ACCADEMIA NAZIONALE DEI LINCEI

Estratto dai Rendiconti della Classe di Scienze fisiche, matematiche e naturali Serie VIII, vol. LXVII, fasc. 1-2 - Ferie 1979 (Luglio-Agosto)

Analisi matematica. — On the existence of fixed points of holomorphic automorphisms. Nota (*) di Laszló L. Stachó, presentata dal Corrisp. G. CIMMINO.

RIASSUNTO. — Dato uno spazio di Banach complesso E, si considerano gli automorfismi olomorfi del disco unità B di E, e si esamina il problema dell'esistenza di punti uniti nei casi in cui E sia lo spazio delle funzioni continue su un compatto od un reticolo di tipo M.

By a result of Kaup-Upmeier [1], if E is any (complex) Banach space then every member of Aut B (E) (= {the Fréchet holomorphic automorphisms of the unit ball of E}) can be considered as the restriction to B (E) of a holomorphic map of some neighbourhood of \overline{B} (E) (= the closed unit ball) into E. Several well-known positive examples suggested the following conjecture: These natural extensions always have a fixed point in \overline{B} (E) (e.g. if E is a Hilbert space [2], if $E = L^P(X, m)$ for some measure space and $I \leq p < \infty$ [3], if E is finite dimensional, if $E = l^\infty$). Our main purpose will be to investigate the validity of this conjecture and to prove that the answer is negative. The next observation immediately provides a large class of counter-examples. We shall denote by Aut \overline{B} (E) the set formed by the continuous extensions to \overline{B} (E) of the elements of Aut B (E). Let Δ be the unit disc in C; the group Aut $\overline{\Delta}$ is the group of Moebius transformations.

Theorem 1. If $E=C(\Omega)$ for some compact space Ω then every $F\in Aut$ $\overline{B}(E)$ admits a fixed point only if the following topological condition on Ω holds

(*) for all open \mathscr{F}_{σ} -subsets G of Ω , any $g \in C_{bounded}(G)$ can be continuously extended to the whole Ω .

Now it is naturally raised the question, for which kind of $F \in Aut \overline{B} (C(\Omega))$ condition (*) ensures the existence of fixed points (in case of compact Ω). In this direction the following theorem holds:

Theorem 2. If Ω is a compact space then (*) is equivalent to

(AA) every $F \in Aut \overline{B}(C(\Omega))$ of the form $F(f) = [x \to M(x)f(Tx)]$ where T is any pointwise periodic homeomorphism of Ω onto itself (pointwise periodic meaning $\forall x \in \Omega \ \exists n \in \mathbb{N} \ T^n x = x)$ and $M(\cdot)$ denotes any continuous map of Ω into $Aut \overline{\Delta}$, has a fixed point.

The key lemma in the proof of Theorem 2 is the following one (which may have some interest also in itself).

(*) Pervenuta all'Accademia il 28 giugno 1979.

LEMMA 1. If Ω is a compact space having the property (*) and if $T: \Omega \leftrightarrow \Omega$ is any pointwise periodic homeomorphism, then, for every $f \in C(\Omega)$, there exists some $n \in \mathbb{N}$ such that $f = f \circ T^n$.

Since, by a theorem of E. Vesentini [4], if Ω is any compact space and $F \in \operatorname{Aut} \overline{B}$ (C (Ω)), then there exists a unique pair of continuous maps $M_F : \Omega \to \operatorname{Aut} \overline{\Delta}$ and $T_F : \Omega \leftrightarrow \Omega$ such that $F(f) = [x \to M_F(x) \cdot f(T_F x)]$ $\forall f \in \overline{B}$ (C (Ω)), one can conjecture that (*) implies the existence of fixed points also for all $F \in \operatorname{Aut} \overline{B}$ (C (Ω)). However, as it is seen from the next theorem, this expectation is false.

THEOREM 3. One can construct a $\Phi \in \operatorname{Aut} \overline{B}(L^{\infty}(o, I))$ which has no fixed point.

(The proof of this Theorem is essentially combinatorial, but requires also some ergodic theory).

COROLLARY. Even the hyperstonianity (which is clearly a stronger property than (*)) of a compact Ω does not ensure, in general, the existence of fixed points for every $F \in \operatorname{Aut} \overline{B}(C(\Omega))$. (For the spectrum of $L^{\infty}(0, I)$ is a compact hyperstonian space).

On the other hand, Theorem 3 is suitable in proving the next positive result.

Theorem 4. If E is a complex M-space (for definition see [5]) with separable predual then every $F \in Aut \overline{B}(E)$ has fixed point iff $E \cong l^{\infty}$ or if E is finite dimensional.

The proof of Theorem 4 is based on a characterization of M-spaces due to Rieffel-Kukutani [5], on Halmos's Isomorphism Theorem [6] and on

LEMMA 2. If Ω is a discrete (not necessarily compact) space and $E = C_{\text{bounded}}(\Omega)$ then every $F \in \text{Aut } \overline{B}(E)$ can be written in the form $F(f) = [x \to M(x) f(Tx)]$ for suitable maps $M: \Omega \to \text{Aut } \overline{\Delta}$ and $T: \Omega \leftrightarrow \Omega$.

REFERENCES

- [1] W. KAUP and H. UPMEIER (1976) Banach spaces with biholomorphically equivalent unit balls are isomorphic, «Prov. Amer. Math. Soc. », 58, 125-133.
- [2] T. L. HAYDEN and T. J. SUFFRIDGE (1971) Biholomorphic maps in Hilbert space have a fixed point, « Pacific J. Math. », 38, 419-422.
- [3] E. VESENTINI (1979) Variations on a theme of Carathéodory, Technical report to the University of Maryland (1977), «Ann. Scuola Norm. Sup. Pisa» (4) 6, 39–68.
- [4] T. Franzoni and E. Vesentini, to appear.
- [5] M. A. RIEFFEL (1965) A characterization of commutative group algebras and measure algebras, «Trans. Amer. Math. Soc.», 116, 32-65.
- [6] P. R. HALMOS (1974) Measure Theory, Springer, New York.