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Abstract. We study continuous product domains in the space C({2, E) of
all continuous E-valued functions on {2, where (2 is a compact Hausdorff
topological space and E is an arbitrary JB*-triple, and discuss the group of
holomorphic automorphisms of domains of that type.
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0. Introduction

In [10] Vigué introduced the notion of a continuous product of bounded
domains in complex Banach spaces and studied the group of biholomor-
phic automorphisms of domains of that type. Continuous product domains
have a natural fibration and it is reasonable to look for fibre-preserving au-
tomorphisms and vector fields. Let G(ID) be the connected component of
the identity in the group of all holomorphic automorphisms of a continuous
product D, endowed with the topology of local uniform convergence. Under
certain restrictions on ID (see conditions [2a] and [2b] in [10] th. 1.8), the
identity transformation has aneighbourhood that consists of fibre-preserving
automorphisms. Condition [2b] is of geometrical nature and it is satisfied
whenever D is convex; however to check that [2a] is satisfied for specific
domains ID may be a non trivial matter. That was a key point in [11], where
continuous products in C(§2, C), the space of continuous complex valued
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functions, were discussed. On the other hand, by result of Dineen-Klimek-
Timoney [3], if D is a continuous product of balls then every transformation
in G(ID) is fibre-preserving.

In this paper we are concerned with some Jordan theoretic generalizations
of [11]. We replace the complex line C by an arbitrary Banach space F and
study certain continuous product domains D in C({2, E), the space of all
continuous E'-valued functions f: {2 — F. In Sect. 1 we consider a family
(Dw)wen of domains in E with some mild restrictions on the smoothness of
the boundaries 0D, and the following property: for every couple of points
a, b € D, there exists a complex geodesic which is a holomorphic retract
of D,,, passes through the points a, b and stretches to 9D,,. We establish that
then all transformations in G(ID) are fibre preserving. By a result of Lempert
[7], the biholomorphic images of finite dimensional convex sets with smooth
boundary have the above retract property. If a domain D in F is the image of
abounded circular symmetric domain in £ by a biholomorphic mapping that
extends bicontinuously to the boundary 0D, then D has the above retract
property.

In Sect. 2 we apply the previous results to the study of the holomorphic
geometry of a continuous product of balls. In Sect. 3 we define continuous
families of balls in partial JB*-triples by using bounded weights. We then
characterize the complete vector fields in the product domain in terms of
the triple product and the family of weights. In this manner we reobtain
some of the results in [11] whereas others are no longer valid in the new
context as it is shown by counterexamples. In particular, we show that if
Z is any partial JB*-triple and Z denotes its symmetric subspace, then
C(£2,Z)o = C(£2, Zy) which generalizes a well known result about JB*-
triples of continuous functions.

1. Continuous products and the fibre-preserving property

Throughout this section, {2 and E denote respectively a compact topolog-
ical space and a complex Banach space with norm || - || and open unit
ball D C E. By C(£2, E) we denote the space of all continuous E-valued
functions f: {2 — E, endowed with the usual operations and the norm of
the supremum. Let U C FE be a domain. A holomorphic vector field in
U is an E-valued holomorphic function X:U — F, and it is said to be
complete in U if for every initial condition z € U, the maximal solution
Ye(2): = expt X (z) of the initial value problem

Zu(2) = X)), () =2,

called the exponential of X, is defined in the whole real line R and satis-
fies y,(t) € U for all t € R. We let g(U) denote the set of all complete
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holomorphic vector fields in U. We shall use that if U is a bounded circular
domain containing the origin then every element X in g(U) is a continuous
polynomial E — E of degree < 2, [6]. Finally, a bounded circular domain
U such that O € U is holomorphically symmetric if for every pair a,b € U
there is a biholomorphic automorphism & of U such that h(a) = b. Recall
([10] def. 1.5)

1.1 Definition A domain D C C(£2, E) is the continuous {2-product of the
family (D,,)weq of bounded domains in E if the following two conditions
hold

D= {f€C(,E): flw) € D, (we 1)},
D, ={f(w):feD}, (weN).
In that case ID consists of continuous sections of
Diy:={(w,z) e 2 x E:w € 2,z € D,}

with respect to the fibration p: D, — {2 given by (w, ) — w.

1.2 Lemma Let §2, E and || - ||, (w € £2), respectively be a compact
topological space, a complex Banach space and a family of norms in E with
open unit balls D,,. Assume that D:= {f € C(2,E): f(w) € D,,, (w €
(2)} is a bounded domain in C(12, E). Then D is the continuous $2-product
of the family (D,,)cq if and only if there are constants 0 < m < M < oo
such that

mll-f<l-ll <M, (we),

and the function N(w, x): = ||z|. is upper semicontinuous on 2 x E.

Proof. 1tis elementary thatD, = {(w, z) € 2x E:w € £2, x € D, }isan
open set in {2 X E. Clearly D, = {(w, z) € 2 x E: N(w, z) < 1}. Since
[l - l.o is homogeneous, for g > 0 the sets {(w, z) € 2 x E: N(w, z) < g}
are open in {2 X E and this means that N is upper semicontinuous. Since
the origin is an interior point of I, there exists § > 0 such that {(w, z) €
2 x E:||z|| <} C Dy. Therefore

1
lello < $llel, (e 2 o e B).

Since D is bounded, there is a number ¢ > 0 such that D, C {(w, ) €
2 x E:||z|| < o}, hence

1
lzf > Ellwll, (we, zekE).

Conversely,letw € £2and0 # = € D, be given and assume that o — ||z |
is upper semicontinuous. Recall that then there exists a continuous function
¢: 2 — R such that

W) =llellw, ) 2 zlla; (2 € ).
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Then the function

Joz o gy
satisfies f, » € D and so D, = {f, »(w):z € D, } which means that ID is
the continuous product over §2 of the family (Dg,)oc . O

1.3 Definition A holomorphic vector field X: D — C(£2, E) on the con-
tinuous {2-product of the family (D,,),c( of domains in E is said to have
the fibre preserving property (the FPP for short) if there exists a family of
holomorphic vector fields v,,: D, — E such that

[Xf](LU) = vw(f(w)), (w €N, fe D)

Let D be the continuous {2-product of a family (D, ),eq of open balls in E.
We shall establish a sufficient condition to ensure the following property:
For every w € {2 and every pair a, b € D, there exists a holomorphic
function F': D, — ID such that

[F(a)lw)=a,  [F(})](w) =0, (1)

To use (1) we introduce Lempert’s retract property in the following defini-
tion, where as usual A and T denote respectively the open unit disk and its
boundary.

1.4 Definition A domain C in a complex Banach space E is said to have
Lempert’s retract property (LRP for short) if for every paira,b € C,a # b,
there exists an injective continuous mapping : A — C such that

a,bep(4d), 4|,isholomorphic, ¢(A)c C, «(T)c dC

and there exists a surjective holomorphic projection P : C' — 4(4), Po
P=P

1.5 Lemma Let E and D respectively be a complex Banach space and the
image of a bounded circular symmetric domain in E by a biholomorphic
map which extends bicontinuously to dD. Then D has the LRP.

Proof. Since circular bounded symmetric domains are convex [5], it suf-
fices to prove the statement for the special case of D being the unit ball
of E. Assume a,b € D = {z € E : |lz|| < 1}. Consider first the case
a = 0. By the Hahn-Banach theorem we can find a continuous linear func-
tional A : E — C such that |A\|| = 1 and A(b) = ||b||. Then the choice
() == ¢b/||bll, (¢ € A), and P(z) := \(z) b/A(b), (x € D), suits our
requirements. In the case a # 0 we proceed as follows. Since D is sym-
metric, by a result of Kaup [6] (see also [4] prop. 3.2), we can choose a
biholomorphic mapping A : W — E of some neighbourhood W of D such
that A|p is a biholomorphic automorphism, A(0D) = 4D and A(a) = 0.
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We construct the linear geodesic 1’ and the linear projection P’ to the couple
a’ = A(a) = 0and ¥ := A(b) € D according to the previous instructions.
Then the composite mappings ¢ := A~ 04 and P := A~ 0 P’ 0 A meet
the requirements. O

1.6 Remark In [2] Dineen, Timoney and Vigué have established the exis-
tence of complex geodesics in bounded convex domains of complex Banach
spaces but no holomorphic projection with the properties of P above was
ever considered as far as we know.

L.7 Proposition Let £2, E and (Dy)acq, respectively be a compact topo-
logical space, a complex Banach space and a Jamily of bounded starlike
domains in E with the LRP. Assume that

Doy ={z € F: vy(x) <1}, (a e )

Jfor a family of continuous positive homogeneous functions (Vo) aeq such
that set
D:={feC(,E): f(w)eD,, (we )}

is a bounded domain and {f(w) : f € D} = D,, forall w € 2. Then for
every w € §2 and a,b € D, there exists a holomorphic map F : D, — D
such that

[F@)]w)=a,  [F)w)=0b.

In particular, every complete holomorphic vector field in D has the FPP.

Proof. Fix w € {2 and a,b € D,, arbitrarily. With the notation established
before, let us construct the complex geodesic ¢ and the projection P asso-
ciated to the couple a,b € D,,. We show that for some continuous function
g : 42— [1, 00) with g(w) = 1 the holomorphic map F' : D, — C(2,FE)
defined by

F(z):=[am g(a)_lP(a;)], (z € D)

ranges in ID. To this aim it suffices to establish the existence of a continuous
function g such that g(a)™'2 € D, forany o € 2 and z € range(P).
Since Dy, = {z € E : vo(z) < 1} and range(P) = ¥(A), this condition
means

g9(a) > ¢(a) == sup va(2)/v,(2), gw) =1, (€ ).
0#2€4(4)

By the compactness of {2 and the fact that ¢(w) = 1, such a continuous
function g exists if the function ¢ is upper semicontinuous.

By composing v with a suitable Mébius transformation of 4, we may
assume that 1(0) = 0 if we have 0 € ¥(A U T) since, by the maximum
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principle, the possibility 0 € ¢(T) is excluded. Thus, with a suitable integer
K > 0, we can write

Q) =¢KPQ), O#A0 (¢l <1+e)

for some continuous map {Z : AUT — E which is holomorphic on A.
Then we have

Va(eiKezjbv(reia) R Va(eiKOJ(rew)

#la) = 03(1:;31 v, (eiK"vZ(rei") T oesrsi g, (eiKGZZ(T.eiG) )
o<o<er W 0<p<an YW

A standard compactness argument shows that

Vg (eiKa(a)'tz(r(a)ew(o‘))
Vol I 1 () 0e))

$(a) = (a € £2)
for suitable functions r : 2 — [0,1] and 6 : £2 — [0, 2x]. Observe that
the function N (a, x) := v,(z) is upper semicontinuous on {2 x E. Indeed,
since D is the continuous product over {2 of the domains D, = {z €
E : vo(z) < 1}, it is well-known [10] that the set D, := {(w, z) €
2x E:w € 0,z € D,}is open in 2 x E. Clearly D, = {(w, z) €
{2 x E:N(w, z) < 1}. Since v, is positive homogeneous, for ¢ > 0 the
level sets {(w, x) € 2 x E: N(w, ) < g} are openin {2 x E.

Finally we establish the upper semicontinuity of ¢ as follows. We fix any
o € {2 along with a net () ;e converging to « in {2 and we verify that
limsup; ¢(a;) < ¢(a). By passing to a suitable subnet, we may assume
without loss of generality that

$(a;) — limsup ¢(ey) = li;rnqﬁ(ozj), r(aj) = o, 6(aj) — 9,
j
Vo ( eme(aj)QZ(r(aj) ez'e(aj)) S

for some o € [0,1], ¥ € {0,2n] and 1 € R, Then, taking into account the
continuity of ¢ and v,,, we have

eKw(af)zz(r(aj)ew(af)) N eK'i'ﬂ,lZ(Qeiﬂ) 40,
Ve J(r(05)69)) 5 1, (K9 (gei?)) > 0.

By the upper semicontinuity of the function IV, also
p = lim N(ay, e*C9)4) (r(a;)(0)) )N (o, eXT04h( ge))
J

— lla(eKw’(Z(Qew)) i
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It follows

iKY, i) iK1 (5,00
; V< vl () va(e'(267))
1m;sup¢(0zg) TS o (KT ge)) < max v (75T (gt

0<F<2n
B Va(eiKG(a){pv(r(a)ew(a)))

= ¢(a) .

Vw(eiK9(a)QZ(,r(a)ei0(a))) -

This shows that D satisfies the conditions of Theorem 2.8 in [10}. Hence
any automorphism in G(ID), the identity connected component in the group
of all holomorphic automorphism of D, has the FPP, O

1.8 Remark If we restrict ourselves to continuous products of convex do-
mains, then by a result of Dineen-Klimek-Timoney [3] no auxiliary condi-
tions are necessary to guarantee that the transformations in G(D) have the
FPP.

L9 Theorem Let £2, E and(D,,)..cn, respectively be a compact topological
space, a complex Banach space and a family of bounded circular domains in
E.LetF C C(§2, E) be a subspace for which the following three properties
hold: (1) F contains the constant functions 1ge := [w + €] (e € E), (2)
thesetD = {f € F: f(w) € D, (w € 2)}is a bounded domain in F,
(3) Dy, = {f(w) : f € D} forallw € £2. Assume furthermore that every
transformation in G(D) has the FPP. Then for every vector field X :F — F
the following statements are equivalent:

@ X €g(D)

(i) Thereisa family of vector fieldsv,: E — E (w € 12), with the following
properties:
vy € g(Dy) (w € 12), the function w — v,(f(w)) belongs to F, and
[X(N(w) = vu(f(w)) holds for every f € F and every w € (2.

Proof. ()= (ii). This is clear by the fibre preserving property (1) and the
fact that D, = { f(w): f € F)} for any w € £2.

(i)= (i). By assumption v,, is a complete holomorphic vector field in
D,,. Hence every v, is a continuous polynomial £ — F of degree < 2.
For every e € E the function w — v,(1y; - €) belongs to IF and hence is
continuous by assumption. Thus by the compactness of (2, for each fixed
e € E the set {v,(e):w € 2} is bounded in E. That is, for every e € E
there is a constant M, < oo such that

lvw(e)l| £ Mey,  (e€E, we ) (2).

Forn € Nlet Hy:= {z € E:|ju,(z)|| < n, (w € £2)}. By (2) we have
E = Unen Hn, and as E is a Banach space, by Baire category theorem
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there is some zy € E and some € > 0 such that B, (xo) C Hy, for some
n € N. Then
lvw(z)]| < n forall z € B(xy).

But for every fixed w € {2 the function z ~» v, (x) is a polynomial, hence
the mapping X: f — X(f) is a polynomial F — F which is bounded on
the open ball B.(1 - z9) := {f € F : ||f(w) — 20| < €}. In particular
X is a continuous polynomial F — F. Since we have assumed that X is
fibre-preserving, this entails that X is complete in I by the proof of ([10]
th. 1.8). o

2. The symmetric part of a continuous product

In this section we apply the previous results to the study of the holomorphic
geometry of the domain I, the continuous product of the family of balls
Dy, = {z € E:|jz||, < 1}, (w € £2). Notice that I can also be regarded as
the unit ball of the Banach space E: = C({2, E) with a suitable norm.

The appropriate algebraic tool for the description of the Lie algebra of
all complete holomorphic vector fields in a bounded circular domain is the
category of partial JB*-triples. By a partial Jordan triple ([1], [8]) we mean
a structure (E, Ey, {+,-,-}) where E is a complex Banach space, Fj is a
complex linear subspace of E, and {-, -, -}: E x Ey x E — E (called the
triple product) is a continuous real trilinear map satisfying the axioms for
alla € Eyandallz,y € E

(i) {EoEoEp} C Ey

(i) {zay} is symmetric complex linear in z, y and conjugate linear in a.
(i) {ab{zcy}} = {{abz}cy} — {z{bac}y} + {zc{aby}}

(iv) {za{zbz}} = {{zazx}bz}

(v) alla is a hermitian positive element of L(E)

) [[{aaa}]l = lal®.

To be concise we say that E is a partial JB*-triple and refer to Ej as the
symmetric subspace of E. In case Ey = E we speak of a JB*-triple. Given
a complex Banach space, its unit ball D gives rise to a natural partial JB*-
triple structure on E as follows: The manifold Eo: = g(D)0 = {X(0): X €
9(D)} is a closed complex linear subspace of E and there is a unique partial
JB*-triple product on E x Eg x E with

g(D)=g*(D)® g™ (D)
where

g" (D) ={X'(0): X € g(D)}, ¢~ (D) ={[z~v—{zvz}]:ve Ey}.



Continuous products 629

In the sequel we shall use the fact that each surjective linear isometry of the
space E is an automorphism of the triple product associated with the unit
ball D.

Remark that JB*-triples characterize algebraically the bounded symmet-
ric domains in the sense that the Harris-Chandra realization of a bounded
symmetric domain is circular, and symmetric circular domains are exactly
the linear copies of the unit balls of JB*-triples. Partial JB*-triples character-
ize bounded circular domains in a weaker sense: Bounded circular domains
are the linear copies of bounded domains that are invariant under the expo-
nential of all vector fields of the form [z — v—{zv z}], (v € Ep), and under
the linear automorphisms of the triple product. A complete axiomatization
is not yet known.

We refer to [1], [5], [8] [9], [12] for proofs and background material on
JB*-triples and partial JB*-triples.

2.1 Theorem Let 2, E and || - ||w, (w € £2), respectively be a compact
topological space, a complex Banach space and afamily of norms in E whose
openunitballs D, havethe LRP.Let (E, E, o, {-, -, - }.,) be the partial JB*-
triple associated with D, and denote by D the continuous §2-product of the
family (D,)weq. Then for every vector field X:C(£2, E) — C(£2,E) the
following statements are equivalent:

) Xeg (D)

(ii) There is continuous function a: §2 — E with the following properties:
a(w) € Eyoforallw € 2,andw — {f(w) a(w) f(w)}e is continuous
whenever f € C(£2, E).

Proof. Let (E,Eg, {-, -, -}) be the partial JB*-triple associated with . By
(1), for each a € Eg the vector field X,:= [f — a — {fa f}] has the
fibre form X,(f) = [w — vgu(f(w))] with a suitable family vg, €
9(D,), (w € £2). Since X, € g~(D) and X/(0) = 0, we actually have
Vaw € g7 (D) for allw € £2. Therefore vy ,(2) = v4,(0) — {2 V4w (0) 2}
for z € D,, and we even have a(w) = v,4,,(0). That is, the triple product
associated with [E has the fibration

{faf} =~ {flwaw)fw}d] (feE ack).

In particular, the fact X € g~ (D) is equivalent to having X (f) = [w
a(w)—{f(w) a(w) f(w)}.] for some functiona € Eg. In this case (ii) holds
since X (f) € E should be a continuous function.

Conversely, if we assume (ii) it is straightforward to see that every vector
field of the form X, is complete in ID. O

2.2 Example 1. Let E be a complex Banach space with norm || - ||, open unit
ball D and symmetric subspace Ey. Consider the family of norms || ||, = |||
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for all w € §2. In this case the domains (D,,),cg, coincide with D and the
partial triple product of each factor coincides with the triple product in F.
The product (which is now a power) domain D is the unit ball in C(£2, E)
relative to the norm of the supremum. Thus we can apply (2), but now the

function
w i {f(w) aw f(W)}o = {f(w) aw f(w)}

is continuous whenever f € C(£2, E) due to the continuity of the product
in E. Thus we get

g~ (D) = C(2,Ey), and C(92,E)y=C($2, Ey).

In case & = Ey, that is, if E is a JB*-triple, then we reobtain a classical

result
97 (D)= C(£,E), and C(£2,E)o=C(12,E).

3. Partial JB*-triples and weighted powers

Let E be a complex Banach space and denote by GL(E) the group of all
bounded invertible linear operators on E. Let ¢: {2 — GL(E) be a function
for which the following two conditions hold:

(a) Boundedness: There are constants 0 < m < M < oo such that

m |zl < lp(w) 2l S Mzl,  (z€E, we ).

(b) Upper semicontinuity: The function (z, w) + ||¢(w) " z|| is upper
semicontinuous in E' x f2.

We refer to such a ¢ as an admissible weight. If f € C(£2, E) then we
have m || f(w)[| < [l¢(w)Hf W)l < M [If (W), (w € £2), and s0

m|lfll < fllp < MIfI where [If[lg:= sup l¢@@)~ f W)l

is attainable by condition (b). Clearly [|z{|,: = [|p(w)~1z|, (z € E),isa
family of uniformly equivalent norms in E and the relation || f||4 < 1 is
equivalent to || f(w)|| < 1 for all w € §2. This means that

D:={f € C(12, E): ||fll¢ < 1}

is the continuous product of the domains D,,: = {z € E: ||z|l, < 1}. Even
if E is a JB*-triple, in general | - ||4 does not coincide with the spectral
norm of C({2, E), hence D may fail to be homogeneous and it is reason-
able to characterize the symmetric subspace of (C(£2, E), || - ||4), that is,
the symmetric subspace of the partial JB*-triple associated with ID. To that
purpose let E,, denote the space (E, || - ||,,) and notice that ¢(w): E — E,,
is a surjective linear isometry for all w € 2, hence in this case the factors
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D, (w € £2), are all isomorphic even if they may not coincide. The adjoint
map ¢(w)x: g(D) — g(D,,) is an isomorphism of the corresponding Lie
algebras of complete holomorphic vector fields which induces an isomor-
phism of the quadratic summands ¢(w)x:g~ (D) — g~ (D.). Hence the
triple product in the factor E,, is given by

{zy 2}y = pWH{Bw) 'z, dw) My, p(w) "2},
(x,y, z € E,, we 2).

Moreover, if the ball D C E has the LRP so do all factors D, C E,,.

To simplify the notation we set f(w):= ¢(w) ™! f(w) whenever ¢ is an
admissible weight, f is continuous and w € f2.
3.1 Theorem Let §2 and E respectively be a compact topological space
and a complex Banach space whose ball D has the LRP. Let Ey denote the
symmetric subspace of E and let ¢: 2 — GL(E) be an admissible weight.
Then for every v € C(£2, E) the following conditions are equivalent:

(i) The function v belongs to the symmetric subspace of (C(12, E), || - ||¢)-
(i) v(w) € ¢(Ep) for all w € 2 and the function p{p~ f, o~ v, =L f}
is continuous whenever so is f.

Proof. 1t follows from (2.1) and the preceding discussion. O

Let o denote the strong operator topology on GL(E). If a weight ¢: 2 —
GL(E) satisfies the boundedness condition, so does its inverse ¢~ 1:w >
#(w)™1, (w € 2). A bounded weight and its inverse have the same set of
points of o-continuity since the inversion operation g — g~ is o-continuous
on bounded subsets of GL(E). For any f € C({2, F) and any bounded
weight, the function f = ¢~1 f is continuous at every point of o-continuity
of ¢. For every set S C (2 let Cg(£2, E) denote the ideal of the functions
that vanish on S. As usual, we shall write Q,(v): = {uvu} foru,v € E
to shorten the notation.

3.2 Proposition Let E be a JB*-triple and let ¢: 2 — GL(E), be an
admissible weight whose set of points of o-discontinuity is S C (2. Then the
ideal C(S2, E) is contained in the symmetric subspace of (C(£2, E), || -||4)-

Proof. Let c € Cg(£2, E). It suffices to show that w — ¢(w) Q Fw) (é(w))

is continuous for all f € C(f2, E), and for that it suffices to establish its
continuity at every point w € S. Fix wp € S. Then we have

C(WO) =0, é(WO) =0, ¢(w0) Qf(wo) (5("‘}0)) =0.

Let € > 0. Since ¢ is bounded and ¢ is continuous at wy, there is a neigh-
bourhood U of wg in {2 such that for w € U

lle(wll <e, and le(@)ll < M fle(w)ll.
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Therefore,
1Q 7y G S NF @) Nl
<MP|flPe (weU, fecC(,E)).
Finally since Q ¢, (€(wo)) = 0,
[[#(w) Qf(w)(é(w)) — ¢(wo) Qf(wo) (Elwol
< ol 19 ey Ew)I

1
< —MP|fl*e, (wel, feC(f,E).
which shows that w — ¢(w) Q Fw)(€(w)) is continuous (and null) at wp.

O

3.3 Corollary ([11] Th. 7.1) Let g: 2 —+ R™ be a strictly positive lower
semicontinuous function. Then the symmetric space of the partial JB*-triple
associated with the domain

D:={f € C(£2,C):|f(w)| < ow), (w € 2)}
is Cs (12, C) where S stands for the set of discontinuity points of .

Proof. D is the weighted power of the unit disc A for the weight of multi-
plication by ¢~ 1. Therefore a € Eq if and only if ¢~ {(¢f) (¢a) (¢f)} =
0~ 2af? is continuous for every f € C(£2, C). For f = a, the func-
tion g~2?@a? is continuous if and only if it vanishes on S. Conversely, if
a € Cs(92, C) trivially o~2a? is continuous whenever so is f. 0

The inclusion in proposition 3.2 may be strict even if we assume that the
weight ¢ is strictly positive-valued as shown by the following counterexam-
ple (see [11] Th. 7.1)

3.4 Example Let E be the Hilbert space E:= C2 with the usual scalar
product and the triple product {zyz}:= (z | y)z. Take 2:= [0, 1] C
R and let S:= {a, b} C £ with a # b. Let U, V be open disjoint
neighbourhoods of a, b in {2, respectively. Let r1, ro: 2 — R be two
strictly positive real valued upper semicontinuous functions with exactly
one discontinuity point at a, b respectively, and define a bounded weight
$:2 = GL(E) by f = [$](w):= (r(w) i(w), r2(w) fow)), (w € £2),
for f = (f1, f2) € C(£2,C?). Clearly ¢ is a positive operator-valued
weight for which S is exactly the set of discontinuities. Choose a function
¢ = (c1, ca) € C(£2,C?) such that c;, ¢y > 0 on 2 with ¢; + ¢o = 1 and
c1(U) = ca(V)) = {0}. Now c vanishes at no point in .S; however we have
$() Q) (Ew)) = W) (W), (w € 2), where u = freir? + fyear}
is easily seen to be continuous on {2, and so ¢ belongs to the symmetric
subspace of (C(£2, E), || - ||4) even though c vanishes at no point in S.
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