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PREFACE

Since the early 70's, there has been intensive
development in the theory of functions of an infinite number of
complex variables. This has led to the establishment of complete—
ly new principles (e.g. concerning the behaviour of fixed
points) and has thrown new 1light on some classical finite
dimensional results such as the maximum principle, the Schwarz
lemma and so on. Perhaps the most spectacular advances occurred
in connection with the 0ld problem of the determination of the

holomorphic automorphisms of complex manifolds.

This bock is based on the introductory lectures on this
latter field delivered at the University of Santiago de Compos-
tela in October 1981 by the authors. Originally, it was planmned
as a comprehensive postgraduate course relying on a deep
knowledge of holomorphy in topological vector spaces and infinite
dimensional Lie groups. However, seeing that some of the
undergraduate students were mainly interested in the study of
bounded domains in Banach spaces, the authors restricted their
attention to these aspects. This proved to be a fortunate idea.
We realized that by combining the methods of the theories
developed independently by W. Kaup and J.P. Vigué with minor
modifications, even the main theorems could be derived. This
was achieved in a self-contained way from the most fundamental
principles of Banach spaces (such as the open mapping theorem),
elementary function theory and the pure knowledge of the Taylor
series representation of holomorphic maps in this setting. It
may often happen in teaching mathematics that avoiding the
introduction of strong tools leads to abandoning natural heu-

ristics. Probably, this is not the case now. It is enough to



vi PREFACE

recall how deeply the early development of the theory of finite
dimensional Lie groups and Lie algebras was inspired in
Cartan's investigation of the structure of symmetric domains.
Moreover, we think that this approach to the automorphism
groups of Banach space domains may also serve as motivating
and illustrative material in introducing students to the
theory of Lie groups and complex manifolds.

The text is divided into eleven chapters. In chapter 0
we establish the terminology, and some typical examples of
later importance (e.g. the M3bius gréup) are studied. In
chapter 1 we show the main topological consequences of the
Cauchy estimates of Taylor coefficients for uniformly bounded
families of holomorphic mappings. These considerations are
continued in chapter 2 and applied specifically to the case of
the automorphism group, concluding with the topological version
of Cartan's uniqueness theorem. The global topological inves~
tigations finish in chpater 3, where the Carathéodory distance
is introduced to obtain the completness properties of the
group AutD. In chapter 4 a completely elementary introduction
to Lie theory begins by showing where one-parameter subgroups
come from. Chapter 5 is devoted to a description of the Banach
Lie algebra structure of complete holomorphic vector fields in
order to lay the foundation of chpater 6, in which the Banach
Lie groups structure of AutD is studied. In chpaters 7 and 8 we
discuss the basic theory of circular domains and determine
explicitly the holomorphic automorphism group of the unit ball
of several classical Banach spaces. In chapter 9 we introduce
the reader to another fruitfully developing branch of these
researches by proving Vigué's theorem on the Harish-Chandra
realization of bounded symmetric domains. Finally, in chapter
10 and elementary introduction of the Jordan approach to
bounded symmetric domains is presented and the convexity of

the Harish-Chandra realization is proved.

We would like to express our sincere acknowledgement to

Prof. L. Nachbin who suggested the idea of writing these notes
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and who, together with Prof. E. Vesentini, introduced the
authors to infinite dimensional holomorphy and this fascinat-
ing branch of mathematics.

Thanks are also due to M. Teresa Iglesias for the
careful typing.

The authors, August 1984.

J.M. Isidro L.L. Stachd
Santiago de Compostela Szeged

Spain. Hungary.
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