an R-trilinear triple product whose
complexification admits a (necessarily unique) complex JB*-triple structure with norm and triple
product extending those of E. It is well known [13] that any closed real subtriple of a complex
JB*-triple is a real JB*-triple. In particular complex JB*-triples are real JB*-triples at the same
time.

By a (real complex) IBW*-triple we mean a real (complex) JB*-triple whose underlying Banach
space is a dual Banach space in metric sense. It is known (see [2,17]) that every real or complex
JBW*-triple has a unique predual up to isometric linear isomorphisms and its triple product is
separately w*-continuous in each variable (with respect to the unique weak*-topology induced by
any predual).

Henceforth E will denote an arbitrarily fixed real JB*-triple. We write

E:=E®IE, t:x®iyr> x® (—iy) 2.1)

for the complexification of E and the canonical conjugation of E We shall denote by ||.[|and {, , }
the complex JB*-triple norm and the complex triple product in E - extending those of E, respectwely
Notice that the conjugation 7 is a conjugate-linear isometry of E which is w*-continuous if E is a
JBW*-triple [13]. Given a real or complex JB*-triple U, the elements e € U with {e, ¢, ¢} = e are
called tripotents. We denote the set of all tripotents of U by Tri (). Every e € Tri (U) induces a
decomposition of U into the eigenspaces of L(e, e), the Peirce decomposition

U =Uple) D Ui(e) ® Uz(e), where Ugle) := {x elU:{e,e x}= gx}

are the Peirce subspaces of U associated with the tripotent e. We have the multiplication rules
{Uo(e), Ua(e), U} = {Ua(e), Un(e), U} =0, {Ui(e), Uj(e), Ur(e)} C Uitjx(e)

for i, J. k € {0, 1, 2} with the convention that Uy(e) := 0 (£ # 0, 1, 2). The canonical projection

: U — Ug(e) called the Peirce k-projection of e is clearly a polynomial of L(e, e). If x is
an element of U, we write Q(x) for the mapping given by Q(x)y := {x, y, x}. According to the
Jordan identity, Q(e)® = Q({e, e, €}) = Q(e) for every tripotent ¢ € U. Hence Q(e) induces also
a decomposition

U=Ue)@oU%)0oU () where Uk(e):={xeU: Qe)x = kx}
into R-linear subspaces with the properties
Ure) =U'e) @ U (e), Ue) = Ui(e) ® Up(e)
[Uf(e), Uk (e), Ue(e)] cU™@e) (ke #£0, j,k £ e{0,£1}).
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We write P¥(e) for the natural projection of U onto U¥(e).

‘Two tripotents u, v in U are said to be orthogonal (u L v in notation) if L (u, v) = L(v,u) =0.
Itis well known that u L v <= {u,u,v} =0 <= {v,v,u} = Othatisifu € Up(v)
or v € Up(u). Notice that v + z € Tri (U) with L(v + z,v + z) = L(v, v) + L(z, z7) whenever
v,zeTri(U)andv L z.

Let u, v € Tri (U). We say that u majorizes v in orthogonal decomposability, # > v or v < u in
notation, if u —v € Tri (U) withu —v L v. Henceforth we write min Tri (U) := {u e Tri (U)\ {0} :
Av eTri(U)\{O} v<u# vk

Notice that if u > v with u, v € U, then Ua(u) D Uy (v) and Up(u) C Up(v). Applying the
algebraic argument of [5, Lemma 2.4] we get immediately thatu > v <= Qu)v = Q(W)u =
v < Ulw)oU L(v) and Q(v)u = v. Therefore, the map u +> Ul(u) is a strictly monotonic
mapplng from Tri (U) into the set of all R-linear subspaces of U. In particular, e € minTri (U) if
Ul(e) =

PROPOSITION 2.2 For a non-zero tripotent e in a real IBW*-triple W we have e € minTri (W) if
and only if Wl(e) = Re. In the latter case the Peirce space Wy(e) is a real Hilbert space.

Proof. If e € Tri(W) \ {0} with Wl(e) = Re, then trivially e € minTri (W). Let now e €
min Tri (W). Suppose there exists x € W1 “(eybutx ¢ Re. Itis well known [12, Lemma 3.13]
that the w*-closed complex JB*-subtriple Aof W generated by {e, x} is a commutative complex
von Neumann—*algebra (W*-algebra) whose unit element is ¢ when equipped with the operations

uov = {u,evhu* = Qu, (u,v € A) By the separate w*-continuity of the triple product
in its second variable and since {W1 (e) Wl (e) Wl(e)} = W! (e), Wl(e) is a w*-closed real JB*-
subtriple in 14 containing A := {a € A: = a}. Therefore the real w*-closed JB*-subtriple of

W generated by {e, x} is necessarily A. In partlcular A is a commutative real W*-subalgebra of A
Hence there is a surjective linear isometry

¢:Lp () —> A with ¢(fg) ={8(f),e,¢(8)}, p(la) =e

for a positive Radon measure ¢ on some compact topological space Q. Since ¢~1x ¢ Rlg = ¢~ le,
there is a u-measurable set § such that 4(S), u(Q \ S) > 0. Then, with g; := 1g, g = las,
er ‘= gk, we have e, e3 € Tri(W), e1 L ep and e = ¢plg = ¢(g; + g2) = e1 + ey which
contradicts the minimality of e.

The statement concerning the spin structure of the Peirce space Wa(e) holds in a more general
setting. If E is areal JB*-triple and 0 # e € Tri (E) with E!(e) = Re then E>(e) is areal IB*-triple
of rank 1 in the terminology of [15]. Then, by [15, Proposition 5.4], as metric space Ep(e) is areal
Hilbert space.

REMARK 2.3 In [15] the term real minimal tripotent is used for tripotents with El(e) = Re
in real JB*-triples. This terminology is somewhat misleading from the viewpoint that Tri (E)
carries a natural ordering with respect to which minimal tripotents may have dim(E!(e)) > 1 (for
example, in Cr([0, 1])). By Proposition 2.2 above, for real JBW*-triples the terminology of [15] is
appropriate. We suggest that tripotents in real JB*-triples with E!(e) = Re should be called atomic
tripotents in accordance with the terminology of complex atomic decompositions [7]. Indeed, as a
consequence of Proposition 2.2, an atomic tripotent is minimal (thus orthogonally indecomposable)
even in the bidual embedding of the underlying real JB*-triple.

The last part of this section is devoted to showing that, analogously to the complex case described
in [5], for a real JBW*-triple the natural ordering of its tripotents is faithfully represented by the
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natural ordering of the w*-semi-exposed faces of its unit ball and the norm-semi-exposed faces of
the unit ball of its predual, respectively. Given any real or complex Banach space X with norm |||,
we write B(X) and X™* for its closed unit ball and dual space, respectively. We denote the standard
functional norm on X* by || ||. For polar faces of unit balls we shall use the notation

S ={feBX" : f(x)=1 (x € )} (S C B(X)),
K =xeBX) : f&)=1(fek) (K cC BXY).

We say that F C B(X) is a norm-semi-exposed face of B(X) if F = K, for some K C
B(X*). In case X has a unique predual, we write X, for its canonical predual X, =
{w*-continuous linear functionals of X} as a subspace of X*. Then X is identified canonically with
(X)*asx = [X4 > f > f(x)] for x € X and we say that F is a w*-semi-exposed face of
B(X) if F = §’ for some § C B(X,). We denote by Sp(B(X)) (resp. S+(B(X))) the set of all
norm-semi-exposed faces of B(X) (resp. the set of all w*-semi-exposed faces of B(X) if X has a
unique predual).

Recently Edwards and Riittimann [6] deduced the following order description of tripotents in
terms of faces from the analogous results in complex setting. For the sake of completeness we
include a direct independent discussion in terms of semi-exposed faces which requires a shorter
proof than that in [6].

PROPOSITION 2.4 [6] Let W be a real JBW*-triple. Then the map
D(e) :=e -+ [B(W) N Wy(e)] (e € Tri (W)

is an anti-order isomorphism between Tri (W) \ {0} and Sy (B(W)) \ {B(W)} (with ordinary set
inclusion) and ®(e) = ({e},)’ (e € Tri(W)). The map ®(e) := {e}, (e € Tri (W)) is a surjective
order isomorphism between Tri (W) and Sy (B(W)) \ {B(W,)).

Proof. By [13, Proposition 4.6], the map P is a bijection Tri (W) \ {0} <> Swx (BWH\ {B(W)}.
Letu, v € Tri (W) with 0 5 u < v. In terms of the complexification, alsou < vin W := WD iW.
Hence, by [5, Theorem 4.6],

B) == u+ (B N Wow)) > D) := v + (B N Wo(v)). 2.5

Since > it is easy to see that W N a(v) = ®(v), from (2.5) it follows that &) = W N $(u) D
W N o) = d(v).

Conversely, if ®(v) C ®(u) then v € ®(v) C P(u) = u + (B(W) N Wo(u)). Hence v = u + x
for some x € Wy(u) and therefore u < v.

Given any e € Tri (W), the set ({e},)’ is the least w*-semi-exposed face of B(W) containing
the tripotent e. If ¢ € F € Sy« (B(W)) then it follows u < e and ®(e) C ®(u) = F. Thus
@ (e) = ({e}))'.

Now we can proceed to the proof of the statement concerning the map ®,. Notice that in general,
for any Banach space X with unique predual X.(C X*) we have S, = ((5))), and K’ = ((K")))’
for § C B(X), K C B(X.). Therefore ®(e) = ({e},) = [®+(e)] and ®.(e) = (e}, = [({e}))'], =
[®(e)], € Su(B(W,)) \ {B(W,)} for all e € Tri (W).

If u < v in Tri (W) then, as we have seen, ®(u) O ®(v) and and hence @, (1) = [PW)], C
[® ()], = @.(v). Conversely, if O, (u) C Di(v) then (1) = [ (u)] DO [®L(W)] = P(v)
implying u < v.
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Finally we show that range(®,) D Sp(B(W)) \ {B(W,)}. Let K € Sp(B(Wy) \ {B(W,)} be
chosen arbitrarily. By definition, K = S, for some § C B(W). Since (S,)’ is the smallest w*-
semi-exposed face of B(W) containing S, K’ = ®(u) for suitable u € Tri (W). It follows that
D (K) =[Pw)], = (K'), =[(5))']) = S, = K, that is, K & range(®D,).

Concerning minimal tripotents we complete this result. We are going to prove that the minimal
tripotents of a real IBW*-triple are the support functionals of the extreme points of the unit ball of
the predual.

REMARK 2.6 It is well known [7, Corollary 1.2; 12] that in a complex JB*-triple, the Peirce
projections of a tripotent are contractive. Hence, by passing to comlexification, it follows
immediately that Peirce projections of tripotents in real JB*-triples are contractive. In particular,
if E is areal JB*-triple and e € Tri (E) then the operator

Pl(e) := 1(ldp + Q&) Pa(e)

is contractive, too. In [17, Lemma 2.9] it is shown that if E is a real IB*-triple, e € Tri (E), f € E*
and || f P2(e)|| = || f|| then f = f Pa(e). The following lemma generalizes slightly this result.

LEMMA 2.7 Let E be a real JB*-triple, u € Tri (E) and f € E* such that f(u) = || f|| = 1. Then
f = foPluw.

Proof. By [17, Lemma 2.9] we have f = Po(u)* f(:= f o P,(u)). Let y € E~Yu) ({u, u, Y=y,
{u,y, u} = —y). We may assume without loss of generality that f(y) > 0. By induction we get

@+t =u+ty+00P)  (@¢>0,n=12...).
Therefore, fort > 0,

A+ ONY <l +o1> = 1@+ )> | = u + 1y + 0P|
< 1+elyl+ o,

143"tf () + 0(It?) < L+tyl + O,

3" () + O(lt]) < Iyl + O(eD.

Thus, for ¢ | 0, we obtain f(y) < (1/3")|lyll (n = 1,2,...). It follows that f(y) = O for every
y € E7l(u). Since Ex(x) = EXNu) ® E~'(u) and f = f Py(u), we conclude that f = f o Pl(u).

LEMMA 2.8 Let X be a Banach dual space with unique predual X, let M be a weak*-closed
subspace of X and let f € ext(B(X,)). Assume that P is a (w*-w*)-continuous contractive
projection of X onto M suchthat f = P* f. Then f|y € ext(B(M.,)) (with the usual identifications
X.={f € X*: fw*continuous}, M, = {fly : f € X))

Proof. Suppose that f|y = %(g + h) where g, h € B(M,), thatis, g,h : M — R are w*-
continuous bounded linear functionals. Consider the functionals g := g o P and W:=ho P. Since
P is (w*-w*)-continuous with [Pf} < 1and g,h € B(M,), we have g, h € B(X,). On the other
hand f = foP = (fly) o P = 3(g+h) o P = L& +1). Since f € ext(B(X,)), we get
f =% =k whichentails g = h = f|y, thatis, fly € ext(B(M,)).
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PROPOSITION 2.9 Let W be a real IBW*-triple with predual Wy and let f € ext(B(W,)). Then
{f} € Sa(B(Xy)).

Proof. Using the same argument as in the proof of [17, Lemma 2.10], we see the existence of
some u € Tri (W) such that f(u) = 1. By Lemma 2.7, f = f o Pl(u). Since the subspaces
Wl(u) and kerPl(uw)(= Wou) & W=1(u)) are w*-closed in W and since (see Remark 2.6) we
have || P1(w)|| = 1, we can apply Lemma 2.8 to conclude that flwigy € ext(B(Wlw)))). Itis
well known [13] that Wl () isa JB-algebra in a canonical manner. As being a w*-closed subspace
of W, Wl(u) has a predual and hence we can regard it as a JBW-algebra. By assumption f W)
is a pure state (extremal point of the unit ball of the predual) of the JBW-algebra W!(x). Thus,
by [1, Proposition 3.3], {f lwl(u)} is a norm-exposed face of B((W!1(u)),), that is, there exists
a € Wl(u) such that f(a) = 1 and gla) < 1forall g € B(Wl(u))) \ {flwi@}. Consider
any h € B(W,). Then hlwiy € B((W'(u)),). Thus we have the alternatives h(a) < 1or
Rlwiwy = flwiw)- Assume that hly1y = flyig,. Then h(x) = f(u) = 1 and, by Lemma 2.7,
h = hPl(u) whence

h=hoP'(u)=[hlyiglo P ) = [flwigylo Plw) = fo Plw) = f.
This shows that { f} is a norm-semi-exposed face of B(W,).

As a consequence of Proposition 2.9, if W is a real IBW*-triple and f € ext(B(W,)) then {f} is
norm-exposed, thus ({ f}'), = { f} is a minimal norm-semi-exposed face of B(E,).

COROLLARY 2.1 The minimal tripotents of the real JBW*-triple W are exactly the support
tripotents of the extreme points of B(Wy). That is, f € extB(W,) if and only if f(u) = 1 for
some u € min Tri (W). Moreover, if u € minTri (W) then f(u) = 1 for some f € extB(W,).

Proof. Let f € extB(W,). We have seen that the singleton { f} is a minimal norm-semi-exposed
face of B(W,). By Proposition 2.4, {f} = ®,(x) and hence f(u) = 1 for some minimal tripotent
of W.

Suppose u € minTri (W) and consider any f € ®,(u). We show that {f} = ®(u) and f €
extB(W,).

By the definition of ®.(u), f(u) = 1. Hence {f} € Syx(B(W)) and {f} D [®. ()] = ®(u)
(since, as a folklore result in Banach space geometry, S C¢ T C B(X) implies § D T’ and
S = ((8))"),)- By Proposition 2.4, ® () is a maximal w*-semi-exposed face of B(W) and . (u)is
a minimal norm-semi-exposed face of B(W) with ® (1) = [®.(u)]. It follows that { f} = ®(u).
Assume f = (f1 + f2)/2, where f1, f» € B(W,). Since u € Tri (W), [lull =1, and || f| < 1 we
have | fr(u)| < 1 (k = 1, 2), necessarily

L= f@) = fiw) = o), 1fIW2@)] = Il AIW20)]l = || 2IW2@)]| = 1.

By Lemma 2.7, f = f P'(u) and f; = f; P'(u) (i = 1,2). Since € minTri (W) we have
PL(u)(W) = Ru entailing f; = f» = f.

3. Atomic decomposition

As previously W denotes a real JBW*-triple. First  we establish a relationship between the minimal
tripotents of W and those of its complexification W. The term (complex) minimal tripotent is well
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established in the literature of complex JB *-triples: if V' is a complex JB*-triple then u € Tri (V) \
{0} is called a (complex) minimal tripotent if

Va(u) = Cu @3.1)

without any reference to the ordering < of orthogonal decomposability. Notice that, if V is a
complex JB*-triple and u € Tri(V), then Va(u) = Cu is equivalent to V1(x) = Ru. Similar
arguments to that in the proof of Proposition 2.2 show that indeed min Tri (V) = {u € Tri(V) :
V2(u) = Cu) in any complex IBW*-triple V.

LEMMA 3.2 Lete € Tri(W) be a tripotent with Wl(e) = Re. Then e is the sum of at most two
orthogonal (minimal) tripotents in W.

Proof. If e is minimal in W there is nothing to prove. If e is not minimal, W(e) is a real spin
factor (see the last paragraph of the proof of Proposition 2.2). Hence W2 (e) = Wale) DiWa(e)isa
complex spin factor. It is well known [16] that in a complex spin factor each element of the real part
is the sum of two orthogonal (complex) minimal tripotents being conjugates of each other. Thus
e=v+TV where v € Tn (Wz(e))(C Tri (W)) [Wz(Q]z(v) (Cv and v L rv In pamcular v<e
in Tri (W) Therefore, Wz(v) C Wz(e) whence even Wo(v) = [Wz(e)]z(v)

By [7, Theorem 2], the complexification W of any real JBW*-triple W decomposes
into the orthogonal direct sum (or equivalently £*°-direct sum) of the JBW*-ideals A :=
Span mmTrl(W) and N : ={x e W: L@ax =0 (a e A)} Here rmnTn(N)
and

A= Span(cw* U F for F :={minimal w*-closed complex ideals of VT/}.
FeF

Since the conjugatlon T preserves the triple product and is w*-continuous, 7 (min Tri (W))
min Tri (W), r(A) A and 7:(N )= N. Hence W decomposes into the orthogonal direct sum

W=A"@®N", AT ={xeA: tx)=x}, N :={xeN: T(x) = x}.

Weset o :={F € F: t(F) = F} and ﬁx any maximal subset F; of F \ Fy with the property
t(F) L F (F € Fy). Wedefine 1 := {t(F) : F € Fi}. By [15, Lemma 6.2] we have
A =@®(F_ 1 UFUF).

REMARKS 3.3

1.Ife € min Tri (W), by Lemma 3.2, e is either minimal in Wore = v+ T(v) for some
v € min Tri (W) such that v L 7(v). It is well known [8] that each v € minTri (W) belongs to
aunique minimal w*-closed complex ideal {complex Cartan factor) of w. Therefore, given any
e € minTri (W), there exists a complex Cartan factor F € F of W and a complex-minimal
tripotent v € F such that eithere = v € F,or F = t(F),e = v+ 1t(v), or F L 7(F),
e=1v+ 17(v).

2. If W is reflexive, there is no infinite sequence ey, ez, ... of pairwise orthogonal non-zero
tripotents in W (because their span would be a subspace isomorphic to cg). Therefore, by
spectral decomposition, any element is a finite linear combination of a family of minimal
tripotents in a reflexive real JB*-triple.
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3. According to Kaup’s classification in [15, Theorem 4.1], the real form of a complex Cartan
factor of type < 4 can be written as

{xeL(H,K): Px=x}, PeLlr(L(H K),LHK), P>’=P

such that the real-linear projection P is w*-continuous and maps finite rank operators to finite
rank operators.

LEMMA 3.4 Let H, K be complex Hilbert spaces and let Hy C H, K1 C K be subspaces. Suppose
Z is a real subtriple of L(H, K) (with the triple product {x,y, z} = (xy*z + zy*x)/2). Then
min Tri (Z1) C min Tri (Z) for the real subtriple Z; :={z € Z : z(H) C Ky, z*(K) C Hy}.

Proof. Let e € minTri (Z1). Since the Peirce projection P3(e) has the form Py(e)z = Q(e)?z =
ee*ze*e (z € Z), it is easy to prove that Z;(e) C Z;.

Assume e = e + ey where ej, e; are orthogonal tripotents in Z. Then ej, ey € Zy(e) C Zy
(since e 2 e1, ez in Z). However, by the minimality of e in Z1, either e; = Q or ey = 0.

COROLLARY 3.5 If dim(H;),dim(K1) < oo then any element of Z1 is a finite real-linear
combination from min Tri (Z) N Z;.

Proof. Observe that dim(Z;) < dim(H;)dim(K;) < oo. Thus, according to Remark 3.3 (b),
any element of Z is a finite real-linear combination of minimal tripotents of Z; and the latter are
automatically minimal tripotents of Z.

Now we are in a position to prove our main result.

THEOREM 3.6 Let W be a real IBW*-triple. Then
W=A®°N, 3.7

where A = Spanﬂz*minTri (W), and N :={x e W: L(a,a)x =0 (a € A)} are w*-closed
ideals in W and min Tri (N) = 0. In terms of the complexifications W=WaiW, A:= A®iA
N:=N@®iN we have A = Span(c min Tri (W) and N = {x e W L{a,a)x =0 (a, e A)}

Proof. According to Remark 3.3 (a), if ¢ € minTri (W) then either e € F for some Cartan factor
FeFoporeec F@1(F)forsome F € 7). Observe thate + 7(e) e minTri{x +t(x) : x € F)
whenever F € F1 and ¢ € minTri (F). Since F = Spaan* min Tri (F) for any Cartan factor
F ¢ F and since the conjugation 7 is w*-continuous, (3.7) is immediate in this case.

Let F € Fo. I F is reflexive, that is if F is of Type 4 or finite dimensional (in particular of
Type 5,6) then Remark 3.3 (b) ensures (3.6). Assume F is of Type < 3. Then, by Remark 3.3
(¢), we may assume without loss of generality that F is a w*-closed real subtriple of the form F =
{x € L(H,K) : 6(x) = x} for some complex Hilbert spaces H, K and a w*-continuous (complex-
linear) projection 6 mapping finite rank operators to finite rank operators. Also the conjugation t
maps finite rank operators to finite rank operators. Thus Z := {z € F : 1(2) = z} is a w*-closed
real subtriple of L(H, K). Given any element z of Z, there is anet (z; : i € I) consisting of finite
rank operators converging to z in w*-sense in L(H, K). Then f; := (% + %'L’)(% + %9)2,- g
and f; € {z € Z : rank(z) < oo} (i € I). Applying the corollary of the previous lemma with the
finite-dimensional spaces H; := f;(H) respectively K; := f*(K) in place of H; resp. K1, we see
that any term f; is a finite real-linear combination from min Tri (F). The proof of (3.6) and hence
the proof of (3.7) is complete.
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