PARTIAL JORDAN* TRIPLES WITH GRID B ASE

L.L. STACHO

1. INTRODUCTION, BASIC CONCEPTS

Throughrout this work K denotes a commutative field of characteristic 0 with
unit 1 and involution - (called conjugation). Given a vector space F over K, a
subspace F" of E/ and a 3-variable operation (z,a,y) — {zay} mapping E x F x E
to E such that {FFF} C F, the algebraic structure (E,{ }) is called the partial
Jordan* triple E with base space F (over K) if {zay} is symmetric bilinear for
z,y € E, conjugate linear for o € F and satisfies the Jordan identity

(J) [anb,cod] = {abc} od — co{dab} (a,b,c,d e F)
where, for any z € E and f € F, the symbol z 0 f denotes the linear operator
zofel(E), (zofly={zfy} (yeBE).

In particular, the base space I with the restricted triple product { Hexpxpisa
Jordan triple in the sense of Meyberg [5]. Notice that the vector fields

(V) [a+(bOc)z + {zdz}]-@%— (a,b,c,d € F)

form a 3-graded Lie algebra if and only if the axiom
{{zaz}bz} = {za{2bz}} (a,6€ F,z € E)

of weak associativity holds. Partial Jordan* triples have a natura] geometric back-
ground in the complex case (K = C). In [9] it is shown that the category of weakly
associative partial JB*-triples can canonically be identified via the construction
in [1] with the category of Lie algebras of complete holomorphic vector fields in
bounded circular domains in Banach spaces. It seems that the key tool in the holo-
morphic classification of finite dimensional bounded bicircular domains by Panou
[8] was the following observation: the 3-graded Lie algebra of vector fields of type
(V) associated with a finite dimensional weakly associative complex partial Jordan*
triple is unambiguously determined by its restriction to the base space, because the
operation R : L +s Lip for L € SpanCF 0 F is injective. The proof in [8] relied
heavily upon the assumptions dim(E) < co and K = C. In [10] we have established
the injectivity of the restriction R by an analytic argument for infinite dimensional
complex (or real) partial JB*-triples with finite dimensional base space without the
assumption of weak associativity.
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The aim of this note is to give a pure algebraic approach to the injectivity of the
restriction R in an elegant algebraic context free of topology. The key tool to this
approach will be the concept of weighted grids introduced in (11]. By a weighted grid
in a Jordan* triple ¥ we mean a linearly independent subset (7 :— {gw :w e w}
of F' indexed with a figure W contained in some K-real vector space (vector space
over the field Re(K) = {¢ € K: ¢ = £}) such that

{0ugvg0} € Kgy—viw (u,v,w € W)

with the convention g, := 0 when 2 is not in W Grids in Neher’s sense [6] can
be regarded as weighted grids; on the other hand, the description of finite complex
weighted grids can be deduced from classical grid theory [11].

After a self-contained exposition of weighted grids in Section 2, we shall prove
the following

Theorem 1. Let F be q partial Jordan* triple whose base space F' is spanned by
a finite weighted grid G := {9w : w € W} of non-nil elements. Then the restriction,

> wew YuwGu O gy > > uvew Yuudu O Go|p 45 ingective.

2. WEIGHTED GRIDS

Henceforth, throughout the whole work, F denotes an arbitrarily fixed partial
Jordan* triple over K with base space F and triple product { }.

Definition 1. A nonzero element e € F s a tripotent with sign A € K if {eee} =
Ae. Remark that the sign of a tripotent is unambiguously determined. We shall
write sgn(e) = A € K : 3 = Ae]. Clearly, weighted grids consist of (signed)
tripotents.

Lemma 1. Suppose ¢ is o tripotent in F with )\ = sgn(e) nonzero. Then )\ €
Re(K) and F=@?_j{z € F: (eme)z = (kX/2)z}.

Proof. It is well-known [2] that for any fixed ¢ € F the Jordan* triple F
becomes a commutative Jordan algebra when equipped with the c-product z ey =
{zcy}. Hence, for any a € F', the c-multiplication operator R.(a) := a0 ¢|p satisfies
Rc({aca})R.(a) = 2R (a)®+ $Rc({ac{aca}}) (direct proof see e.g. [3, p. 263]). In
particular, for a := ¢ := ¢ we get ({ece}me)(eme) = 2(cme)® + t{eef{eee}}me on
F, that is A(A - 2idr)(A — Xidp) = 0.

Definition 2. Two tripotents a,b € F are said to be compatible if (aDa)b = A,pb
and (bOb)a = Apga for some (uniquely determined) A,p, A\pe € K. We call these
scalars structure coefficients and we reserve the notation Ay, A, for them. Notice
that weighted grids consists of pairwise compatible tripotents.

Let a, b be a compatible non-nil pair of tripotents. According to the above lemma,
we can define their Peirce coefficient myy, as m,, = 1€ {0, 1,2} : 20, = psgn(a)].
In terms of the Peirce coefficients we can extend McCrimmon’s COG relations [4;5]
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as follows:

albif gy = Tpe = 1, ald if wap = Mpe = 0,
aFbifmgp=2and Ty =1, a=bif e = T = 2.

if aTh we say that a and b are collinear, for alb we say a and b are orthogonal, if
a 't b we say that a governs b, for a = b we say are equivalent. We write also b - a
for a - b.

Lemma 2. If a,b,c,{abc}, g are pairwise compatible non-nil tripotents then
Tglabe} = Mga — Tgb + Mge-

Proof. By axiom we have [[gmg],amblc = ({gga}nb)c — (am{bgg})c. That is,
by setting d := {abc},

{99d} = {{ggatbc} — {a{ggv}e} + {ab{ggct}
Agad = Aga@ — Ngpt + Nged = Agad — Agpd + Aged.

Lemma 3. (Third Tripotent Lemma). Let a,b be two compatible tripotents. Then
the element ¢ = Qpa(= {bad}) is a tripotent with sgn(c) = sgn(a)sgn(b?) if Apa =
Moy and cOc = O else. If a tripotent g is compatible with both a and b then g is
compatible also with c¢. Furthermore

eob=-bda, bdOc=~yagb for v:=2\ee— Abb,
cgac= 2x\bbx\abbﬂb — /\gba oo lf Aba = Abb-

Proof. We have

cob = {bab}ob=[boa,bob]+bo{bba} =—[bnb,dboa]+\pbDa=
= —{bba}ma-+bo{abb} + \pebOa = (—Ap +2\sa)0Da = ybOa,

boe = bo{bab} = —[ad,bad]+ {abb}ob=[bOb,a0b] +Apanb=
= {bba} 0D~ an{bbb} + Apaa b = (2Ap — App)aBb =yanb,

coe = cofbab} = —[anb,cob] +{abc}ob=—ylanbd,boa]+ ({cnbje)Ob =
= —y{abb}Da+ybo{aab} +y((boa)e)nd=
= —Y\pgaBa+ YApbOb+ YAgpb T 0.

Consider any tripotent g compatible with a,b. Then (cD¢)g = Y[2AapAbg — Noataglg
and (gog)c = {gg{bab}} = 2{{ggb}ab}—{b{gga}b} = (2Xgo—Aga)c. Assume Ay =
Mps. Then coc = 2 gpAppb0b — A4 aDa. In particular (cDc)a = A (220 — Aaa)a
and (cmc)b = A asb. Thus {ccc} = (coe){bad} = 2{{ccb}ab} — {b{cca}b} =
AL 206 — 2(Nap — Aaa)]{bad} = AagAc. Hence c is a tripotent compatible with
a,b and Mg = Aag 5. Since also (cOc)g = A%, (2AasAsg — Aag)g, the tripotent c is
compatible with ¢g. Assume that ¢ is nonzero. Then 2)gp — Ay, is an eigenvalue of
gig. In particular for g := b we have 2Xpp ~ Apa, Aba € Aep{0,1/2,1}. Necessarily
Aba = Abp-
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Proposition 1. Let a,b be compatible non-nil tripotents. Define recursively q; =
a, ag == b,

41 = {Gnln-10n}  (2>2),  Gpoy = {GpGni10n)} (n<1)

and let I :={n € Z: a, is nonzero}. Then we have the Jollowing alternatives:

A1) aldb, I={1,2} and amb=boa=0,

A2) aTh, I ={1,2} and the indezed set G = {aw :w € I} is a weighted grid,

B1) a b, I ={0,1,2} and the indeved set G = {aw 1 w € I} is a weighted
grid,

B2)a b, I ={1,2,3} and the indezed set G — {aw : w € I} is o weighted
grid,

Cla~bandI=1.

Proof. The index set is an interval in Z containing {1,2}. From the Third
Tripotent Lemma it follows immediately by induction that the elements an (n €l)
are pairwise compatible tripotents. For short, we write Az, 7 ;% instead of the terms
Aajar> Taja,, Tespectively, in the sequel. If a,b are compatible with a tripotent
g, then g is compatible with each a, (n € I ) and, by Lemma 2, the sequence
(Aga, :m € I) is an arithmetic sequence in Z with range in {A\gg, Agy/2,0}. Hence
we only have the following possibilities:

A) IT={1,2}ie ap=a3=0and To1, M2 < 2;

B) I ={1,2,3} ie. ap =0, az is nonzero and

(Mox k€ 1)=(2,2,2), (my: ke I)=(2,1,0);
B’) I ={0,1,2} i.e. a3 =0, a is nonzero and
(e k€1)=(2,2,2), (mam:kel)= (0,1,2);
C) I >{0,1,2,3} ie. ag,as are nonzero and (Tk0, ... ,Tx3) = (2,2,2,2), (ke I).

Next we examine cases A,B,B’,C in more detail. A) We have the following
subalternatives:

AL} Ai2 = 0 or Ay = 0. Suppose A1z = 0. By the Third Tripotent Lemma,
0= aga; = (2A12 - )\11)0,1 Oag = —)\ual Day. It follows /\21(11 = {0,20.201} ==
(a1 Dag)az =0, ie. Mgy = 0. Similarly, Az; = 0 implies azmiay =0 and Ao = 0.

A2) T1p = Moy = 1. Then a; Dag : ag = {agaga;} = [sgn(az)/2]ay s 0 and
azOay : a3 = [sgn(a;)/2]ag — 0.

B) By the Third Tripotent Lemma, since Qu,a; = a3 and Mgy = Agi, we have
agdag = 2)\12)\22a2|:1a2 — /\%20,1 Oag and /\33 = sgn(a,g) = sgn(al)sgn(ag)2 =
)\11)\%2 which is nonzero. Also (as Oag)as = oeaz. We have 713 = 0. Thus a;Las
and from the argument in A1) we conclude that also 61003 = az0a; = 0 and
hence ag.la; ie. w3 = 0. By Lemma 2, the sequence (7r31,7r32,7r33) is arithmetic.
By definition 733 = 2. Hence (731,732, 33) = (0,1,2). Finally we show that the
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family U2_,Ka, is invariant by the operators aj00k- By the Third Tripotent
Lemma,
azdag = Aag O Gy = Agglo B 01, a a3 = Agoay D a2,
(a3 Dag)a; = Ao2(a2001)01 = AgpAirag, (@3Daz)ag = A2303, (agmag)as =0,
(ag Dag)az = A3202, (apOaz)ag = Agp(ay Dag)ag = A2,a1,
(azDaz)a; = (a1 D az)az = 0.

B’) We can proceed as 1n B) with the index changes 1 — 1,2 — 0, 3——1.

C) Observe that we can apply the previous arguments to the tripotents o’ := a2,
b’ := ag with the conclusion that the sequence (al, : 1 € Z) defined by an analogous
recursion as that of (a. : 1 € Z) from a,b can only satisfy alternative C) again.
Notice that a, = Gn41 for 7 > 0. Tt follows by induction that for any m > 0 the
elements a, are pairwise equivalent non-nil tripotents such that a, O an is a linear
combination of ama and bDOb. Tnduction in the negative direction establishes the
same conclusion for n < 0.

Remark 1. We can summarize the results of this section in the context of the
Peirce matrix of a finite weighted grid of non-nil tripotents as follows.

Let G = {gw W E W} be a finite weighted grid of non-nil tripotents where
W = {wy,. .- ,wn }. For short let us write 1,2, ... ,n instead of guy, Juwss- - > Juns
respectively. Then the matrix (T)] k=1 of the Peirce coefficients of G satisfies the
following rules.

M0) m € {0,1,2} and Te = 2.

M1) T =0 iff my = 0.

M2) if j - & then there exists m such that jlm -t and for the TOWS Tie = (i) ey

(i =) t,m) we have Tme = Mo — Tie- In particular 0 < T — Tg < 2 (vt) if T =1
and Ty = 2.
M3) the columns Tei = (ma)ley, (= 1o ,n) SatSfy Tem = Wei = Toj & Tt

whenever Wy, = W; — W; + Wk and {ijt} is nonzero. In particular 0 < 2mg — T4 < 2
(vt) if e =1 and Ty = 2.

M) Toi = Toj aNA Wi pr(w—w)eEW (ne 7.) whenever Tpi; = Ti = 2.

M4’) In particular, if G is finite, (my, 73) F (2,2) for i # ) because equivalent
couples cannot occur in finite weighted grids .

If G is a family or pairwise compatible (generalized) tripotents, it is convenient
to use an analogous graph representation as in [7] for the Peirce relation between
its terms. That is, we can visualize the Peirce relation matrix of G as the graph G*
with signed edges whose vertices are the elements of G and, for g, h € G, we write
g— hifgTh, g—— hifgkh, g— hif g = h, and g is not connected to A for
g-Lh.

A combinatorial study of 7 X 7 (n < 6) matrices with the properties MO)-M4)
(see [11]) establishes the following. If G = {gw * W € WY is o weighted grid and
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UV, W2 € W form o parallelogram, then P -— {gu,gv,gw,gz} are vertices of q
parallelogram in G+ of a subgraph of the form

8) 2) 3)

According to classical grid terminology, P is a quadrangle in cage 2), a diamond
in case 3), and €& (u,9v,9w) is a triangle if g, is the middle point and g,,, g,, are
endpoints in case 1).

In [11, Appendix] also the geometric shapes of the figures {Tege W € W} (as
subsets in some RV ) are described. In particular it turns out that quadrangles
correspond to squares and the triangles in 2) carrying a diamond are regular.

Definition 3. Two weighted grids G = g, : 4 € W} and H = {h: : 2 € 7}
are weight-equivalent ) (denoted by G ~ 1 ) if there exists a 1 — 1 correspondence
¢ : W — Z such that Gw = Ry (w e w).
Proposition 2. Given g weighted grid G .= g,, : w W}, there is G* = {97:2¢
W*} such that G* ~ G and the weight figure Z of any weight-equivalent realization
{h,:z¢ Z} of G is an affine image of W*.

Proof. Let U* be the free real vector space whose generator symbols are the
elements of G. Define

S = Spang{gu ~ gy + gy — g, € U" : 0 7 {9u, %ugu} € Kz, 9u: 90, 9w, 9. € G},
W*={g+8"¢ U*/S* . g€ G}.

Notice that these definitions are formulated purely in terms of the triple product
{ } and the elements of G without relevant use of the indexing by W

Given any h* ¢ S*, we can write A* — 20 i Gu, — 9v: + Guw; ~ g.,) With suitable
real coefficients @; and vectors Ui, Vi, Wi, 2; € W such that Ui — U dw; = 2 by
the definition of weighted grids . Hence 225 %wj = 0 whenever 2 Viguw; € S*. Tt

follows that the mapping
1D %0 + 5 = Y
J J
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is well-defined and R-linear U* — SpangW with $(W*) = W. On the other hand,
by setting

w* =gy + 57 (€eUT), Goe = Guw (we W),
we have {g2.95.05-1 = {gugvgu} € Kumviw = Koo et (0,0, w € W), that
is {gr. cw* € W} {g, weE W}
Definition 4. A figure W* with the affine maximality property described in the
above proposition is called a grid figure of G.

Corollary 1. Let G = {gu : w € W} be a finite weighted grid of non-nil tripotents
with a grid figure W. Then the set W = {mg, ‘1w € W} is linearly isomorphic to
W.

Proof. Given any 2 € G, by the axiomatic identity, (hDR){gugvguw} = (Ang, —

Ahg, +/\hgw){gugvgw} = sgn(h)(Thg, — Thg, + Tho, {IuGvGu}, (4, v,w € W). Thus
if the columns of the Peirce matrix are pairwise different, we may define

Gmoge = Jw (we W)

with the effect that {Jg : W € W} = {gy : w € W}. Since W is a grid figure, Wis
an R-linear image of W. The only thing remained to prove is that the Peirce matrix
has different columns for finite weighted grids . By Proposition 1C), finite weighted
grids admit no equivalent couples of elements. Thus if u,v € W are different, then
also g, and g, are different and hence at least one of the Peirce coefficients m,_, ,

Tg,g. 18 < 2 while g g, = Tg g, = 2 and therefore 7,4, and ., are different.

3. EXTENSION OF BOX OPERATORS FROM THE BASE TRIPLE
Proposition 3. Let u;,ug,uz3 € W. Assume 73, > 73, and 1 is not orthogonal
to 2 where ¥ = g,,, (k = 1,2,3) for short. Then u; —ug + ug s not in W and
Uy = Uy — uy + uz € W with 4 := {213} € Kg,, — {0} and

1

1 1
403 = —2-/\3321:31, 304 = 5,\3315 2, Mgy = ZAW\H,\BB,

33

4
Z(——l)k%,\"lf’\j"ﬁ =0 where v, ;=2 if ImE-dm and v =1 else.
k=1

Proof. Suppose us = u1 — Uz + u3 € W. Then, with the term 5 := gy, we
would have my5 = 73 — T3, + T35 = Ty, — T3, +2 > 2 which is impossible. Therefore
Uy — ug + ug is not in W and hence {123} = 0. By the Jordan identity

403 ={213}03=[201,303+30{321}] =
= —[3m3,201] = —{332} B1+20{133} = (~A3. + A5;)2 001,

304 =30{213} = 30{312} = —[102,303]+ {123} O3 =
=[303,102] = (A5, — Ayz)1D2,
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404 ={213}Og = [201,304]+3 O0{421} =
= (A = Au)lzo1,102) + 3 o{124}.
Here we have 201,10 2)={211}mz~1 0221} = A\ ,202 — Az101 and
{124} = {12{213}} = {{122}13) — {2{211}3} + {21{123}} =

= )‘21{113} - )‘11{17-3} = (/\2_1/\13 - /\12/\13)3-

Thus
404 = (A —A,)A,2024 Mz =N 101 + (A Ay — AzAz5)303.
For k =1,2,3 it follows
Aut= (4 04)8 = ()\31 ~ A3 ) A A + (Ay2 — A3) A A + (Azr 13— /\lz/\23)/\3e.

Since uy = uy — Ui +ug, with € == —1, €5 := €3 := 1 we have

3
Ay = Mgz — Ap + /\43 = Z Ek[(/\sl — Asz)()‘Lz/\zF —An 18) + ()‘u)‘Ls — Alz’\za))‘ﬂ] =
k=1

1
= '8")‘11)‘21)‘33 (75 — Ty ) W12 (Tpy ~ 7y + Ta3) — My (1, — T+ Tyg) ]+

+(mum; — 123 ) (32 — 73, + 73,)].
Observe that, by Remark 1, the following cases are possible

It is straightforward to verify that in any of these cases we have 7, — T3y =1
and A, = i)\u)\u/\ﬁ. Substituting this into the expression of 404 in terms of
101,202,303 we get

1 . i T Ty — Fpa
——4[34::&2[,2_/_\&1[]1__{_&;.1*51303_

/\44 22 11
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Again, a case by case verification establishes that the coefficient of the term A, lepe
has absolute value 2 if and only if ¢ A mforsomem = 1,..., 4, otherwise its absolute
value is L.

Corollary 2. Assume the base space F is spanned by a finite (or, in general,
equivalence-free) weighted grid G of non-nil tripotents with grid figure W. Let
w,v,8t € W withu—v=w-—2 Then guBg: = YGu O gy and gz B guw = YGv B Gu
for some nonzero vy € K.

Proof. If #{u,v,w,z} < 2 we have the trivial cases u = w, v = z OF U =1,

=z If #{u,v,w,2} =3 thenv=woru=2z Otherwise, according to Remark
1, the tripotents {gu, gu: Jw> g.} form a quadrangle or diamond or three of them
form a triangle. In any case we can apply Proposition 3 with a suitable indexing
{w,--- , Uy + of the parallelogram {u,v,w, 2z} (see cases 0),1),2) on the figure in the
proof of Proposition 3.

Remark 2. Concerning the rows of Peirce matrices, Proposition 3 has the follow-
ing consequence. With the notations of Remark 1,

M5) If mri > Ty then wj — Wi+ W = Wy € W for some index I and v Mjo —
ViTjo 4+ VT — Vi Tio =0 where Y =2 if gy = 1, Tyg = 2 for somey € {i,5,k,1}
and v, =1 else.

1t is straightforward to verify on the basis of Remark 1 that the generalized Peivce
relations T, L, vdash, - between the elements of an equivalence-free weighted grid
of non-nil {generalized) tripotents satisfy all abstract COQ axioms Ry, Rir, Rir
in [7]. Hence the grid figure and the figure of the columns of the Peirce matrix
of an equivalence-free weighted grid of non-nil generalized tripotents are Z-linearly
isomorphic to the l-part of some 3-graded root system. Thus from the structure
theory of roots systems we can conclude the following.

Corollary 3. Given a finite or equivalence-free weighted grid G = {gw weW}
of non-nil generalized tripotents, its Peirce matriz is isomorphic o the direct sum
of a family of Peirce matrices of (possibly infinite dimensional) real Cartan factors.

Proof of Theorem 1.

We may assume that F' = SpanG where G = {gw : w € W} is a weighted grid
with grid figure W. It is well-known that a @b = O whenever a, b are two orthogonal
tripotents (the proof in [8] stated for weakly associative complex partial J*-triples
applies in general). Therefore, by setting

A= {u—v:uve Wulul,

we have

SpanFDF:— Z Kgung‘—: Z ngug'w@(@ Z Kgung)-
d

u,vEW weW dEA u—v=

By Corollary 2, each space L= vegKguDOgy (d € A(W)) is 1-dimensional
and it consists of the multiples of an operator Ly such that Lo Kguw — KGuw+rd



(weW). Let A== 3",y QuyguOg, and suppose Alr = 0. Since the restricted
operators La|r (d € A) form trivially a linearly independent system (as weighted
shifts into different directions), necessarily 4 € > wew KguOgy. By Corollary 3 we
may suppose that the grid figure W is the set of columns of the Peirce matrix of
a (complex or real) Cartan factor. Concerning Peirce matrices of Cartan factors,
it is shown in [11, Appendix] that there is a directed connected graph P in W
(a path with at most one junction) such that Ag == {u —v : (u,v) edge of P} is
a root base for A in the sense that each d € A is a positive or negative integer
linear combination from Ag. Hence the set of all vertices of P (denoted also by
P) is an R-linear basis in SpangW and given any w € W and for any v,w € W
there exists a finite sequence vy, vy, ... , Uy, Vs € P such that 4 —v = 2o (ux —vg)
where each term (ux,vx) or (Ug,ux) is an edge of P. According to Remark 1,
{9u, 9v, 9w, 9=} is always a triangle, quadrangle or diamond whenever ¥ — v + w —
z =0 and v # v,2 for u,v,w,2 € W. Therefore given any point w € W — P,
there exists a finite sequence wo, Uy, V1, -- - ,Wn—1, Un—1,Un—1, Wy, Such that wy € P,
wn = w, 4, € P and {w;_1,u;,v;,w;} is a triangle, quadrangle or diamond
with w; = w;_1 + (u; —v;) (¢ = 1,... ,n). By Proposition 3 it follows that each
operator g, g, (w € W) is a linear combination from Dy := {pDgp : p € P}.
In particular A = ) . p &pg, O g, With suitable constants &, € K. Since Cartan

factors are Hermitian (Myy)uvew = 9 (Tow)uwew S for some diagonal matrix S
(cf [11, Lemma 3.7]). Since the columns {,, : p € P} are linearly independent,
the rows {m,, : p € P} and consequently the operators {9p0gp|F : p € P} are also
linearly independent. Therefore A|r = 0 implies &, = 0 (p € P).
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