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Dedicated to the memory of Prof. I. Joé
On the level set method in minimax theory

L.L. STACHO 1.2

ABSTRACT. Our purpose is to give a unified treatment along with some new
generalizations of a series of non-linear minimax theorems of Sion type involving
one or two functions proved via intersection theorems applied to their level sets,

1. Introduction. Since the appearance of von Neumann’s minimax theorem [14] the
phenomena of inequalities of the type (*) infyex SUPyey fz,y) = sup,cy infzex f(z,y)
attracted mathematicians continuously. The idea of attacking the problem through the
structure of the level sets (L) {z € X: f(z,y) > a},{y €Y : flz,y) < a} appeared
first perhaps in a work of M. Sion [16]: to conclude (*) in topological vector spaces, along
with the continuity of the function f it suffices to require the convexity and compactness
of all the level sets (L). In 1972, Brézis-Nirenberg-Stampacchia [1] established that (*)
holds if each member of (L) is only algebraically closed and some of them is compact,.
Later on, it was shown (7, 18] that this theorem implies Ky Fan’s minimax theorem [4]
and its extended version by Kénig with }-convexity [13] via a bilinear lifting procedure.

Still in 1969 Wu [20] suggested that the notion of convexity should be extended toward
non-linearity: in particular he observed that the system of straight line segments can be
replaced by certain systems of Jordan arcs for the definition of convex sets in a minimax
theorem of Sion type. In 1980 Joé [6] rediscovered Wu's trick in the context of classical
convex-concave functions and his simple proof became popular. The author [17] recognized
that modifications in this proof lead to minimax theorems far beyond the context of topo-
logical vector spaces: the latter can even be replaced by general topological spaces and a
system (called interval space structure) of arbitrary connected sets joining all couples of
points can play the role of straight line segments in a Sion type minimax theorem. In 1989
Kindler-Trost [10] deduced the natural analogue of the Brézis-Nirenberg-Stampacchia the-
orem in the setting of interval spaces and, by introducing the concept of pavements {11],
recently Kindler gave an interesting axiomatic study of sufficient conditions on the level sets
of f leading to minimax theorems. In 1981 Komiya [12] suggested that an abstract convex
hull operation for the purposes of mathematical economy and minimax theory should be
nothing else as a finitely generated monotone singleton preserving closure operation. In
1991 C. Horvath [5] found a theorem which enabled applications of continuous selection
arguments, Brower’s fixed point theorem and Kastner-Kuratowski-Magzurkiewicz type ar-
guments analogous to the familiar ones used in the context of classical linear convexity in
the case of any Komiya type convex hull operation with contractible values for fnite sets
(called now H-convexity in a widespread terminology).

Recently completely abstract minimax theorems without even topology [8,22] and
two functions minimax problems of the type sup,inf, f(z,y) < infy sup, g(z,y) with
f < g [9,3,19 and references therein] turned to focus of attention. Concerning the level set
method, besides positive results, in the pioneering work of Thompson and Yuan {19] an
example appears indicating the limits of the use of successful arguments for one function
minimax theorems in interval spaces. In contrast, very recently Wu and Zhang [21] found
a far reaching two functions minimax theorem in terms of H-convexity of level sets.
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In this paper we present a lemma écalled Metatheorem) which covers the schemes of
the proofs of the above mentioned two functions minimax theorems in interval spaces and
which leads to a new and natural one function minimax theorem. We show that some new
results stated in terms of Chang’s W-convexity (2] respectively in pure terms of topology
involving seemingly no convexity are available by interval spaces. On the other hand, by a
careful logical analysis, we point out that several minimax results concerning H-convexity
can be extended beyond the setting of Komiya type convexity.

2. Generalized convexity

Definition. 2.1. Let X be any set and let s: 9X — 2% be a given map assigning some
(possibly empty) subset to any subset of X . We say that a subset C' of X 1is s-conves
(or we write C s-convex C X if s(Z2) C C (Z C C). We refer to s as the generator
map of a convexity or simply as a convexity on X

A convexity s on X is finitely generated if s(Z) = § for any Z infinite C Z.

A function ¢: X — R is s-quasiconvez if {z: ¢(z) < a},{z: #(z) < a} s-convex C X
(a € R). Furthermore ¢ is s-quasiconcave if —¢ is s-quasiconvex.

Remark. 2.2. The following fundamental properties of s-convexity are straightforward.
1) Intersections of families of s-convex sets are s-convex.
92) The union of an increasing net of s-convex sets is s-convex if s is finitely generated.
3) The map 3§(2) = N{C s-convex C X : C D Z} (Z c X) is a Komiya type
convex hull operation whenever s is finitely generated and s{z} = {z} (z € X).
Conversely, a finitely generated convexity s : 9% 2% is a Komiya type convex hull

operation if and only if s{z} = {z} (z € X ) holds along with the monotonicity
property s(A) Ds(B)D> B (X DADB).

The postulate s{z} = {z} (z € X) seems to be superfluous even in several typical
applications of Komiya type convexities as we shall see in the context of generalized
H.-convexities. One of the key observations in [20,6,17] giving rise to several KKM-type
arguments can immediately be generalized to s-convexity as follows.

Lemma. 2.3. Let f: XxY—R, s 1 2Y 5 2Y | Given o€ R, equivalent statements are
@) {y: filz,y) € a} s-quasiconvex CY forall z € X,

() K@) < Usez Kx(a)(z) whenever y € s(Z) and ZC X .
In the sequel we shall be interested in the following two extreme types of convexities.

Example. 2.4. 1) Convegities of interval spaces. Recall [17] that an interval space is a
topological space X equipped with a map [, ]: X x X — { connected subsets of X}
such that a,b € [a,b] = [b,a] (a,b € X). For a,b € X, the figure [a,b] is usually called
the interval between the points a,b and a set C C X is convex (with respect to interval
structure [, |)if {a,0] C C (a,b€ C). Clearly, theset C is [, |-convexiff it is s-convex
for the finitely (actually binarily) generated convexity

s{a,b} :=[a,b] for a,b€X, s(Z):=0 for #Z#2 or #Z#1 .

In [10] even the axiom of symmetry [a,b] = [b,a] is relaxed, however, the symmetric
interval structure (a,b) := [a,b}U [b,a] (a,b € X) leads to the same convex sets as (.1
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Convex sets in Chang’s W-spaces [2] can completely be characterized as s-convex
sets for some finitely generated s: 9X , 9X with connected values with respect to some
topology on X such that s(F) D F (F finite C X) and s(@) = 0. By passing to the
truncated generator function s2(Z) := [s(Z Vif #2<2, 0 #2> 2] we get the convexity
of an interval space such that { s-convex sets} C { srconvex sets} . Thus, since interval
spaces can also be regarded as W-spaces, interval structures are order dense among W-
structures on a given set with respect to the ordering by inclusion of the families of convex
sets. Therefore a statement is valid for all W-spaces if and only if it holds for all interval
spaces. In particular the setting of interval spaces is sufficient to deduce Sion type minimax
theorems with W-convexity.

2) Generalized H-convezity. By a generalized H-convexity on a topological space X
we mean a finitely generated convexity s : 2X — 2% such that

s(Fy:i=  |J wolbp)  (F finite C X)
FCG finiteCX

for some family & := {pp: F finite C X} of continuous mappings ¢F : Ap — X where
Ap is the standard notation for the abstract simplex

Ap::{(/\,: zEF): 0< A (z€F), ZIEF /\,=1}
with vertices in F . According to a celebrated theorem of Ch. Horvath {5], in our ter-
minology, given any finitely generated convexity S : 2X — {connected subsets of X }
with F C S(F) € §(G) (F C G finite C X), there exits a generalized H-convexity
g*.9X — 92X such that {S-convex sets} C { S™-convex sets} . Obviously, pseudoconvex
spaces in the sense of [9] are generalized H-spaces.
3. Two functions minimax theorems on interval spaces

In general, let X,Y be any non-empty sefs and let (4,>) be an index net directed
upward. For any index « € A, let K@ L{e) be setvalued functions ¥ — 2% such that

1) K@) c KO (y), L) CLO(y), 0# KD (y)CLD(y) (a>F ye¥).
Let K = {MNayerK W) : F finiteCAXY}, £:={(Vaperl!®(y) : F finite CAXY} .

Lemma. 3.1. (Metatheorem). Suppose I: Y xY — 2Y is a mapping such that
9) L)N(z) C L@(n) UL (ye) (2 € I(y1,2), @ € 4);
8) KCI,U'Ly, = KCLior KCL (K€K Ll €L, LinLy=0);
4) f KeK L1, Ly el, a€A, y1,y2 € Y and i:I(y1,y2) — {1,2} then
L;NLy=0 and KNK®)(y) C Lyyy (y€Y) imply y)=1or i(y) =2,
5) m(Omy)EFL(m)(?‘v’) #0 implies ﬂ(a,y)epK(a)(y) #0 for F finiteC AXY .
Then § ¢ K, that is the family K has finate intersection property.
Proof. Let n := inf {#F 14 »erL®(y) # 0, F finite C AxY}.Byl), n>1.By 5)
also n = inf{#F : ﬂ(a,y)eFK(“)(y) #0, Ffinite CAxY}.
Suppose indirectly n < co. Choose (a1,91)- .-, (@n,yn) such that M= L) (y;) =
Ny Kedy)=0.Fix a€ A with a > a;, @z and let
K=, K@), L= L) 0N, EK0)  (k=12).
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Then Ly N L; = ) and, by the definition of n, 0 # K n K@ b 2L 1 (0 1,
(¥ € [y1,v2]) . Then 3) implies either K N KNy c Ly or KN K@(y) C Ly for any
Y € [y1,y2]. Thus by 4) we even have the stronger alternatives of either K N K &) c L,
for all y € [y1,12] or K NK®(y) C L, for all ¥ € [y1,72] . This contradicts the facts
Kn I&’(a)(yl) cLy, Kn K(")(yz) C Ly with LynLy=90.

Remark. 3.2. The minimax theorems in [16,1,20,86, 17,10,19] can be deduced by an im-
mediate application of this Metatheorem with A := IR to the level sets K ("‘)(y) =

{z€X: fi(z,y) >a} and L®)(z) = {ye Y : fa(z,y)> B} (@,feR;z€ X, yeY)
(end fi = f2 in case of one function minimax theorems).

Theorem. 3.3. Let X,Y be interval spaces, fi,fa: X xY - R with f, < f2 and
(i) fi(e,y) 1s quasiconcave and lower semicontinuous on any inferval of X (yeV),
(i) fa(z,e) is quasiconvex and upper or lower semicont. on any interval of ¥ (z € X),
(111) {(L‘ : f2(may1)1"'af2(x1yn) Z E} # @ = {‘T ; fl(l'ayl)v"'yf2(z7yn) Z 5} 7& @
for any {y1,...,yn} finite CY and B R.

Then the families {{z: fy(z,y) > B}Y: B<Pu, ye Y} and {{z : flz,y) 2 p): B<
By € Y} have finite intersection property where B, := sup, infy fo(z,y) .

Proof. We can apply a modified version of the Metatheorem with the net

A:={(Go0)(,00): (eR},  a<p¥adBra (a,fc4)
and the families of upper level sets
KO) = {2 filny)€al, L) ={s: hy)cal (acd yey).
Indeed, 1) holds automatically since K,£ are defined in terms of upper level sets of
functions. By (i), K convex C X for K € K and, by (ii), for all 21,2, € X we have the
alternatives either L N [z2,22] closed ¢ [z1,22] (L e £) or LN |[z3,25) open C [z1,22]
(L € £). Hence condition 3) is immediate. By (i) we also have the local intersection
property
Yy, €Y, K€K, z€[y,p), a€Ad Jze KK @)(z)
IVey, z € KN K (v) (veVniy,yl).
This property with 3) implies 4). By (ii) we have the following refinement of 3).
3*) Vi, 2 € X Vy,peY Va<yeA 3F€ A with a< f<v and
L(ﬂ)(yk)ﬂ[zl,zg]openc{zl,xg] or L(ﬁ)(yk)ﬂ[11,2g]closedc[x1,x2] for k=1,2.
Therefore we can slightly modify the argument of the Metatheorem to complete the proof
as follows. Defining n as before, by assumption (iii) we have again
n=if{#F: N, K ) #0, Fhnitec AxY) >1.

By choosing (@1,41),. .4 (anyyn), K and Ly, L, in the same way as in course of the
previous proof, we get

P # K2 ¢ L) n ﬂ‘>2L(°“)(y,') CLiU L, forany @ > aj,a, .

Fix ;v € A with y>a > a1,y arbitrarily. To complete the proof with an analogous
argument as before, 1t suffices to show

3') either KM(2) C L; or KM(2) ¢ L, (2 € y1,v2)).
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Suppose that, in the contrary, we can find z, € KMnKnL, , T2 € K(")(z) NANLy.
Choose § in accordance with 3%). By assumption 14), [z1,22] C KENK™(z). Therefore

{z1,z2] C L("’)(z) NKN[zy, 2] = L('Y)(z) Nlz1,ze] C
C (L(°>(y1) U L<")(yz)) Nizy,z2) C ﬂzﬂ(L(ﬂ)(yk) Nz, z2]) .

Since L) (ye) N [z1,22) C L (k=1,2) and LyNL, =0, for k = 1,2 we have
LBy ) O [z1, 2] = Le N [z1,22]. This is impossible by the connectedness of [z1,22] and
the choice of B € A ensuring that both L(#)(y;)n [z1,22] and L¥)(y,) N (2,1, are
closed or open in [z, ;] simultaneously.

Corollary. 3.4. The above hypothesis and (iv) VLe £ 3K € K K compact C L
wmply  infy sup, f(z,y) < sup, inf, g(z,y) .

Remark. 3.5. Purely topological minimaz theorems via interval spaces.
Let X,Y be topological spaces and assume

1g) K)(y) connected C X (a€ A yeY);

38) L*)(y) openorclosed CX (a€ A4, yeY);

38) Naoyerly €Y : o ¢ L(y)} connected CY (B C 4 x X).

Notice that assumption 3%) gives rise to the interval structure

vl i =Wy : e ¢ 290)} : 2¢ L), 2¢L9p), z € X, aca)=

=leY: Vaed L904) c L¥(y)u L) y,)} .

48) Yy, €Y , K€K, z€ly, ), 0€4 o€ KO)NK

3V € {neighborhoods of z} z € K(Dw)NK (ve V).
Then we have the implications 1)+ 3p) = 3), 3)+ 3p) +4p)=4).

Corollary. 3.6. Let X, Y be topological spaces and let fi,f, : X xY — IR with A<h
be functions such that

(@) [y1,92] = {y: F2(z,9) < folz, yi Vo (2, 42) (z€X)} connected C Y for al] YLy €Y,
(b) fa(e,y) is upper flower] semicontinuous on X forany yeY;
(c) the sets Neaperlz: fi(z,y) = a} are connected for F finite ¢ A x ¥ ;

(d) fi(z,e) is lower semicontinuous on Y for any r € X ;

(€) {z: falz.yn), s fo(z,yn) 2 BY # 0 = {2 : Hlzw) o filz,yn) > B # 0
for any {v1,...,yn} finite CY and feR.

Then the families K, L have finite intersection property for K(D(y):= {z: filz,y) 2 o},
LO(y) = {z: fo(z,y) > a}.

4. Two functions minimax theorems on generalized H-spaces

Theorem. 4.1. (Tarafdar-type selection theorem). Let XY be topological spaces, X
being compact; s :2¥ — 2Y 4 generalized H-convezity with s(G) = Urce ec(AF) for
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G finite C Y and let K : X — {nonempty s-convex subsets of Y} be a multifunction
with the locel intersection property

¥V z € X 3 U: neighborhood of z 3y, € K(z) yz € K(u) (uel,).

Then for some G finite C Y there ezists a continuous function f: X — Ag such that
we(f(z)) € K(z) foral z e X .

Proof. By the compactness of the space X, there exists a finite partition of unity on
X subordinated to the covering {U, : z € X }. That is, we can choose a finite family

{z1,-..,28} C X along with a set {#1,...,6n} of continuous functions X — [0,1]
such that Zfil $i=1and {z € X: (z) >0} C U, (4 = 1,...,N). Then, with
the set G := {ys,,...,yzy}, the function f(z) := goc(zl’,v:lz/),'(x)lyzi) (z € X) suits
our requirements. Indeed, f is obviously contiguous as a finite composition of continuous
operations. On the other hand, given any point z € X » with the index set I, := {i :
$i(z) > 0} we have z € U;; (i € I,). Therefore, with the subset Frv={yz, 0 1€ I}
of G we have also F; C K(z) and hence f(z) = ¢G(Zi€,:wi(z)lyzi) € we(Ap) C
s(Fz) C K(z) by the s-convexity of K(z).

Lemma. 4.2. Let X,,...,X, compact generalized H-spaces and, for j=1,...,n, let
K;j:X;—{C: 0 #C convex C X;} where X;:= [Tie, Xi
be multifunctions with the local intersection property
vieX; 30 -neighborhood of Z in X, 3z € X, : zeK;@) (zel).
Then there ezist 1 € X1,...,2, € X, such that z; € I&'J(zl,/.‘.j.,zn) U=1,...,n).

Proof. By the selection theorem we can find natural numbers Ni,..., N, and, for j =
1,...,n, continuous functions

Fii X = Any = Ay, Ny, 9 An; = X; with ¢;(f;(3)) € Kj(F) for 7€ X, .

Then we can apply Brower's fixed point theorem to the function ¥ := F o @ where
F(IEI,...,.’L'n) = (fl(zg,...,z‘n),...,fn($1,...,$n_1)) (1’1€X1,..,,$nEXn),
99(517-”)611) = (991(527'"1£n)7~--7‘fon(£17~~-7511—1)) (flEAN“-n:gnEAN“)‘

Therefore there exists € € Ay, x -+ x An, with ¥(¢) = £. Then for the point z := (€)
we have (F(z)) = ¢ o F(o(f)) = poFo w(€) = o T(£) = ¢(£) = z . The components

T, 2o of zosuit z; € I\"j(zl,...,:zj_l,a:j_H,,‘.,zn) (G=1,...,n).

Corollary. 4.3. Let Xi,...,X, be compact generalized H-spaces and, for j = ,...,n,
let fi: Xix- - xXp, - R resp. a; : X; = R be functions such that for any fized (z,,0J.
yZn) € X; the subfunction filzr, ez, 0,250, . ,Tn) 18 quasiconvez on X; and for
each T := (2,,MJ z,) € Xj there ezists a neighborhood U of the point T along with some

y € X; such that Filug, om0, U0, un) < aj(uy, 2w ) for (u1,M . u Veu.
Then there ezist zy € Xi1,...,2, € X, such that ! T ? rEn

fj(l‘l,...,xn)<(lj($1,/.\:7.71'n) (]:‘1’7”‘)
Proof. We can apply Lemma 4.2 to the multifunctions

Kj(zy, M z0) = {y e X, : filzi,zim 2540, 20) > aj(z1,%,z,)} .
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Proposition. 4.4. Let Xi1,...,X, be compact generalized H-spaces and let fi,..., fy
Xy xoox Xy = R be continuous functions such that for any fized (2,77, z,) € 5(:]' the

subfunction Fi(1,-0 0,221, 9,Z541,...,20) 8 quasiconvez on X; (U=1,...,n). Then
there ezist z; € Xi,...,z, € X, such thai
fi(z1,...,2n) = min filzs o 251, Y, T 41, -, Tn) (1=1,...,n).
. yEX;

Proof. The functions c¢;(z;,%7.,z,) == mingex; fi(zy,... 1%5=1,YsZj41,-..,Lpn) are con-
tinuous. To prove this statement, we may assume j = 1 without loss of generality,
As being the infimum of the continuous functions fi(e,7) (£ € X 1), the function ¢;
is upper semicontinuous. Let Z := (z3,...,z,) € X; be arbitrarily given and sup-

o

pose indirectly that ' := (z3,...,23) (¢ € I) is a net converging to 7 in X; but
liminfier 1 (F%) < c1(Z) . By passing to a suitable subnet, we may assume that the limit
of (¢;(F%) : i € I) exists. Choose the points y' € X, (t € I) in a manner such that
[, 7) = a1(Z%) (3 € I) By passing to a suitable subnet again, we may also assume
that the net (y*: i € I) converges to some point y € X1 . Then we get the contradiction
c1(Z) > limies c1(F) = limies f1(y',7) = iy, 3) 2 minsex, fi(2,5) = e1(5) .

For any € > 0 let asi=¢j—¢€ (j =1,...,n). By the continuity of the functions
fj, we can apply the previous corollary (with a; instead of a;) to conclude that for
each £ > 0 there exists x° := (zf,...,25) € X; x -+ x X,, such that filzy,...,20) <
Cj(z-l,’.\.j.,xn) +€e (5 =1,...,n). Then any cluster point of the net (x°: € > 0) suits
our requirements.

Corollary. 4.5. Let X;,X; be compact generalized H-spaces, fi,f2: X, x X, — R with
fifo andlet ap : Xz = R (k= 1,2) be functions such that

() fi(e,z2) 1s quasiconcave for any z; € X, ;
(i) Vzz €Y 327X, 3V neighborhood of z,
(iil) f2(z1,9) is quasiconvez for any z, € X, ;
(iv) Vz1 € Xy FzoeY 33U neighborhood of z; falu,22) < as;(u) (u e U).
Then there exist z1 € X, and 22 €Y with fi(zy,22) > as(z2) and f2(z1,22) < ay(z1) .
Proof. By assumptions (i)+(ii), Ki(z;) := {z; € X3 : fi(z1,22) > as(z2)} (22 € Xa)
is a non-empty convex valued multifunction ¥ — 2% with local intersection property.
Similarly, by (ili)+(iv), Ka(z1) = {z2 € Xo: fo(z1,12) < ai(z1)} (z: € X)) is also

a non-empty convex valued multifunction X; — 2%z with local intersection property. By
Lemma 4.2 there exist z; € X; and z; € Y with z1 € K3(z1) and z4 € Ky(zq).

filz1,v) > ax(v) (v € V);

Corollary. 4.6. Let X;,X, be compact generalized H-spaces, fi < fo: X1 x X, = R
with properties (i),(iii) and

(i) Vy€Y, z€X;, €e>0312' €X; 3V neighborhood of vy fle,V)> flz,y) ~¢;
(iv) Vz€ X1, y€ Xz, € >03y € X3 3U neighborhood of ¢ : FUY) < flz,y)+e.
Then infz,ex, SUPs.ex, filzr,22) < SUp, ex, inf,,ey f2(21,$2) .

Proof. The contrary SUP., ex,ifz,ey fo(21,22) <o < ) < infzzeysupﬁ,ex1 fi(zy,z2)
(for suitable a;,a; € IR ) would imply (with a1(z1) = o1 and as(z2) = @ ) the existence
of points z; € X; (k= 1,2) such that z; € Ki(z3) and z; € Ka(zy) for Ky(y):= {z€
Xy fi(z,y)>ar)} and Ky(z):={yeX;: f2(2,y)<as}. This contradicts f; < f, .
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Added in proof. Recently S. Park [15] introduced a concept called G-convezity
closely related to our generalized H-convexity. It can be shown that given any G-convexity
I' on a topological space X , there exists a generalized H-convexity s : 2X — 2% such

that { I'-convex sets} C { s-convex sets} . Hence, in particular all the results of Section 4
hold when generalized H-convexity is replaced by G-convexity.
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ON WEAK CONVERGENCE TO FIXED POINTS OF NONEXPANSIVE
MAPPINGS IN BANACH SPACES

TOMONARI SUZUKI AND WATARU TAKAHASHI

ABSTRACT. In this paper, we prove the following weak convergence theorem: Let C be a
nonempty closed convex subset of a uniformly convex Banach space E which satisfies Opial’s
condition or whose norm is Fréchet differentiable. Let T be a nonexpansive mapping from
C into itself with a fixed point. Suppose that {z,} is given by z; € C and Tp41 =
nT [BaT2n + (1 — Bn)en] + (1 — an)z, for all n > 1, where {an} andoiﬂ,.} are sequences
in [0,1] such that 3°°° , @, (1 ~ a,) = oo and limsupf, < 1, or Yome1 @nfly = oo and
00
limsup fn < 1. Then {z,)} converges weakly to a fixed point of T This is a generalization
o? ?k: results of Tan and Xu, and Takahashi and Kim.

1. INTRODUCTION

Let E be a real Banach space and let C be a nonempty closed convex subset of E. Then a
mapping T' from C into itself is called nonexpansive if [Tz —~ Ty|| < |lz — y|| for all z,y € C.
For a mapping T from C into itself, we denote by F(T) the set of fixed points of T. Now,
we consider the following iteration scheme: z; € C' and

(1) Tat1 = T [BaT2n + (1 — Bo)zn) + (1 — @p)z, foralln > 1,

where {a,} and {8,} are sequences in [0,1]. Such an iteration scheme was introduced by
Ishikawa [3]; see also Mann [4]. Recently Tan and Xu [8] proved the follovxfing interesting
result (Corollary 1): Let C' be a nonempty closed convex subset of a uniformly convex
Banach space E which satisfies Opial’s condition or whose norm is Fréchet differentiable .a,z'ld
let T' be a nonexpansive mapping from C into itself with a fixed point. Then for any initial
data z, in C, the iterates {z,} defined by (1), where {@,} and {8,} are chosen so that

et On(l =) = 00, 37 | Bu(1—@,) < oo and limsup B, < 1, converge weakly to a fixed

n—oo

point of T'. On the other hand, Takahashi and Kim [7] proved the following (Corollary 2):
Let C, E and T be as above and suppose a, € [¢,b] and A, € [0,8], or ay € [az i} and
B € [a, b] for some a, b with 0 < @ < b < 1. Then for any initial data z; in C, they:terates
{z.} defined by (1) converge weakly to a fixed point of T. Note that Ta,.n and Xu’s r‘esult
is applicable to the case of @, = 1 —1/n and B, = 1/n for all n > 1, while Takahashi and
Kim’s result is applicable to the case of o, = 8, = 1/2 for all n > 1.

In this paper, motivated by these two results, we prove the following weak convergence
theorem: Let C, E and T be as above and suppose Yom i on{l—a,) = oo and limsup B, < 1,

n—od
or Z,‘il anfy = 0o and limsup B, < 1. Then for any initial data z; in C, the iterates {z.}

defined by (1) converge v‘r;;ily to a fixed point of T. Compare this with Tan and Xu’s
result [8] and Takahashi and Kim’s result [7].
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