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1. Introduction 6

It is a well-known consequence of Cartan’s classical Uniqueness Theorem [5] that given 7

a bounded circular domain D in the N-dimensional complex space CN any holomorphic 8

mapping F : D → D with F(0) = 0 and preserving the Carathéodory (or Kobayashi) dis- 9

tance associated with D is necessarily linear and surjective. In contrast, in 1994 E. Vesentini 10

[10](p. 508),[11](Sec. 3) found various examples, even with holomorphic families, showing 11

that the infinite dimensional version of this fact is no longer valid in general Banach space 12

setting. Actually Cartan’s result ensured the linearity of the one-parameter semigroups 13

of holomorphic automorphisms fixing the origin and hence gave rise to a Lie theoretic 14

approach by means of the infinitesimal generators to the precise algebraic description of 15

the group of holomorphic automorphisms of a finite dimensional bounded homogeneous 16

circular domain. However, Vesentini’s techniques seem unsuitable in constructing a C0- 17

semigroup [Ft : t ≥ 0] of non-linear Carathéodory isometries Ft ∈ Hol(D, D) on a bounded 18

circular domain D contained in some complex Banach space E. Our aim in this short note is 19

a C0-semigroup construction (Lemma 2) done with slight modifications of familiar methods 20

used in the theory of C0-semigroups of linear operators [3] resp. delay equations [1] in 21

the fading memory space C0(R+, E). Our examples involve bounded convex circular do- 22

mains D but relies upon some auxiliary remarks with independent interest on holomorphic 23

invariant distances associated to domains for the type D =
{

x ∈ X : range( f ) ⊂ D
}

in 24

a function space X = C0(Ω, E) with some bounded convex domain D containing 0 ∈ E. 25

Actually, our arguments require no deep knowledge of symmetric spaces and invariant 26

distances. 27

As for the background of motivation: The approach by von Neumann to classical Quan- 28

tum Mechanics proposed modeling the evolution of wave functions with one-parameter 29

C0-groups of unitary operators in complex Hilbert spaces. Toward the beginning of the 30

1970-s, exigences occure to extend the related framework beyond the setting of linear 31

operators and regard not necessarily reversible evolution. To this aim naural candidates 32

are one-parameter C0-semigroups of holomorphic self-mappings preserving some auto- 33

morphism invariant distance on a bounded Banach space domain. Physical symmetry 34

properties can be played by the circularity or more generally by the holomorphic symmetry 35

of the underlying domain. According to Kaup’s celebrated Riemann Mapping Theorem [7], 36

up to holomorphic equivalence, bounded symmetric domains are circular and convex. 37

At first sight Theorem 2 seems a negative result. However, the construction may reveal 38

interesting geometric properties and links to delay equations for further investistigation. 39
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2. Preliminaries 40

To establish terminology: by a one-parameter C0-semigroup on a topological space X 41

we mean an indexed family
[
Ft : t ∈ R+

]
of mappings Ft : X → X with the semigroup 42

properties F0 = IdX =
[
X 3 x 7→ x

]
, Ft ◦ Fs(x) = Ft(Fs(x)

)
= Ft+s(x) (s, t ∈ R+) and the 43

continuity of all orbits t 7→ Ft(x) for any x ∈ X. Given two metric spaces (Xj, dj) (j = 1, 2) 44

a mapping f : X1 → X2 is a d1 → d2 contraction if d2
(

f (x), f (y)
)
≤ d1(x, y) (x, y ∈ X1). 45

A subset D in a complex topological vector space E is said to be circular if it is connected, 46

contains the origin of E and D = eitD = {eitx : x ∈ D} (t ∈ R). 47

Throughout this work let E denote an arbitrarily fixed complex Banach space with
norm ‖ · ‖ and open unit ball B1(E). As standard notation, we write C for the complex
plane regarded as a 1-dimensional space normed with the absolute value and unit disc ∆ =
B1(C) = {ζ : |ζ|<1} equipped with the Poincaré metric d∆(α, β) = tanh−1 ∣∣(β− α)/(1− α)

∣∣(
α, β ∈ ∆

)
. Given any domain (connected open set) D ⊂ E,

dD
(

p, q
)
= sup

{
d∆
(

f (p), f (q)
)

: f ∈ Hol(D, ∆)
)} (

p, q ∈ D
)

is the associated Carathéodory distance where Hol(D1, D2) stands for the family of all holo- 48

morphic maps between two Banach space domains D1 ⊂ E1 resp. D2 ⊂ E2. In the cases of 49

our interests, a function f : D2 → E2 with bounded range is holomorphic if and only if for 50

any point p ∈ D and any unit vector v ∈ E, it admits a uniformly convergent directional 51

Taylor expansion ζ 7→ f (p + ζv) =
∞
∑

n=0
ζnan

(
an ∈ E1,

∞
∑

n=0
‖an‖ρn < ∞

)
whenever the 52

closed ball p + ρB1(E) is contained in D. A fundamental feature of Carathéodory metrics 53

[5] is that all holomorphic maps D2 → D2 are dD1 → dD2 contractions, furthermore if the 54

domain D ⊂ E is bounded then
(
D, dD

)
is a complete metric space giving rise to the same 55

topology as the distance by the norm on D. 56

For a locally compact Hausdorff space Ω, C0(Ω, E) will denote the Banach space of 57

all continuous functions f : Ω→ E vanishing at infinity (i.e. f−1{p ∈ E : ‖p‖ ≥ ε} is 58

a compact subset for any ε > 0) equipped with the norm ‖ f ‖ = max
ω∈Ω
‖ f ‖. In particular 59

C0(R+, E) consists of functions with limit 0 at infinity. It is immediate that, given any 60

domain D0 in some Banach space E0, a mapping f : D0 → C0(Ω, E) with bounded range 61

is holomorphic if and only if all pointwise evaluations δω f : D0 3 z 7→ f (z)(ω) (ω ∈ Ω) 62

are holomorphic. 63

Given a bounded convex domain D ⊂ E with 0 ∈ D, we also introduce the figure 64

C0(Ω, D) = { f ∈ C0(Ω, E) : range( f ) ⊂ D} which is easily seen a bounded convex 65

domain in C0(Ω, E). In course of the verification of Carathéodory isometry properties of 66

holomorphic self-maps of domains D of the type C0(Ω, D), we shall use the following 67

plausible but highly non-trivial relation. 68

Lemma 1. For the Carathéodory distance of the domain D = C0(Ω, D) with 0 ∈ D ⊂ E we have

dD
(
x, y
)
= max

ω∈Ω
dD
(
x(ω), y(ω)

) (
x, y ∈ D

)
(1)

provided the underlying topological space Ω has countable base and the target space E is separable. 69

Remark 1. The special case of (1) with D = C0(R+, ∆) appears in [5] with a proof relying 70

upon Möbius transformations. Similar arguments can be applied in the case when D is 71

a (necessarily convex) holomorphically symmetric bounded circular domain even without 72

countability restrictions using Kaup’s JB*-triple calculus [6–8]. 73

In its full generality, Lemma 1 can be deduced from a far-reaching theorem [2] due 74

to Dineen-Timoney and Vigué (extending Lempert’s result [9] on the coincidence of the 75

Carathéodory- and Kobayashi pseudometrics in finite dimensions) for convex domains 76
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in separable locally convex spaces. Since we do not know a reference, we give a detailed 77

proof in Section 4. 78

3. Results 79

Throughout this section D denotes an arbitrarily fixed bounded convex domain in E
containing the origin. For short we write

X = C0(R+, E) and D = C0(R+, D) =
{

x ∈ X : range(x) ⊂ D
}

.

Lemma 2. Let
[
ϕt : t ∈ R+

]
be a C0-semigroup of (norm)-contractions D→ D. Then the maps

Φt : D → X (t ∈ R+) defined by

Φt(x) : R+ 3 τ 7→
[

ϕt−τ
(

x(0)
)

if 0 ≤ τ ≤ t, x(τ − t) if τ ≥ t
]

form a C0-semigroup of isometries D → D. 80

Proof. Consider any function x ∈ D. Since, by definition, the function τ 7→ ϕt(x(0)) is
continuous and ranges in D, we have Φt(x) ∈ D. Given another function y ∈ D,∥∥Φt(x)−Φt(y)

∥∥=max
{

max
0≤τ≤t

∥∥ϕt−τ
(
x(0)

)
−ϕt−τ

(
y(0)

)∥∥, max
σ≥t

∥∥x(σ− t)−y(σ− t)
∥∥}

≤
∥∥x(0)− y(0)

∥∥, max
σ≥t

∥∥x(σ− t)− y(σ− t)
∥∥}

= max
τ≥0

∥∥x(τ)− y(τ)
)∥∥ = ‖x− y‖.

Since trivially∥∥Φt(x)−Φt(y)
∥∥ ≥ max

σ≥t

∥∥x(σ− t)−y(σ− t)
∥∥} = max

τ≥0

∥∥x(τ)−y(τ)
∥∥} = ‖x− y‖,

we conclude that each map Φt is a D-isometry. 81

Next we check the semigroup property of [Φt : t ∈ R+]. Let s, t ≥ 0. Then we have

Φs ◦Φt(x) : τ 7→
[

ϕs−τ
(
Φt(x)(0)

)
if τ ≤ s, ϕt(x)(τ − s) if τ ≥ s

]
,

Φs+t(x) : τ 7→
[

ϕ(s+t)−τ
(
x(0)

)
if τ ≤ s + t, x

(
τ − (s + t)

)
if τ ≥ s + t

]
.

Thus if 0 ≤ τ ≤ s then

Φs ◦Φt(x)(τ) = ϕs−τ
(

Φt(x)(0)
)
= ϕs−τ

(
ϕt(x(0)))

= ϕs−τ ◦ ϕt(x(0)) = ϕ(s+t)−τ
(
x(0)

)
= Φs+t(x)(τ).

If s ≤ τ ≤ s + t then

Φs ◦Φt(x)(τ) = Φt(x)(τ − s) =τ−s≤t= ϕt−(τ−s)(x(0))
= ϕ(s+t)−τ

(
x(0)

)
= Φs+t(x)(τ).

If s + t ≤ τ then

Φs ◦Φt(x)(τ) = Φt(x)(τ − s) =τ−s≥t= x
(
(τ − s)− t

)
= Φs+t(x)(τ).

We complete the proof by checking strong continuity, that is that ‖Φt(x)−Φs(x)‖ → 0
whenever s→ t in R+. Recall that the moduli of continuity

M(z, δ) := max
|t1−t2|≤δ

‖z(t1)− z(t2)‖, m(e, δ) := max
|t1−t2|≤δ

‖ϕt1(e)− ϕt2(e)‖
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associated to any function z ∈ X resp. any vector e ∈ E are well-defined and converge to 0
as δ↘ 0. Let 0 ≤ t1 ≤ t2. Since we have

Φt1(x)(τ)−Φt2(x)(τ) =


ϕt1−τ(x(0))− ϕt2−τ(x(0)) if τ ≤ t1,

ϕt2−τ(x(0))− x(τ − t1) if t1 ≤ τ ≤ t2,

x(τ − t2)− x(τ − t1) if t2 ≤ τ,

it follows

‖Φt1(x)−Φt2(x)‖ ≤


m
(

x(0), t2 − t1
)

if τ ≤ t1,∥∥ϕt2−τ
(
x(0)

)
− x(0)

∥∥+ ∥∥x(τ − t1)− x(0)
∥∥ ≤

≤ m
(

x(0), t2 − t1
)
+ M(x, t2 − t1) if t1 ≤ τ ≤ t2,

M(x, t2 − t1) if t2 ≤ τ.

Hence we see the uniform continuity of the function t 7→ Φt(x) with modulus of continuity 82

δ 7→ m
(

x(0), δ
)
+ M(x, δ). 83

Remark 2. The conclusion of Lemma 2 holds even if E is only assumed to be a real Banach 84

space. 85

Proposition 1. Under the hypothesis of Lemma 1, if the maps ϕt above are additionally holomorphic 86

and leave the origin of E fixed, furthermore the underlying Banach space E is separable or D is 87

a circular holomorphically symmetric domain then each term Φt is a holomorphic 0-preserving 88

dD → dD-isometry. 89

Proof. Since the domain D is bounded, the holomorphy of the maps Φt with holomorhic 90

terms ϕt is an immediate consequence of the fact that all the pointwise evaluations δωΨ : 91

D 3 x 7→ Ψ(x)(ω) (ω ∈ Ω) are holomorphic. Indeed we have δτΦt =
[
x 7→ x(τ − t)

]
or 92

δτΦt =
[
x 7→ ϕτ−t(x(0))] with holomorhic maps by assumption. 93

Since the maps ϕ ∈ Hol(D, D) are dD → dD contractions, by the aid of Lemma 1 we
can see that each term Φt is a dD-isometry as follows. Given any pair of functions x, y ∈ D
we have dD

(
ϕt(x(0)), ϕt(y(0)) ≤ dD

(
x(0), y(0)

)
(t ≥ 0). Hence

dD
(
Φt(x), Φt(y)

)
= max

τ≥0
dD
(
δτΦt(x)(τ), δτΦt(y)(τ)

)
=

= max
{

dD
(

ϕ[t−τ]+
(
x(0)

)
, ϕ[t−τ]+

(
y(0)

))
, dD

(
x([τ − t]+), y([τ − t]+)

)
: t ≥ 0

}
=

= dD
(

x(τ − t), y(τ − t)
)
, max

{
dD
(
x(0), y(0)

)
, dD

(
x(τ), y(τ)

)
: τ ≥ 0

}
=

= max
τ≥0

dD
(

x(τ), y(τ)
)
= dD(x, y)

which completes the proof. 94

Remark 3. It is well-known from [4] that, given a continuously differentiable function f ∈ X ,
we have

d+

dt
∥∥ f (t)

∥∥ := lim sup
h↘0

[
‖ f (t + h)‖ − ‖ f (t)‖

]
/h = sup

L∈S( f (t))
Re
〈

L, f ′(t)
〉

in terms of the family of supporting bounded linear functionals

S(y) :=
{

L ∈ E∗ : ‖L‖ = 1, 〈L, y〉 = ‖y‖
}

(y ∈ E).

In particular f is non-increasing whenever Re
〈

L, f ′(t)
〉
≤ 0 for any t ∈ R+ and for any 95

functional L ∈ S( f (t)). 96
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Lemma 3. Let V : U → E be a Lipschitzian continuously differentiable map (regarded as a 97

vector field) on some open neighborhood U of the closed unit ball B1(E) with V(0) = 0 and let 98

µ ≥ Lip
(
V|B(E)

)
= sup f1, f2∈B(E) ‖ f1 − f2‖−1‖V( f1)−V( f2)‖. Then the maximal flow of the 99

vector field W : B1(E) 3 e 7→ V(e)− µe is a well-defined uniformly continuous one-parameter 100

semigroup [ϕt : t ∈ R+] consisting of contractive (non-expansive) self maps of B1(E). 101

Proof. By definition, any flow of W is a family [ϕt : t ∈ I] of self maps ϕt : B1(E)→ B1(E)
where I is some (relatively) open subinterval of R+ and, for any point e ∈ B1(E), the
function I 3 t 7→ ϕt(e) is the solution of the initial value problem

d
dt

z(t) = W
(
z(t)

)
, z(0) = e. (2)

By writing Ie for the maximal solution of (2), it is well-known that sup Ie > 0 in any case, 102

furthermore we have limt→sup Ie ‖z(t)‖ = 1 whenever sup Ie < ∞. 103

Let e1, e2 ∈ B1(E) and consider the function f (t) := ϕt(e1)− ϕt(e2) defined on the
interval Ie1 ∩ Ie2 . Observe that, given any functional L ∈ S

(
ϕt(e1)− ϕt(e2)

)
, we have

Re
〈

L, f ′(t)
〉
= Re

〈
L, W

(
ϕt(e1)

)
−W

(
ϕt(e2)

)〉
=

= Re
〈

L, V
(

ϕt(e1)
)
−V

(
ϕt(e2)

)〉
− µRe

〈
L, ϕt(e1)− ϕt(e2)

〉
=

= Re
〈

L, V
(

ϕt(e1)
)
−V

(
ϕt(e2)

)〉
− µ

∥∥ϕt(e1)− ϕt(e2)
∥∥ ≤

≤ µ
∥∥ϕt(e1)− ϕt(e2)

∥∥− µ
∥∥ϕt(e1)− ϕt(e2)

∥∥ = 0.

Hence we conclude that the function t 7→ f (t) is decreasing, in particular we have the 104

contraction property
∥∥ϕt(e1)− ϕt(e2)

∥∥ ≤ ∥∥ϕ0(e1)− ϕ0(e2)
∥∥ =

∥∥e1 − e2
∥∥ for t ∈ Ie1 ∩ Ie2 . 105

By assumption W(0) = V(0) = 0 implying ϕt(0) ≡ 0 with I0 = [0, ∞) = R+. Hence we 106

see also that
∥∥ϕt(e)

∥∥ =
∥∥ϕt(e)− ϕt(0)

∥∥ ≤ ∥∥e− 0
∥∥ =

∥∥e
∥∥ < 1 for all e ∈ B1(E) and t ∈ Ie. 107

This is possible only if sup Ie = ∞. Therefore the maximal flow of W is defined for all (time) 108

parameters t ∈ R+ and consists of B1(E)-contractions ϕt. 109

It is well-known that flows parametrized on R+ are strongly continuous semigroups 110

automatically. The uniform continuity of in our case is a consequence of the fact that 111∥∥ϕt2(e) − ϕt1(e)
∥∥ ≤ ∫ t2

t1

∥∥ d
dt ϕt(e)

∥∥dt =
∫ t2

t1

∥∥W
(

ϕt(e)
)∥∥dt ≤

∫ t2
t1

4µ dt (0 ≤ t1 ≤ t2), 112

which shows that ω(e, δ) ≤ 4µδ (e ∈ B1(E), δ ∈ R+). 113

Example 1. Let E := C with B1(E) = ∆ = {ζ ∈ C : |ζ| < 1} and let V(z) ≡ z2. Since
|z2

1 − z2
2| = |z1 − z2| · |z1 + z2| ≤ 2|z1 − z2|, we can apply Lemma 3 with W(z) := z2 − 2z.

For the flow [ϕt : t ∈ R+] of W we obtain the holomorphic maps

ϕt(z) =
2z(

1− e2t
)
z + 2e2t

(z ∈ ∆, t ≥ 0).

Indeed, the solution of the initial value problem

d
dt

x(t) = x(t)2 − 2x(t), x(0) = z (3)

is x(t) = 2z/
[(

1− e2t)z + 2e2t] as one can check by direct computation. As for heuristics, 114

we get a real valued solution with real calculus for (3) with initial values −1 < z < 1, and 115

the obtained formula extends holomorphically to ∆. 116

Theorem 2. Given a complex Banach space E with symmetric or separable unit ball, there is a 117

C0-semigroup of non-linear holomorphic 0-preserving norm and Carathéodory isometries of the open 118

unit ball of the function space X := C0(R+, E). 119
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Proof. We can apply the construction of Proposition 1 with a semigroup [ϕt : t ∈ R+] 120

obtained with the construction of Lemma 3 with any E-polynomial polynomial vector field 121

V : E→ E. 122

Example 2. Let E := C and X := C0(R+,C). Then the maps

Φt(x) : R+ 3 τ 7→
[

2x(0)(
1− e2(t−τ)

)
x(0) + 2e2(t−τ)

if τ ≤ t, x(τ − t) if τ ≥ t

]

form a C0-semigroup of non-linear holomorphic 0-preserving norm and Carathéodory 123

isometries of the unit ball B1(X). 124

Question 1. Is any holomorphic norm-isometry of the unit ball of a complex Banach space 125

automatically a Carathéodory isometry as well? 126

4. Appendix: proof of Lemma 1 127

Notice that our assumptions imply the separability of the space X = C0(Ω, E). Thus
we can apply the main result in [2] to D with the conclusion that

dD
(

x, y
)
= max

{
d∆
(

f (x), f (y)
)

: f ∈ Hol(D, ∆)
}
=

= inf
{

d∆
(
ξ, η
)

: ∃ f ∈ Hol(∆,D) with f (ξ) = x, f (η) = y
}
=

= inf
{

tanh−1(η) : η > 0 and ∃ f ∈ Hol(∆,D) with f (0) = x, f (η) = y
}

for any pair x, y ∈ D. In the case of the space X consisting of functions Ω → E, the
evaluations δω : x 7→ (ω) are linear mappings with δω(D) ⊂ D. Since all holomorphic
functions D → D are dD → dD contractions, hence we conclude that

dD
(

x, y
)
≥ sup

ω∈Ω
dD
(

x(ω), y(ω)
) (

x, y ∈ D
)
.

It is well-known [5] that the Carathéodory pseudodistance is a continuous metric on any 128

bounded Banach space domain, being locally equivalent to the natural distance defined by 129

the underlying norm. Therefore we can replace the term sup with max in the above formula 130

and to complete the proof it suffices to see that the following approximate version of the 131

inf-expression of dD(x, y). 132

Let ε > 0 and η > tanh
(
dD(x, y)

)
. Then given any pair of functions x, y ∈ D, there exists a

mapping ∆ 3 ζ 7→ zζ ∈ E such that for any location ω ∈ Ω, we have

‖z0(ω)− x(ω)‖, ‖zη(ω)− y(ω)‖ < ε,
[
ζ 7→ zζ(ω)

]
∈ Hol(∆, D).

Construction of a suitable function ζ 7→ zζ : Let Ω∗ = Ω ∪ {∞} be the one point com-
pactification of Ω. For each location ω ∈Ω∗, we can find a neighborhood Γω ⊂Ω∗ such
that

dD
(

x(γ), x(ω)
)
, dD

(
y(γ), y‖(ω)

)
,
∥∥x(γ)− x(ω)

∥∥,
∥∥y(γ)− y(ω)

∥∥ < ε
(
γ ∈ Γω

)
.

Due to the compactness of Ω∗, there exists a finite partition of unity subordinated to the
covering

{
Γω : ω ∈ Ω∗

}
. That is we can choose a finite subset

{
ωn
}N

n=0 ⊂ Ω∗ along with a

family
{

wn
}N

n=0 of continuous functions Ω∗ → R+ such that

N

∑
n=0

wn(ω) = 1 (ω ∈ Ω∗), supp(wn) ⊂ Γωn .

Consider the points pn = x(ωn), qn = y(ωn). Notice that

dD
(

pn, qn
)
≤ max

ω∈Ω
dD
(

pn, qn
)
= dD(x, y) < η (n = 0, . . . , N).
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Since dD(p, q) = inf
{

d∆(0, η′ : η′ ∈ (0, 1), ∃ f ∈ Hol(∆, D) f (0) = p, f (η′) = q
}

, we can
find functions f0, . . . , fN such that

fn ∈ Hol(∆, D), fn(0) = pn, fn
(
tanh(η + ε)

)
= qn.

In terms of f0, . . . , fN we can finish the construction by setting

zζ(ω) :=
N

∑
n=0

wn(ω) fn(ζ)
(
ζ ∈ ∆, ω ∈ Ω

)
.

For any fixed location ω ∈ Ω, the function ζ 7→ zζ(ω) is holomorphic as being a linear
combination of the holomorphic functions fn. For any fixed scalar ζ ∈ ∆, the function
ω 7→ zζ(ω) belongs to D as being a convex combination of the continuous functions[
Ω 3 ω 7→ fn(ω)

)
vanishing at ∞. Finally, since fn(0) = pn = x(ωn) and fn(η + ε) = qn =

y(ωn), for any location ω ∈ Ω we have the following estimates:

∥∥z0(ω)− x(ω)
∥∥ =

∥∥∥∥∥∑n
wn(ω)

[
fn(0)− x(ω)

]∥∥∥∥∥ =

∥∥∥∥∥∑n
wn(ω)

[
x(ωn)− x(ω)

]∥∥∥∥∥ ≤
≤ ∑

n:wn(ω)>0
wn(ω)

∥∥x(ωn)− x(ω)
∥∥ < ∑

n
wn(ε) = ε ;

∥∥zη+ε(ω)− y(ω)
∥∥ =

∥∥∥∥∥∑n
wn(ω)

[
fn(ζ + ε)− y(ω)

]∥∥∥∥∥ =

∥∥∥∥∥∑n
wn(ω)

[
y(ωn)− y(ω)

]∥∥∥∥∥ ≤
≤ ∑

n:wn(ω)>0
wn(ω)

∥∥y(ωn)− y(ω)
∥∥ < ∑

n
wn(ε) = ε.

which completes the proof. 133
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