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Abstract

Given a triangular mesh in R3 with a family of points associated with its vertices along
with vectors associated with its edges, we propose a novel technique for the construction
of locally generated fitting parametrized G1-spline interpolation surfaces. The method
consists of a G1 correction over the mesh edges of the mesh triangles, produced using
reduced side derivatives (RSDs) introduced earlier by the author in terms of the barycentric
weight functions. In the case of polynomial RSD shape functions, we establish polynomial
edge corrections via an algorithm with an independent interest in determining the optimal
GCD cofactors with the lowest degree for arbitrary families of polynomials.

Keywords: triangular mesh in 3D; G1-spline; parametrized surface; reduced side deriva-
tives; RSD interpolation; shape function; GCD cofactors
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1. Introduction

By a triangular mesh in 3D , we mean a finite family 7 = {Ty,..., Ty} of non-
degenerate triangles T; C R?, such that the intersections T; N T; (i # j) are either empty,
mesh points, or common edges, and no three different mesh triangles meet in a com-
mon edge. A T-parametrized Gy-spline surface is a continuous mapping F : UN, T; — R?,
whose subfunctions (the restrictions F; = F|r,) are C*-smooth with Gi-coupling along
common edges (that is, given i # jand p € T; N T}, the tangent vectors F/(p(q — p) =
d/dt|;—oF;(p + (tq — p) (q € T;), together with F]-’(p(q —p) (q € Tj), donot span R?). It
is well-known from classical differential geometry [1] that, in the above setting, if F is a
homeomorphism with G;-coupling and dim (F/(p)(T; — p)) = 2 (p € T;) in every triangle
T;, then the figure range(F) is a C!-submanifold of R3.

Due to the need to elaborate on the data of scanned surfaces, the construction of
parametrized G;-spline surfaces in 3D has become a popular topic. It seems that one branch
consists of papers aiming to establish reasonable meshes with plane figures fit to a set of
3D points, while another branch concentrates on modifying algorithms with classical 1D
and 2D splines in a 3D setting, exploiting the use of large computing capacity, sometimes
with compromises; e.g., by adding new artificial mesh points or modifying the underlying
data (for typical examples, see [2-6]).

In this work, we apply our “minimalist” local C!-spline algorithm [7], extended in [8],
to further shape functions, called the RSD method (method of reduced side derivatives, to be
introduced in Section 5). Writing {p1, ..., pr} for the family of mesh vertices, our purpose
is to investigate the following problem with a primary interest in polynomial solutions.
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G1-Interpolation Problem. Given two families [f;] fil and [g; ;] Fj=1 of vectors in R3, find

a parametrized Gy-spline surface F : [ JN_, T, — R®, such that

F(p;) =f1;, F’(pi)(p]- —pi) = 8i (z’,j € [1L,R], [pi pj] is the edge in some Tn). (1)

We proceed using the following strategy. By introducing extended barycentric weights

A A 2 UM, T, — [0,1] and using any RSD family of shape functions, we obtain a
R R

GO-spline map in the form f = El Yo(A)fi + z']'2—1 Y1(Ai)Ajgij + 0 %GS [xo(Ai, Aj, Ap)pi +
- Z 77 3

x1(Ai, Aj, Ax)gi,j|, which automatically satisfies the initial conditions (1). To correct it to

a Gl-spline, we search for F in the form F = f+ ¥ %A%AJZA;{ [Zij(Ai) + Zij(1 = A))],

(i,j)eT

where the index set 7 consists of all triples (i, j, k), such that i < j, [p;, p;] is a double mesh

edge (i.e., belonging to two different mesh triangles) and Conv{p;, pj, px} is a mesh triangle.

The splines F, f coincide along the mesh edges. The familiar determinant condition of

Gl-coupling along the common edge [p;, p;] of two adjacent subfunctions F T, and F|T5

with T, = Conv{p;, pj, px} and T = Conv{p;, pj, p;}, respectively, can be written in the

following form:

det[o(t) — (1 — t)%z(t),5(t) — v(t), u(t)] =0, )

where the terms u(t), v(t), and (t) are linear combinations of the vectors f;, f;, g/, (£, m =
i,j,k, k), with coefficients belonging to {¥,(t), ¥}(t),¥,(1 —t), ¥,(1 — t)}. We complete
this work with a study of the case with polynomial shape functions ¥o(t), ¥ (t), such
that £3|¥o(t), ¥1(t), and ¥o(t) + ¥o(1 — t)=1 play a similar role while assuming that
the families Gy = {gy : [Ps, Pm] is a mesh edge} (¢ = 1,...,R) are coplanar, as in the
case when g, ,, is a tangent vector of a smooth surface at the point p,. Then, we achieve
a complete solution to the problem, constructing a solution of (2) by means of a family
7' (t),4?(t), 4% (t) of cofactors for the GCD (greatest common divisor) p(¢) of the components
w! (1), w?(t), and w3(t) of w(t) = [3(t) — v(t)] x u(t).

In general, given a family py(t),..., pk(t) € F[t] of polynomials over an arbitrary
field T, it is of independent interest to find cofactors (that is, polynomials g1, ..., qx € F[t]
with Y& ;| qx(t)ax(t) = GCD(ay, ..., ax)) with the lowest degrees possible. One can choose
71, .-, qk above, satisfying maxk_, deg(gx) < maxX_, deg(px). As we could not identify a
related reference (cf. Remark 7), we provide a proof for this fact and describe the related
algorithmic construction.

2. Preliminaries

To establish standard notation, let R" = {x: x = [x1,...,x3], x1,...,x, € R} denote
the vector space of real n-tuples, equipped with the scalar product (x|y) = Y XV, giving
rise to the norm ||x|| = (x|x)!/? and the Euclidean distance d(x,y) = |[x —y||. We use the
notation F(x)u = #|,_, [F(x+ tu) — F(x)] for the Fréchet derivative of a function, defined
on some subset D C R”, along the vector u € R”, whenever x + [—¢,eJlu C D for some ¢ >
0. It is well-known that the mapping is linear whenever F is continuously differentiable.

Considering three points, p1,p2,p3 € R”, we refer to their convex hull T =
Conv{p1,p2, p3} = { Lk tkPx : [t1,f2,t3] € Az} defined in terms of the unit 3-simplex
As = {[t,tat3] + Lxty = 1, i > 0}, as the triangle with vertices p;. The tan-
gent space {Ypr : Lytx = 0} and the supporting affine manifold (line or 2-plane)
{¥xtkpr : Lxtx = 1} of T are denoted by Tan(T) and Aff(T), respectively. The trian-
gle T is non-degenerate if dim(Aff(T)) = 2, that is, when the vectors p; — p; (i,j = 1,2,3)
are non-parallel. Given a non-degenerate triangle, the normalized barycentric weights [9] of



AppliedMath 2025, 5, 83

3of16

its vertices are the functions /\gl_ : Aff(T) — R unambiguously defined by the relations

YA (pk=x Y Ap(x)=1,and  (x € Aff(T)).
k k

The weights A} are affine functions (i.e., satisfying the identity A} (tx + (1 —t)y) =

t/\gk (x)+ (11— t)/\gk (y)) with Fréchet derivatives being independent of the location, which
we denote by G} u; namely, Gg u = [Agk]/(x)u = A}, (x+u) (u € Tan(T)).

In this sequel, we mainly restrict our considerations to settings in R3. We write
X X'y = [x2y3 — y2X3,X3y1 — Y3x1, X1y2 — y1x2] for the vectorial product in R?. In terms
of the vectorial and scalar product in R3, the determinant formed by the components of
three vectors x,y, z € R3 can be expressed as det|[x,y, z] = (x|y x z). By a triangular mesh,
we mean a family of non-degenerate triangles with a pairwise disjoint interior, whose
pairs are disjoint or meet in a common vertex or edge. An edge belonging to two different
mesh triangles is said to be a double edge, and the remaining edges are the single edges. A
triangular mesh is regular if no three different members admit a common vertex, and it is
closed if it contains only double edges.

3. Mesh Structure with Data of First Order

Henceforth, let 7 = {Tl, ..., T N} be an arbitrarily fixed connected regular triangular
mesh in R® with vertices and edges ordered in the arrays P = [py,...,pr] C R?® and
& = [Eyq,..., Epm], respectively, where

Ty = Conv{p; (1) Pi,(n2), Pi.(n3)} i+ (1, 1) <ix(n,2) <ix(n,3) (n=1,...,N), (3)
Ep = Conv{p; (1), Pj, (m2)} jx(m,1) < ju(m,2) (m=1,...,M), (4)

with suitable index functions i, : [1, N] x [1,3] — [1, R] or j. : [1, N] x [1, M]. Three further
index functions n.., k. : [1, M] x [1,2] — [1,R] and m, : [1, N] x [1,3] — [1, M] are used to
describe the adjacency of edges:

ny(m,1) = min{n:E, C Ty}, n.(m2) =max{n:E, C T,}, (5)
ki(m, ) = [k:Span({px} UEn =T, (o] (£=1,2), (6)
mye(n,t) = [m : Ey, is the opposite edge of vertex pi*(n,@} inT, ({=1,23). (7)

Notice that Ey, is a single edge if and only if 1, (m,1) = n.(m,2). In this sequel, we write

N M
T=U Tn, E= UlEm, Pz{pl,...,pR}, Fz{fl,...,fR}, Pi,j:Pj—Pi/ (8)
m=

n=1
3 5 2 B 3 5 2
Uy = Z Pn*(m,l) -3 E Pn*(m,f) ;o Wm = 2 Pn*(m,) -3 Z pn*(m,f)/ (9)
(=1 (=1 (=1 /=1

for the polyhedron formed by the mesh triangles, the skeleton of edges, and the set of
vertices and the matrix of the edge vectors and the weight line vectors, respectively.

Our later spline surface constructions consist of families of curved images of the mesh
triangles connecting point triples {f;,f2,f3} C F whenever Conv{py,p2,p3} € 7. To
prescribe tangent vectors for them at the vertices, we fix an arbitrary matrix

G=gijiij=1...R], gck

with vector entries satisfying the geometric constraints. With the standard notations for the
line segment [p;, p;] = Conv{p;, p;} and the triangle Gf’k = Conv{0, 8 8k}
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gij=0 if i=jor [p,p] &¢, (10)

G{’k is non-degenerate if Conv{p;, p;, pr} € 7, (11)

G{’k N G{’k = [0,8;,] whenever E,, = [p;, p;| is a double edge. (12)

Remark 1. These restrictions are natural in the sense that, for each mesh vertex p;, (10) and
(11) imply the existence of a plane S; passing through the point f;, such that g;; € Tan(S;)
(i,j =1,...,R). The plane S; plays the role of a guessed tangent plane of the surface interpolating
the points in F, according to our construction. Notice that the condition dim{gi,j :je[LR]} <2
(that is, the existence of a plane S; containing all the vectors g;, j € [1, R]) is necessary for the
existence of a parametrized G1-surface passing through the range point f; with tangent vectors
gij- Condition (12) excluding “too twisted” surfaces is a crucial algebraic ingredient in the
construction of polynomial solutions (for an example of the strange consequences of its absence,
see [10] (RSD1a.pdf).

Remark 2. The popular task of constructing surfaces passing through the mesh vertices corre-
sponds to the case f; = p; (i € [1,R]). Often, only scanned data for the mesh points P with a
triangularization (the family T') are available, and the tangent vectors g; ; need to be guessed. If
we are given the tangent plane S; (e.g., the scanner provides a normal vector n; to the scanned
surface), there is a natural choice; namely, the orthogonal projection of the edge vector p; ; = p; — p;
onto S;. Without further information on the tangent planes, if the mesh triangles form a closed
surface, which is the boundary of some 3D polyhedron, a convenient guess for normal vectors is
n;=Pij, XPij +ZZ§>1 Pije X Piji. Wherepj, ..., Pj,) form a cycle of the neighboring vertices
of pi, such that all the segments between consecutive elements are mesh edges (for a MAPLE 17
implementation, see [10]).

Definition 1. Given any mesh vertex p; € P, define its extended weight Ay : T — [0,1] as the
union of the functions /\g;j on the mesh triangles containing the point py as a vertex, and let it

vanish on the remaining mesh triangles; that is, in terms of restrictions,
Ak Tn = /\g}:' if pr € Tu; otherwise, Ax|T, =0 . (13)

Notice that the functions A; are well-defined and continuous. This is clear outside
the double edges, since they consist of affine functions restricted to pairwise disjoint sets.
Given any double edge E;, = T, N Tz = [p;, pj], we have the coincidence A};}:‘ |En = /\g;‘ |Epm.
Indeed, in terms of the Kronecker-4, at the end points p;, p;, we have A;;‘ (pe) = 0k =
/\;’:’(pg) (¢ = i,j). As the graph of an affine function defined on a triangle in R? is a
triangle in R%, the graphs of the subfunctions )\g;:, /\g]f of Ay form two adjacent triangles
in R* meeting in the segment with end points [p;, & ] or [pj, & ], and the continuity of A
is immediate.

Remark 3. (i) By definition, C'(T,, R®) is the family of all continuous functions F : T, — R?
that are continuously differentiable on the interior TS = UR ;{x € T, : A;(x) > 0} of T,,, whose
Fréchet derivatives (as functions T% — L£(Tan(T,),R%) ) extend continuously to Ty,. It is a clear
consequence of Whitney's embedding theorem [11] that any function F € C'(T,,R3) admits a
continuously differentiable extension to Aff(T,).

(ii) Recall that a parametrized Gy-spline surface in 3D over the mesh T is a continuous
function F: T — R3 with subfunctions F, = F‘Tn et (Ty), such that any two submaps Fy,, Fr
(n =ji(m,1), 1 = j«(m,2)) along a double edge E,, meet with tangent spaces not spanning the
whole R3:
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dimSpan({F,; (x)u:u e Tan(T,)} U{F(u:ue€ Tan(Tﬁ)}} <2 (x€Ey). (14

Lemma 1. In terms of the edge vectors and the weight line vectors, the Gi-coupling relation (14)
can be expressed in the analytic form

det[ 7 (X)W, B (X)W, Fy (X )p,]] = (x € Ew = [pi,pj] = TaNT, n #7). (15)

Proof. This is an immediate consequence of the fact that Tan(T,) = Span{um, Pi j} and
Tan(T7) = Span{tu, pi,]-} if By is a double edge with n = n,(m, 1), 7 = n.(m,2), x € Ep,
and i = j«(m, 1), j = j«(m,2),and x € Ey, = [p;, p;], respectively. O

4. Construction Lemma

The next observation describes the pattern of our later constructions.

Lemma 2. Let f : T — R be a continuous map with subfunctions f, = f|T, € C}(R?). Assume
z1,...,z2pm € Ct ([0, 1]2, R3) are functions such that, form =1, ..., M, we have

Zm(t,1—1) U (1)
12(1 —t)2det [Ty (t) — v (t) | = det [Ty, (1) (0<t<1); (16)
() ()

on(t) = fuOF ), Om(E) = fRO) W, um () = fLOE)Pjoma) jom2),  (17)

with the indices
n=mn.(m1), n=n.(m,2), x{' = tpj*(m,l) +(1- t)P]’*(m,z) (0<t<1); (18)

3 2 _ 3 2
k=Y i(nt) =¥ jim1t), k= Y i(nl)— Elj(mle)’ (19)

and wy,, Wy, are the weight line vectors given in (9). Then, the function

M
F=f-2, Z= Z im 1) Aj( mz))/\f(m,l)/\f(m,z) [Ak(m1) + A(m2)) (20)

is a parametrized Gy-spline surface over the mesh T .

Proof. Consider any mesh triangle T, with edges E,;; = [pr,, Pr3), Em, = [Prs, Pr,] and
Eu, = [Pry, Pr,), respectively. Observe that the restriction F, = F|T, of F to T, has the form

Fa =fn = [2m (Ao Arg) A AR AR |, +

+ 2y (Aryy A JA AR T, + Zms (Aryy A )Ar AR AR [, ]

As each weight A,, vanishes on the edge E;;, (k =1,2,3), all product functions of the form
Zm(Ar, As)AgAZA2 with m € {mq,my, m3 and {q,r,s} = {ry,r,,r3} belong to C!(T,) and
vanish along the edges of T),. As the subfunctions f,;, A;|T, (r =1,...,R) belong to C H(Ty),
by assumption, F, € C!(T,,R®). Thus, F : T — R3 is a continuous function coinciding
with f on the mesh edges.

To complete the proof, we have to show the Gj-coupling of the subfunctions of F
along the mesh edges. Suppose (without loss of generality) that E,, = E;;; = [pry, Pr,] isa
double edge between the triangles T, = Conv{p,, pr,, Pr,} and Tz = Conv{p:,, pr,, Pr; }-
According to Lemma 1, the subfunctions F, and F; are Gy-coupled if and only if the
determinant criterion (15) holds.
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Letx = x¢ = tpy, + (1 —t)py, be a generic point on E,,;. As the function Ay, vanishes
on [p;,, pr,|, we have

F;; (Xt)lIm = fy/, (xt)um — Zm (/\,,1 (Xt), Ary (xt)) [Grg.u])\rl (Xt)z)\rz (xt)z _
= frli(xi)um - Zm(t, 1-— t)[Gr3um]t2(1 — l’)z =
=t (t) — zm(t, 1 — 1) [Grum]2 (1 — 1)

Similarly, FL(x;)wm = U (t) — zm(t,1 — t)[GrWn]t?(1 — t)2. Thus, (9) holds if and only if

[0 (£) = 2(1 = )22, (8,1 — 1) ]
0 =det [Ty (t) — t2(1 — t)%zy(t, 1 —t)| =
u(t) .
[0 (1) — 2(1 — )22, (8,1 — 1) ] 21— )2z, (t,1—1)
= det T (t) — v (t) —det T (t) — v (t) ,
i Um () . Um(t)

which completes the proof. O

Remark 4. Notice that the statement imposes constraints on the corrector functions zy : [0,1]> —
R3 only by the determinant condition (16), referring to the segment {(t,1 —1):0 <t < 1}. We
can choose the values z(t1,ty) for 0 < ty,ty, 11 + to < 1 rather freely, which may heavily influence
the behavior of the spline surface F outside the mesh edges.

5. RSD Interpolation

Henceforth, let IT = [¥o, Y1, x0, x1] be an arbitrarily fixed tuple of functions ¥y, ¥; €
C1([0,1]) and xo, x1 € C([0,1]3), respectively, such that

0= ¥o(0) = ¥y(0) = ¥,(0) = ¥} (0) = ¥y(1), 1=Yo(1)=1(1) (1)
0= x4(1,0,0) = %4(0,1,0) = 4(0,0,1) (k=1,2). 22)

For arbitrary dimensional triangular meshes T C R? with arbitrary dimensional data
F=[f,:n=1,...,N|,G= [gi,]- :i,j =1,...,R] in another space R? such that g;; = 0,
we define the associated basic IT-interpolation splines T — R? as the functions

N
TG _ Z[TO()‘ i+ ¥1(A Z/\jg”]
i=

+ Y [m(Ai,Aj,Ak)fi+X1<Ai,A,-,Ak>gi,j] 23)
(i,j,k)€Ss

with S3 = {permutations of 1,2, 3} Notice that, under the hypothesis of (21) and (22),
the map fH G interpolates the data in F, G in the sense that

FTG( [ FTG]

p1) = £, (Pi)pij = e (1= tp1+tp)) = 8ij

dt ‘t =0+
whenever [p;, p;] is an edge of a mesh triangle Tj,.
Definition 2. We say that 1T = [¥o, Y1, xo, x1] is an RSD tuple if, given any non-degenerate

triangle T = Conv{p;, pj, px} in R? (regarded as a mesh consisting of a single element), with
one-dimensional data F = {f1,f,,f3} C Ror G = [g;; : i,j = 1,2,3} C Rwith g;; = 0,
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along any edge [p;, p;] of T, independently of the data fy, gy i, g j, associated with the third vertex,
we have

o (tpi+ (1 - )p;) =
=Yo(t)pi +Yo(1—t)pj + ¥1()(1 —t)g;; + ¥1(1 — t)tg;;, (24)
[FPECI (tpi + (1 — £)pj)u =

1
=Y (t) {gi,k Zgz]] +¥1(1 - )[g]k 28]1] with ue = py — 5 [pi+p;l . (25)

Remark 5. The term RSD is an abbreviation for reduced side derivative, named after the property
described in (25). Motivated by the main result of [7], in [8], we introduced the concept of RSD
tuples and proved that, given any pair of functions ¥o,¥1 € C1([0,1]) satisfying (21), one can
find xo, x1 € C1([0,1]%) with (22), such that [¥1, %o, x0, x1] is an RSD tuple.

In (25), we apply [8] (Definition 3.2) with the weight line vectors wy,. In accordance with [7]
(Theorem 1) and [8] (Example 3.15ab), for later use, we propose the following two convenient choices:

Iy = [®,0,301313t3,12315t3] and 11, = [®,®,30835t3, 3063 513], respectively,  (26)
in terms of the shape functions
O(t) = t3(10 — 15t + 6t2) and O(t) = t3(4 — 3t). 27)

(a) Iy is the unique polynomial RSD tuple I of minimal degrees with the range shift property
flT[+V’F G = fT FC v (veR?). This follows from the classification in [8] of all locally generated
constant-preserving Cl-spline procedures with polynomial shape functions.

(b) 11, is a polynomial RSD tuple obtained with the affinity invariant procedure in the sense
of [8]. Hence, it has a range shift property along with the coordinate stability fTFAT( ) =
Identityy, where A(T) = [p] pi:i,j=1,23].

Notice that, due to linearity, given any tuple 11 with a range shift property (in particular,
the tuples 11, T1y), the figure range (Fy [P] P =12 }) coincides with T. Nevertheless, I1j is
not coordinate-stable. Heuristically, we can expect to achieve better approximation when using
procedures with Ty than with Ty if the side derivatives g; ; are close to g; — g;.

Proposition 1. Even in the general setting where T is a triangular mesh in R and F,G C ]R{E, if
ITis an RSD tuple, then the the subfunctions fIT[’F’G |T,, of the related interpolation function (23)
also have the properties (24) and (25) with the substitutions i = i.(n,1),j = i.(n,2), and
k=1i.(n,3).

Proof. This statement is an immediate consequence of the observation that, given any
mesh triangle T, its supporting plane Aff(T,) is affinely equivalent to R?, and one can
verify (24) and (25) by checking the component functions x — { f7FC|e?) (¢ =1,...,4d)
with the unit vectors e, of R, O

6. RSD Corrections over Mesh Edges

We turn back to the setting in R3, and apply the construction in Lemma 2 with
the RSD interpolation function f : T — R of the data. Concerning the derivative data
G= [gi,j :i,j=1,...,R], we assume that there is an indexed family [n; :i =1,...,R] of
unit vectors candidates for normal vectors at the mesh points for the parametrized surface
to be constructed (cf. Remark 2) such that

gi,j 1 n; (l,] = 1, .. ,R) (28)
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TFG .

Henceforth, in short, we write f = f;" in terms of the weight values (f;,t>,t3) € Az of a

generic point in a mesh triangle:

3
. 3
F Xt ) l; { DT Zt]g,]} (X?l,tz,ts =) tpl,
= /=1 (29)
+ kEJXO tistj, o) py +X1(t"t1’tk)g1]} P! = Pi(nt) glrcl,lzqi(n,k),i(n,f))'

Given a double mesh edge E,, coupling the adjacent mesh triangles T", T" with n =
n«(m,1) < 7 = n.(m,2), we can express the directional derivatives vy, T, Uy, U : [0,1] —
R3 in Lemma 1 in terms of the shape functions ¥, ¥ and the directions as follows. With
suitable indices i, j, k ke {1,...,R), we can write

En = [pi,pj], Tn=Conv{p;pjpr}, Tr=Conv{p;pips}.,
1 1 1
Wn = P — 5 [Pi T Pj] = Pik = 5Pij = Pjk — 5Pjir
1 1 1
Un = Pr— 5 [Pit Pl = Pix — 5Pij = Pip 5P
Due to the side derivative reduction property (25),

vm(t) = f(tpi+ (1 —1)pj)um =

= ‘1’1(t)[gi,k zgz,]Jr‘i’( _t)[gj,k_%gji]- (30)
n(t) = i(0)]gr 8] 0 0[5z 5811, G1)

d
un(t) = f(tpi+ (1= )py)pji = = f (Pi — tpji) =

= Yo()(B)pi —¥o(1-H)p; + [ 1A —=1) =¥1(t)] 8 —
- [Tll(l - t)t - Tl(l - t)]gj,i . (32)

Therefore, setting
Wi (t) =t (t) X [Om(t) — om(t)], (33)

the determinant condition (15) of G;-coupling has the form
0= (om(t) — 2(1 — 2)zm(t)|[wm(t))  (0<t<1). (34)

Geometrically, the parameter ¢ above is the value t = A;(x;) = 1 — A;(x;) in terms of the
weight functions associated with the endpoints of the interval p;, p;] at a generic point
xt = tp; + (1 —t)p;. Taking the algebraically more symmetric form z(t) = Sz(Ai(xe)) +
%z (1-A j(xt)), we conclude the following characterization.

Theorem 1. Given any RSD tuple IT = [¥o, Y1, xo0, x1] with a family of functions zq, ...,zp €
Cl ([o, 1]2,R3), the map

F= fTPG ZTPG

(0 ]’ where

ZTPG Z 2o (Ajm, 1) Aj(m2)) A1) Aim2) [Mkm,1) + Aem)

defined in terms of the mesh T, with the structure described in Section 3, is a parametrized Gi-spline
surface T — R3 satisfying the constraints (1) in the Gl-Interpolation Problem whenever, in
terms of the vector functions (30), (31), and (33), we have
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U (t)

tz(l—t)2<zm(t,1—t)‘wm(t)>=Am(t) (0<t<1) with An(t)=det|Fu(t)|. (35)
U (t)

Remark 6. In terms of the index function (7), setting zpyg++1,...,z2pm = 0, the subfunction
ZEPC| Ty, has the form

3
201y ,2—054,2—0
ZlT['P'G(XZ,tZ,@) sz tl,tz)t ”t Ut 3,0 ((tl,fz/t3) EAS); 36)
(=1

whenever z, = [solution of (35)if m < M*, 0 else]

7. Criteria for RSD Solutions

Throughout this section, let IT = [¥, ¥1, x0, x1] denote an arbitrarily fixed RSD tuple.
To simplify the terminology, we use the term divisibility for functions in C* ([0, 1]), meaning
that f is divisible by ¢ whenever f(t) = q(t)g(t) 0 < t < 1) for some (unique) continuous
function g : [0, 1[— R (being necessarily smooth on (0,1)).

We start with the following observation, which is crucial when looking for polynomial
solutions of equations (35) to the G1-Interpolation Problem.

Proposition 2. If¥(t) + ¥o(1 —t) =1 (0 <t < 1) and the shape functions ¥, ¥ are divisible
by 3, then the determinant functions Ay (t) in (35) are divisible by t2(1 — t)2.

Proof. Fix an arbitrary edge index m and, for brevity, omit it for the terms A, vy, Uy, w. In
addition, we shorten the determinant expressions det| - - - | to the form | - - -
We begin the argument by recalling that, by assumption, the guessed tangent vectors

issued from a mesh vertex are coplanar. In particular,

’gi,jr 8ik 8k = ‘gj,i/ 8k g]»,,-c’ =0 (37)

for the terms appearing in (30)—(32). On the other hand, according to (30) and (31), we
simply have
o(t) —o(t) = ¥1(t)[8;x — ikl + ¥1(1 = 1)[g;x — 8jxl-

Furthermore, the relation ¥o(t) + ¥o(1 —t) = 1 implies ¥(t) — ¥((1 —t) = 0, en-
tailing that ¥)(t) = #*(1 — t)?5(t), with the function 5(t) = t72(1 — t) [Py (t)]’ =
(1 —)72[3¢o(t) + tp)(t)], which is continuous on [0,1). According to the symmetry
¥ (t) = ¥,(1 —t), i is also continuous on (0, 1] and, hence, on the whole closed interval
[0,1]. Therefore, we have

Y (t) i —2'gi ] +¥1(1—t)[gjx —27 gl

At) = ¥i(t) gz —2 1g1]] +¥1(1—t)[g;5 — 271g; ]
Yo(t)pji + [Fi(t ) T t) =¥t )gij— [¥1(1 — )t —¥1(1 —t)]g;,
= Yo (1) Ao(t) + 2”20 zl‘fl(rﬁ( ))¥1 (1, (1)) By 05 (1), (38)

with the functions T(t) =t, 7y (t) = 1 — ¢, i.e., T(t) = t°0(1 — t)%1, where

row 1 of A(t) term with ¥4 (7, (1))
Ay = [row 2 of A(t)], Ay, (t) = term with ¥ (7, (1)) .
Yo(t)pi terms with ¥y (1, (£), V) (14, (1))
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We complete the proof with the observations that

(@) Ay is divisible by ¥} (t) being divisible by (1 — t)?;

(b) For (fy,02,43) # (0,0,0) or (1,1,1), the determinant function Ay, , ¢, (t) is di-
visible by ¥1 (1, (£))¥1 (e, (£)) [¥1 (e, (£)) + ¥] (2, (1)) [1 — 1, (t)]. Here, the term
Wy (10, (1)) ¥1 (T2, (t) ) ¥1 (T2 () is divisible by the product [T)_; T = $l00n+o0r, o]
(1 — 1) +toun+ous] gimilarly, ¥, (7o, (8)) ¥4 (T, (8) ) ¥ (a5 (£)) [1 — 7, ()] i divisible
by 70, (871, ()76, ([1 = Ty (1)) = #0070 TG T (1 — g3 B TG,
Here, the sum of the exponents of t and (1 —t) equals 3+3+2+1 =9, i.e., both terms
are divisible by a product # (1 —t)°~" for some 0 < r = r(¢1, £, ¢3) < 9. Observe that,
except for the cases ({1, ¢5,43) = (0,0,0) or (1,1,1), wehave 2 < r(¥1,0,¢3) <7;

ik —27'8ij B
(©  Aooo(t) = F1(1)2[F1(t) + ¥ ()(1 —1)] |8z —27'8ij| = 0, and Aqa(t) = ¥1(1—
8i
ik —2 'gi
£2[¥1(1 —t) + ¥ (1 — t)t] 8%~ 27!g;il = 0, because the vector triples {g;; —
8j,i

z_lgi,jrg,;z - z_lgi,jrgi,j} and {gj,k - %gj,i, 8k~ %gj,i, g]-,i} are coplanar.
|

8. Complete Polynomial RSD Solutions

Henceforth, until the end of this section, we assume that the terms in I1 are polynomi-
als. In particular, we are interested in the extreme RSD tuples Iy, I1; in (26) with the shape
functions (27). Note that

O (1) =3082(1 1), @)+ D(1—t)=1, O'(t)(1—1t)=122(1—-1t)%  (39)

We apply the following elementary facts from the theory of Euclidean and prime ideal
rings [12] restricted to the setting of real polynomials:

F1. Ifp,q,r: R — Rare polynomial functions, such that p(t)q(t) = t?r(t), and p(0), p(1) # 0,
then t2(1 — t)2|q(t).

F2. Ifpy,...,px, v : R — Rare polynomial functions, then there exist polynomials (the so-called
cofactors of r with respect to q1,...,qx), such that r = p1q1 + - - - + pxqk, if and only if
GCD(p1, ..., px)|r; i.e., the greatest common divisor of {p1, ..., px} is a divisor of r.

Remark 7. The computer algebra packages MAPLE and WolframMathematica contain commands
providing a cofactor representation GCD(p1, p2) = p1¢1(p1, p2) + p2¢2(p1, p2) with the degree
limitation max {deg(¢s(p1,p2)) : € = 1,2} < max{deg(¢s(p1,p2) : £ = 1,2}. According to
the reference in the packages, the construction of 1, ¢o refers to an early work [12] of Bézout, relying
on a careful inspection of the steps of Euclidean division restricted to the case of two polynomials.
It seems that there is no analogous command for cases with more polynomials. Our discussion
requires calculation of the GCD of three terms. Clearly, we can produce a cofactor representation of
the form by consecutively calculating the cofactors of r = GCD(py, p2) and then the cofactors of
GCD(r, p3) with the standard routines ¢y, ¢o; in this way, we obtain a representation of the form
GCD(p1, p2, p3) = p1lqaqaa] + p2ld12q21] + paga with q1,0 = ¢e(p1, p2), 42,0 = ¢e(r, p3).
Unfortunately, the degree limitation max{deg(q11921),deg(q12921),deg(q12)} is no longer
valid in general. (One can find several counter-examples of the form p; = s153, p2 = 5253,
p3 = s351 with random coefficients). Nevertheless, we can prove the following sharpened version of
F1, which is suited for remarkably reducing the numerical costs involving algorithms with the GCD
of several polynomials.
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F2*. Given any family p1, ..., px of real polynomials (or even polynomials with coefficients in a
generic field), we can choose q1, . . ., qx with maxk_, deg(qx) < maxk_; deg(qy) such that

Yh_1 Prax = GCD(p1, ..., px).

As we could not identify a related reference, we include Appendix A with a constructive proof,
which gives rise to a related algorithm in a straightforward manner.

Lemma 3. Let Ey, = [p;, p;| be a double edge, which is the intersection of the mesh triangles T, =
Conv{p;, pj, px} and Ty = Conv{p;, D), pr}. Assume Yo, Y1, xo, x1 are polynomial maps,
and the lateral derivatives v,7,u in (30)—(33) are polynomial functions. Then, the determinant
Equation (35) admits a polynomial solution z,, : R> — R3 whenever t2(1 — t)?| Ay (t).

Proof. Omitting the indices m without risk of confusion, let us write w!, w?, and w3 for the
components of the polynomial vector function w : R — R, and let p = GCD(w', w?, w?).
Assume that A(t) = t>(1 — )26(t) for some polynomial ¢ : R — R.

Observe that, due to hypothesis (12), regarding the vectors g, (r,s € {i, ],k k}),

we have
p(0),0(1) # 0. (40)

2, w3,

Proof by contradiction: The relation 0 = p(0) = GCD(w?, w?, w*) would imply t|w!, w
whence 0 = w(0) = [3(0) —v(0)] x u(0) = [g;% — &ix] X 8- This is impossible since, by
supposing (40), we would have g,z = g; x + 78 ; for some scalar 7y € R, which would mean
that the intersection of the triangles Conv{p;, P/ pr}(r=k k) would be a non-degenerate
triangle. We conclude that p(1) # 0 by arguing the index change 7 <> ;.

Consider the case t2(1 — t)2|A(t); ie., A(t) = t?(1 — )25, for some polynomial ¢ :
R — R. On the other hand, as p = GCD(w', w?, w3), we can write w(t) = p(t)W(t) with
the polynomial function with components @' = w’(t)/p(t). According to (33), we have
w(t) = v(t) x w(t); hence, we obtain the identity

2(1— 1)26(t) = p(t)<v(t)‘w(t)>.

A(t)

According to F1, we see that necessarily t?(1 — t)2‘<v(t)|w(t)>; that is, p(t) g

According to F2, there are polynomials 4',4%,4° : R — R such that

t2(?(_t)t)2 =" ()w' (1) + 47 (D (1) + ' D' (1) = (g(1) |[w (1)),

which completes the proof. [

As an immediate corollary, we find the following polynomial solution of the G1-
Interpolation Problem.

Theorem 2. Given any polynomial RSD tuple 11, in particular, I1 = 11y or I1 = 113, the map
F: T — R3 in Theorem 1 can be applied with polynomial edge corrections zy (t1,t2), such that

T A
Zn(t, 1= 1) = [ﬂ(l BT

Am(t) = (vp(t)|wm(i)) in terms of (30)—(33) applied to f = f1PS;
pm(t) = GCD (wy, (1), wy, (£), w5, (t)) with cofactors gy, (), 47, (t), 43, (t)

:|qm(t) (m=1,...,M"), where
(41)

is a parametrized G1-spline surface passing through the mesh points p;, with the lateral derivatives
F'(pi)pij = i ([pi,pj] € E) along the mesh edges, which consist of polynomial submaps F|T,,.
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9. Computational Complexity, Hints for Implementation,
and Further Modifications

Our considerations below are based on an analysis of the MAPLE 17 run protocols
in [10], which can serve as the starting material for larger program packages in strong
computer architectures.

If the evaluation of a single point F,(p), p € T, with Algorithm 1 is the focus, we only
need the first-order data associated with at most four triangles (those of T, and its neighbors
with a common edge). According to (29), Step 1 producing flTI'P’G ( 22:1 tkpi*(n,k)) requires
calling the routines three times to perform the shape functions ¥y, ¥1 and six times for the
routines of xp and )1, respectively, combined with multiplication by the constants and 3D
vectors after each call. In the case of the polynomial RSD tuples Iy or I, we need at most
six multiplicative operations with double precision three-vectors for the calculation of any
shape function. Hence, STEP 1 needs at most (3 +3 + 6+ 6) - 6 - 3 = 324 multiplicative
operations if I = Iy or IT = Il; at a single point.

Similar arguments ensure that the routines of the shape functions should be called
at most 2 - 2 - 3 times, combined with at most 24 multiplicative operations, during the
symbolic calculation of the numerator in a single expression ;. To calculate the GCD and
its cofactors of the components wk, () (k = 1,2,3), we apply STEP 3 with Algorithm 2
(described separately in Appendix A) when polynomial shape functions are given. When
working with polynomials of degree < D, the operational cost of a correction function of
the form z,,, (t,1 —t) = [T (t) + zm(1 — t) can be estimated from the above with 9D? times
the cost of the treatment of a double precision multiplication. Thus, in the case of the RSD
tuples Iy, IT;, we can evaluate any point of the form F, ( Ei:l tkp,-*(n,k)) with a cost of less
than 324 + 3 -9 - 122 = 4212 multiplicative operations.

Observe that STEP 1 can be performed in an arbitrary scale of parallelization and,
based on its results, STEP 2 admits an arbitrary scale of parallelization. Hence, it is a
more convenient strategy to first compute a symbolic expression (or routine) for fglp €T,
(n=1,...,N), store it in terms of the extended weights (which requires only substitu-
tions), e.g., with computer algebra, and then use its results to calculate the edge correction
functions z,,(t,1 — t)|E,, m = 1,..., M*) along the double edges in a parallelized manner.
Finally, we assemble a symbolic expression for submaps F, = F|T, by adding the con-
tents of the storage of f'"C|T, with at most three parts of the form z(lambda;, AAFAZ A
Hence, in the case of the RSD tuples Iy, I1;, we can conclude with the rough estimate
that OUTPUT; and OUTPUT, require less than (3/2)(432 + 288 + 9 x 122)[1 + N/ P] parallel
multiplications if P-fold parallelization is available.

It is straightforward to see that the calculations using a polynomial RSD tuple with terms
of degree< D require less storage than the capacity of storing 6 - (R + N + M) - 6 polynomials of
degree D. In a recent article [13] addressing the improvement of finite element methods,

excellent new ideas appear for treating the low efficiency issue with parallelization, which
could be incorporated in our future work.

In our MAPLE presentations in [10], we concentrated on the most popular application
of parametric polynomial G1-splines over triangular meshes: the reconstruction of a 2D
surface in 3D from scanned data ordered in a triangular mesh. We paid particular attention to
the automatic guessing of derivative data from the coordinates of the mesh vertices using
the method described in Remark 2. Notice that such a choice does not guarantee the natural
expectation (12). The MAPLE run protocol RSD1a.pdf in [10] treats a simple example
of what may happen without (12). For automatic correction, one can replace the terms
n;=Pij,, XPij +2;91 Pij. X Pij.., in Remark 2 with a perturbed versionn;= a +p; PR
Pij; +ZZ@1 WkPi j, X Pijj,,, Wwhere the values of the vector a are chosen consecutively from a
dense sequence aj, ay, . .. € [0,1]3, until the resulting guesses gij= Prﬁi +a,Pij satisfy (12).



AppliedMath 2025, 5, 83

13 0f 16

Due to the local character of Algorithm 1, in order to investigate the accuracy of
our method, it is sufficient to calculate the resulting parametrized G1-surface over small
pieces of the mesh; namely, if we perform the computations only over a mesh triangle T,
and its neighbors, the result over T}, is not changed by moving to more mesh data. In
this sense, tetrahedrons can serve as a “worst case analysis”. Recently, interesting works
have appeared [9,14] concerning the accuracy of spline approximations, which can inspire
similar studies using Algorithm 1. As far as the basic RSD interpolation is concerned, in [8]
(Theorem 5.19), we achieved some relevant estimates which can be applied directly to
parametrized surfaces of the type fﬁlF
of Algorithm 2, effective norm estimates of the cofactors of the GCD of three polynomials

‘G As our edge corrections heavily depend on the use

seem to be indispensable in estimating the approximation accuracy of our method when
the data are points or points with tangent vectors on a smooth surface.

We conclude this work with the following practical hint. There is a generic way to
change a polynomial G1l-surface F parametrized over a triangular mesh, which leaves
the image of the edge skeleton (and, hence, also the constraints (1)) Given any mesh
triangle T, with vertices p;, pj, Px, we can replace F with F + [)\,-/\]'/\k] zgo()\i, Aj, M) where
¢ : R? — R? is any polynomial mapping.

Algorithm 1 Representation of range (FIT[’F’G) with a polynomial RSD tuple I1

Require: R, N, M* for the number of mesh vertices, triangles or double edges;
the index functions i, ji, 1«, k«, 1. of the mesh structure in (3)—(7);

[pi le, [fi] fil, [gi,j] 1R1'=1 for mesh vertices, data values or data vectors in (1);
polynomial RSD shape functions ¥o, ¥1 € C'([0,1]), xo,x1 € C([0,1]).
Ensure: List of functions Fj, F1,...,Ey, Fy : A3 —R3 representing subfunctions FIT['P'G T,

in the form F,(tq, t2,t3) = FIT['P'G (x?1,tz,f3) ((t1,t2,t2) € A3)
in terms of the local barycentric parametrization xj. , . in (29) of triangle T.
Calculation: With auxiliary storage:
O, Oy U, Wi, G (m € [1, M*]) for polynomial maps R — R3;
Cm,om m=1,..., M) for polynomial functions.

STEP 1: Compute and store the basic approximations frTIF ST, (n=1,...,N)
Fp < [(tl,tz, t5) = f(x,,,.) givenin (29)] (n=1,...,N),

Substitute t; — )‘i* (n1)r th = )Li*(n,Z)r t3 — )Li*(n,3) in each F;;
STEP 2: For m =1, ..., M*, compute and save the edge correction functions
(Om () |[wm (t)) Um, Om, W, defined in (30) — (33),
t2(1 —t)%2pm(t)” pm = [GCD of the components of wy,] |
STEP 3: Using Algorithm 2, compute and save the GCD cofactors of the

components w}, (t), w2, (t), w3, (t) of wp (t)

qm < [Cofactory (wp(t)) : £ =1,2,3].

OUTPUT];: The subfunctions Fg'F G

computed consecutively along the double edges E,, (m =1, ..., M*)
with corrections corresponding to
z(t1—1t) = 3¢(+) + 1¢(1 — #) in Lemma 2:

s (m, 1), jeju(m,2), ki—ki(m, 1), ki=ki(m,2), né—n.(m,1), né—j.(m,2);

1
Fy < Fy + EM%AJZM [Cm(A)Gm(Ai) + Tm(1 = A))gm(1 = A})],

1
Fr & Fr+ St A AT AR [ (A0)am (A1) + G (1= A))am (1= Ay)];
OUTPUT5>: The subfunctions FE’F'G

§m<—[t»—>

T, in storage F; in terms of extended weights

T, in storage F; in terms of local weights

Fp+ [Fn with substitution A, (,, o) =t/ (£ =1, 2,3)].
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Algorithm 2 Construction of GCD cofactors with low degree

Require: K € {2,3,...} for the number of polynomials for GCD calculation;
2’ = [a)(t),ax(t),...,a%(t)], list of polynomials in the variable ¢
Ensure: GCD(a), ..., a%) and alist § = [g1(t),...,qu(t)] of polynomials

such that maxf_,; deg(qx) < maxf_, deg(a) and YK arqx = GCD(ay, . .., ax).

Calculation: With auxiliary stores p for K-vectors or X, N, R, D for (K x K)-matrices.
STEP(0): p—a, X Idg;
STEP(s+1): g < Npp, X < XNp,

P < Rgp, X < XRg,

P Dg?, X + XDp,’
STOP if Pl(t) == pKfl(t) =0.
OUTPUT: pk(t) as the GCD of al(t),...,a%(t),

Xk (t), Xka(t), ..., Xk k(t) as its cofactors with respect to ad(#), ..., a%(t).

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. GCD Cofactors with Low Degree

Let IF denote an arbitrarily fixed field, and let ¢ be a fixed variable symbol. In short,
we write Poly(F) for the family of all polynomials p = p(t) = ag + ayt + - - - +ant"N (as
formal sums) with coefficients from I having degree deg(p) = max{k, —co : a; # 0}. For
the polynomial division (Euclidean division) and its remainder term of p,q € Pol(F) =
U1 Poln (IF) or the greatest common divisor of a family {ay,...,ax} C Pol(F), we write
p+q with p(p,q or GCD(ay, ..., ak). Thus, by definition, p = [p+q]g + p(p, q), where the
main coefficient of GCD(ay, ..., ax) has the value 1 € F.

Remark A1. For later use, we recall the following elementary facts:
(@) Ifp,q € Poly(F) with deg(p) > deg(q) > 1, then
deg(p+q) = deg(p) — deg(q) and deg(p(p,q)) < deg(q).
(b) Ifp,q € Poly(F) with deg(p) > deg(q) > 1, then
{Common divisors of p and q} = {Common divisors of q and p(p,q)}.
(c) Given any family ay, ..., ax € Pol(F), we have
GCD(ay, . ..,ax) = Y., qray with suitable polynomials gy, . . ., q;. € Pol(F).

In most popular computer algebra packages, there is a command that performs an
algorithm due to Bézout [12], providing cofactors Q1 (a1, a2), Q2(a1,a2) € Pol(FF), such that
GCD(ay,a2) = Yy Qx (a1, a2)ay with max, deg(Qx(a1,42)) < maxy deg(ai). As mentioned
in Remark 7, it seems that no analogous algorithm (or related theoretical result) is available
that provides the GCD of three polynomials with sufficiently low dimensional cofactors.
Below, we aim to fill this gap.

Lemma Al [fay,...,ax € Pol(F) with N = maxk_, deg(a;) > 1and R = deg(GCD(ay, ..., ax)),
then we have GCD(ay, . ..,ax) = q1a1 + - - - + qkak. for some qy, ..., qx € Poly_r_1(F).

Proof. Let Q := GCD(ay,...,ak), K > 1. Observe that, for any family gy, ..., qx of poly-
nomials, we have qqa1 + - - - + ggax = Q if and only if q1[a1/Q] + - - - + qk[ax/Q] = 1.
Thus, as deg(a;/Q) = deg(a;) — deg(Q) = deg(a;) — M, and GCD(a1/Q,...,ax/Q) =
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GCD(a1+Q, ..., ax+Q) = 1, it is sufficient to restrict ourselves to the cases with Q = 1.
That is, we have to prove the following statement:

(x) If the polynomials ay,...,ax are relatively prime (i.e., GCD(ay,...,ax) = 1), and

N = deg(ay) > --- > deg(ax) > 1, then there exist q1,...,qk of degree< N —1, such that
K
kgl qrax=1.

Case N =1 is trivial: if GCD{ay,...,ax} = 1,and 1 = maka=1 deg(ak), then there
are indices my # my, such that a,,(t) = ast + B £ = 1,2), with either ay,xp # 0 or
a1, B2 # 0 = ap. Inany case, 1 = y1ay, () + Yv2am, () with suitable constants 1, 7, € F.

We proceed by induction. Let N > 1. Assume that, given any polynomials by, ..., bx
with 1 < maxllf=1 deg(bx) < N, there existrq,...,7x € Poly(F), such that1 = Zszl rby.

Consider any sequence ay, ..., ag € Poly1(F) with GCD(ay, ..., ax) = 1. Let M :=
min{deg(a;) : a; # 0}, and let m denote an index such that deg(a,;) = M. Notice that in
the case of M = 0, we simply have 0 # a,,(t) = « € F and, hence, trivially 1 = Z,Ile qray
with g, = ! and q; = 0for j # m.

In the remaining cases M > 1, we have the alternatives
i) N+1>M2>1,ie,N> min{deg(aj) aj £ 0} = ay, for some index m;

(ii) N+1=M,ie, deg(a;) = N+ 1 for all indices j with a; # 0.

In the case (i), define by, = a;,, b]- = p(aj, ap) for j # m (in particular, bj =0if aj = 0).
According to Remark Al (b), GCD(ay,...,ax) = GCD(by,...,bx) = 1. According to
Remark Al (a), deg(b;) < deg(am) = M (j # m). Thus, max; deg(b;) = deg(an), and via
the induction hypothesis, there are polynomials ry, . .., rx with degree<deg(a,,) —1=M-1,
such that

K

1=rb+- - +rgbg = rmam + E rilaj — (aj=am)am] = 21 q;a

JFm =
with q] = 7’]‘ (] 7é m), qm = Tm — Z (ajt—llm)l’]‘.
j#m
Here, we have

deg(q;) = deg(rj) < deg(am) —1=M—-1<N (j #m),

deg(qm) = max {deg(rm),deg((aj+am)r;) :m#j=1,...,K—1}.

Since, for j # m, deg(a;+an) = deg(a;) — deg(am) < N +1—deg(am) = N+1— M, we
have deg(qm) < N + 1 — deg(am) + deg(r;) < N +1 —deg(am) + deg(am) —1 = N, it
follows that deg(g;) < N for all indices, which completes the proof in case (i).

Case (ii): Let deg(a;) = a = N + 1 for all indices with a; # 0. Disregarding the
trivial case a; = 0 (j # m) with 0 # a,, we can apply the arguments used in Case
(i) to the sequence 7; := a; (j # m), @y := p(an, an) with some index n, such that
a, # 0, with the the conclusion that Z]K:1 ﬁ]ﬁj =1 for suitable 7;,...,7x € Poly(F).
Since p(an, am) = an — (ap+ay)ay, where deg(a,+a,) = deg(a,) — deg(an) = 0, that is,
Ay = ay — Yy, with some constant v € F, we have 1 = ﬁm(an — yay) + 'Z ﬁja]- = ]fl q;a;

j#m
with the polynomials g; := 7; (j #n,m),q,:=79, +7q,,qm := —77,, of degree < N. O

Remark A2. Following the arguments in the proof of Lemma A1, we find GCD cofactors with
degree< N for a sequence @° = [al(t), ..., a%(t)] of polynomials with degree< N by a procedure,
which consists of decreasing the degree of some of the polynomials stepwise with multiplication with
a suitable (K x K)-matrix with polynomial entries.

Starting with v or Xo = Idk, we repeat the operations N, R, D realized by multiplications
from the right with the (K x K)-matrices N5, Ry, Dy given below, until we achieve a sequence of
the forma® = [0,...,0,a%(t)].

N, R,D:F[t]* — F[t]X operations on K-tuples of polynomials,

N : [ak(t)]K — [ax(t) /maincoeff(ay,)| normalization,

k=1 k=1
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N(p) =PN5,  Ng = [6;;/maincoeff, (p; )]fszl
where maincoeff ( Z;i\[:o vcktk) = ay if an # 0 or maincoeff(0) = 0,
R: [ak(t)]ll;l > [ag(k)(t)]szl reordering,
where o = 0% is an index permutation with the effect
|deg(ar(1))| > |deg(ar(2))] > - - - > |deg(ar(K))
Rp=PRp Rp= [5i,aﬁ(j)]5=1~
D:[0,...,0,ar(t),...,ax(t)] = [0,...,0,a5(t),ar41,...,ak(t)] (ap #0)
degree decreasing with aj(t) = ap(t) — tdeg(ar)—deg(ari1)g; 4 (¢),
and leaving the sequences of the form [0,...,0,ax(t)] invariant;
we set Dy =1d if L = K.
The procedure terminates after, at most, S = Z,Ile deg(ag) steps, as the sum of the de-

, (deg(0) = —oo);

grees of the non-zero polynomials in any sequence containing more than one non-zero member
is decreased by 1 after each application of D. The GCD of the non-zero polynomials in any se-
quence remains invariant after each substep. Hence, for the values p , Xs of stores of p or X at
the end of STEP (s), we have P, = a°X;. Thus, in STEP (S*) of the termination, we have
P=7Pg =1[0,0,...,GCD] =a°X = ©-f | %Xy .
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