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Abstract. Tripotents are natural generalizations of partial isometries in C*-algebras

to the context of JB*-triples that is complex Banach spaces with symmetric unit ball.

We give a survey on the main results papers [2,7,8,6] concerning the structure of the

tripotents as a direct real-analytic submanifold in a JB*-triple. We also discuss some

recent achievements.
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1. Preliminaries: symmetry, JB*-triples, tripotents

Topological algebraic structures concerning spatial symmetry have
their obvious importance in mathematical physics and they have inde-
pendent mathematical interest as well. The underlying space in this paper
will be a so-called JB*-triple, a complex Banach space Z whose unit ball
B(Z) := {x ∈ Z : ‖x‖ < 1} is symmetric in the sense of holomorphy that
is for every point x ∈ B(Z) there is a biholomorphism Sz : B(Z) ↔ B(Z)
such that S2

z = Sz ◦ Sz = IdB(Z), Sz(z) = z and S′z(z) = −IdZ for the
Fréchet derivative of Sz. As result of a long development started with the
Harish-Chandra realization of finite dimensional symmetric domains, in
1983 W. Kaup [9] established the following algebraic characterization.
The Banach spaces with symmetric unit ball are exactly those admitting
a Jordan-Banach *-triple product (JB*-triple product for short, hence
the name JB*-triple). By a JB*-triple product we mean an operation
{., ., .} : Z × Z × Z → Z with three variables satisfying the axioms

(J1) {x, y, z} is symmetric bilinear in x, z and conjugate-linear in y,
(J2) ‖{x, x, x}‖ = ‖x‖3,

and with the linear operators D(a) : z 7→ {a, a, z} we have

(J3) D(a){x, y, z} = {D(a)x, y, z} − {x,D(a)y, z}+ {x, y,D(a)z},
(J4)

∥∥ exp
(
ζD(a)

)∥∥ ≤ 1 whenever Re ζ ≤ 0.
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As a typical example, each C*-algebra with its natural norm is a JB*-
triple with the triple product {x, y, z} := [xy∗z+zy∗x]/2. It is remarkable
that the JB*-triple product is unambiguously determined by the norm
of the underlying space, furthermore any bounded symmetric domain is
biholomorphically equivalent to the unit ball of some JB*-triple.

Henceforth Z will denote an arbitrarily fixed JB*-triple with norm
‖.‖ and JB*-triple product {, ., ., .}, respectively. We shall write

Der(Z) :=
{
δ∈L(Z) : δ{x, y, z}={δx, y, z}+{x, δy, z}+{x, y, δz}

}
for the set of all derivations of the triple product and

Her(Z) :=
{
α ∈ L(Z) : ‖ exp(itα)‖ = 1 (t ∈ IR)

}
will stand for the set of all hermitian operators of the norm ‖.‖. Axiom
(J3) can be interpreted as the fact that that all the operators iD(a)
belong to Der(Z). In view of Sinclair’s theorem on the norm of hermitian
operators (for an elementary proof see [6, p. 245]), axiom (J4) is an
equivalent formulation of the fact that the operators D(a) are hermitian
with non-negative spectra.1

The link between complex geometry and Jordan structure in Z is es-
tablished by the fact that the family autB(Z) of all complete holomorphic
vector fields of the unit ball is spanned by derivations and polynomials
of second degree of the triple product. In this paper, by a vector field on
a domain C ⊂ Z we simply mean a holomorphic mapping C → Z and,
by definition, the vector field V is complete in C if its flow is defined
on the whole phase set D × IR. In particular V ∈ autB(Z) if there is
a necessarily real-analytic mapping FV : B(Z) × IR → B(Z) such that
FV (p, 0) = p and d

dtFV (p, t) = V
(
FV (p, t)

)
for all p ∈ B(Z) and t ∈ IR.

Namely, in terms of the conjugate linear quadratic representation opera-
tors Q(a) : z 7→ {a, z, a} we can write

autB(Z) =
{
[z 7→ a−Q(z)a+ δz

]
: a ∈ Z, δ ∈ Der(Z)

}
.

The main objectives of our work is the family

Tri(Z) :=
{
e ∈ Z : {e, e, e} = e 6= 0

}
of the tripotents that is the idempotent elements of the triple product
in Z. In case of Z being a C*-algebra Tri(Z) = {e : ee∗e = e 6= 0} is

1Proof. Let α ∈ Her+(Z) := {β ∈ Her(Z) : Sp(β) ≥ 0} and assume ξ, η ∈ IR with

ξ ≤ 0. Then
∥∥ exp

(
ξ + iη)α

)∥∥ =
∥∥ exp(ξα)

∥∥ because the operator exp(iηα) is unitary with

respect to the norm ‖.‖. Define µ1 := maxSp(α) and µ2 := min Sp(α) and consider the
operator β := α − 2−1(µ1 + µ2)Id. We have β ∈ Her(Z) and α = β + 2−1(µ1 + µ2)Id.

By Sinclair’s theorem, ‖β‖ = max
{
|maxSp(β)|, |minSp(β)|

}
= 2−1(µ1 − µ2). Therefore

exp
(
ξ + iη)α

)∥∥ =
∥∥ exp(ξα)

∥∥ = e2−1ξ(µ1+µ2)
∥∥ exp(ξβ)

∥∥ ≤ e2−1ξ(µ1+µ2)e|ξ|‖β‖ =

e2−1ξ(µ1+µ2)e−2−1ξ(µ1−µ2) = eξµ2 ≤ 1. The converse is an easy consequence of the spectral
mapping theorem. Let ‖ exp(ζα)‖ ≤ 1 for Re ζ ≤ 0. Then, given any λ ∈ Sp(α), we have
|eζλ| ≤ ‖ exp(ζα)‖ ≤ 1 that is Re ζλ ≤ 0 whenever Re ζ ≤ 0 which is possible only if λ ≥ 0.
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the set of all partial isometries. It is a well-known consequence of axioms
(J1),(J3) that the operators D(e) and Q(e) are semisimple and commute
if e ∈ Tri(Z). Namely we have D(e)

(
D(e)− 2−1Id

)(
D(e)− Id

)
= 0 and

Q(e)3 = Q(e) and hence the Peirce decomposition2

Z=Z0(e)⊕Z1/2(e)⊕Z1(e), Z0(e)=⊕λ=0,1/2Zλ(e), Z1(e)=⊕ε=±1Z
ε(e)

with the eigenspaces

Zλ(e) := {z ∈ Z : D(e)z = λz}, Zε(e) := {z ∈ Z : Q(e)z = εz}.

It is also a well-known consequence of axioms (J1),(J3) that Q(e) acts as
an involutive automorphism of the triple product on Z1(e): Q(e)2x = x
and Q(e){x, y, z} = {Q(e)x,Q(e)y,Q(e)z} for x, y, z ∈ Z1(e). This fact
along with iD(e) ∈ Der(Z) entails the so-called Peirce arithmetics

{Zξ(e), Zα(e), Zη(e)} ⊂ Zξ−α+η(e), {Zε(e), Zϕ(e), Zψ(e)} ⊂ Zεϕψ(e),
{Z0(e), Z1(e), Z}={Z1(e), Z0(e), Z}={0}.

As a typical example, if Z is the C*-algebra of all complex (m+n)-square
matrices then e =

(
I0
00

)
∈ Tri(Z) with the m×m identity matrix I and,

in terms of the (m,n) matrix decomposition we have Z1(e) =
{(

a 0
0 0

)
: a

real}, Z−1(e) = iZ1(e), Z1/2(e) =
{(

0 x
y 0

)
: x, y arbitrary}, Z0(e) ={(

0 0
0 b

)
: b arbitrary}.

By the C*-axiom (J2), tripotents have norm one. In finite dimensions
their geometric importance as distinguished boundary objects relies upon
the fact [11, 12] that the holomorphic boundary components (faces in holo-
morphic sense)3 of the unit ball have the form e+B(Z0(e)), e ∈ Tri(Z)
and the boundary ∂B(Z) is their disjoint union. In infinite dimensions
there may be no tripotents at all as e.g. in the case of the commutative
C*-algebra Z := C0(0, 1) of the continuous functions f : (−1, 1) → C with
lim|ω|→1 f(ω) = 0. However, using the canonical embedding of Z into
its bidual Z∗∗, we can regard B(Z) as a weak*-dense norm-closed sub-
set of B(Z∗∗). Actually Z∗∗ is always a JB*-triple whose triple product
admits plenty of tripotents and extends the triple product from Z in a

2We include a short simultaneous proof which cannot be found in the literature. Let e ∈
Tri(Z) and δ := D(e), µ := Q(e). Using only axioms (J1) and (J3), we have {x, e, e} =
{x, e, {e, e, e}} = 2{{x, e, e}, e, e} − 2{e, {e, x, e}, e}. This means the relation δ = 2δ2 − µ2

or which is the same (1) µ2 = 2δ(δ − 2−1Id). Similarly, from the three term expansion
of {e, e, {x, e, x}} we get (2) δµ = 2µ − µδ. Expanding {e, x, e} = {e, x, {e, e, e}} we also
get (3) µ = 2δµ − µδ. Equations (2),(3) imply immediately that (4) µ = δµ = µδ. Hence
µ2(δ − Id) = 0. In view of (1) this entails the first Peirce equation 2δ(δ − 2−1Id)(δ − Id) = 0.
The second Peirce equation has the form µ3 − µ = 0. This is immediate from (1) and (4).
Indeed, µ3 − µ = µ(µ2 − Id) = µδ(2δ2 − δ − Id) = µ(2δ3 − δ2 − δ) = 2µ− µ− µ = 0.

3The holomorphic boundary component of a point p ∈ ∂B(Z) = {z ∈: ‖z‖ = 1} is the
union of all finite sequences F0, . . . , Fn by holomorphic images of the unit disc ID := {ζ ∈
C: |ζ|<1} such that F0, . . . , Fn⊂∂B(Z), p∈F0 and Fj−1∩Fj 6=∅.
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separately weak*-continuous manner [1]. Though the sets e+B(Z∗∗0 (e)),
e ∈ Tri(Z∗∗) do not cover ∂B(Z) in general, we have [3]{

norm-exposed faces of B(Z∗∗)} =
{
e+B(Z∗∗): e ∈ Tri(Z∗∗)

}
where B denotes closed unit ball. For more on JB*-triples see [16,12,13].

2. Tri(Z) as a submanifold of Z

Recall that the tangent cone of a subset S in a real Banach space
(X, ‖.‖) at the point p ∈ S is the set Tp(S) of all vectors v ∈ X such that
v = limn ξn(pn−p) for some sequences p1, p2, . . . ∈ S and ξ1, ξ2, . . . ∈ IR+.
Notice that Tp(S) is always a closed cone inX. By definition, S is a direct
analytic submanifold in X if for every point p ∈ S there is a bianalytic
mapping Φp : Up → Vp between some neighborhoods of the origin and
the point p, respectively, along with a direct sum decomposition X =
X

(0)
p ⊕X

(1)
p into closed subspaces such that

Vp ∩ S = Φp
(
X(0) ∩ Up

)
.

It is a direct consequence of the inverse mapping theorem that S is a
analytic submanifold in X if and only if, for any point p ∈ S, Tp(S) is
a closed complemented subspace of X and there is an analytic mapping
Ψp from some neighborhood Up of the origin in X into X such that

Ψ′
p(p) = Id and Ψp(x) ∈ S if and only if x ∈ Tp(S) ∩ Up.

Actually, in the latter case one can find a family {Up : p ∈ S} of 0-
neighborhoods in X such that the restricted mappings Ψp|Up, p ∈ S
form an analytic atlas of S.

Given any tripotent e ∈ Tri(Z), in the sequel we shall write Pλ(e) for
the Peirce projection onto Zλ(e) along the complementary sum⊕µ6=λZµ(e).
We also introduce the spaces Zσ1 (e) := Z1(e) ∩ Zσ(e) and

Z(−)(e) := Z1/2(e)⊕ Z−1
1 (e), Z(+)(e) := Z0(e)⊕ Z1

1 (e)

and write Pσ1 (e) := 2−1P1(e)[Id+σQ(e)] respectively P (±)(e) := P±1
1 (e)+

P1/2(e) for the corresponding projections. Furthermore we shall keep
fixed the notation K(e, .) for the operator

K(e, z) := D
(
[2−1P 1

1 (e)+2P1/2(e)]z, e
)
−D

(
e, [2−1P 1

1 (e)+2P1/2(e)]z
)
.

Notice that K(e, z)e = P (−)(e)z for all z ∈ Z. Moreover, as being in
the form D(e, w) − D(w, e), we have K(e, z) ∈ Der(Z), z ∈ Z. Hence
expK(e, w) ∈ Aut(Z) with the family of all (linear) automorphisms of
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the triple product {., ., .} (which coincides with the set of all surjec-
tive isometries Z → Z). In particular expK(e, w)Tri(Z) = Tri(Z) and
Zλ

(
expK(e, w)e

)
=

[
expK(e, w)

]
Zλ(e), λ = 0, 1/2, 1. Regarding the

complex JB*-triple Z as a real Banach space and taking into account
that e+ a+ x cannot be a tripotent if e ∈ Tri(Z), a ∈ Z1

1 (e), x ∈ Z0(e)
and ‖a‖, ‖x‖ < 2−1we have the following observation.

2.1. Proposition [14]. Tri(Z) is a real-analytic direct submanifold of Z.
For any tripotent e we have Te(Z) = Z1/2 ⊕ Z−1

1 (e) = Z1/2 ⊕ iZ1
1 (e).

In terms of the operators K, the mappings Ψe : Z → Z, e ∈ Tri(Z) are
well-defined by

Ψe(x+ v + a+ ib) :=
[
expK(e, v + ib)

]
(e+ x+ a),

x ∈ Z0(e), v ∈ Z1/2(e), a, b ∈ Z1
1 (e).

They are are real-analytic with the properties Ψ′
e = Id (Fréchet derivative

in real sense) and, for ‖x‖, ‖a‖ < 2−1, we have Ψe(x + v + a + ib) ∈
Tri(Z) ⇔ x = a = 0.

A fundamental consequence of this fact is the possibility that we can
establish a canonical one-to-one correspondence Ee between the smooth
curves in Z1/2(e) ⊕ Z−1

1 (e) and those in Tri(Z) with starting point e as
follows. Recall ([7] or [5]) that Aut(Z) is an algebraic Banach-Lie sub-
group of L(Z) with TId

(
Aut(Z)

)
= Der(Z). Hence each smooth function

F : IR → Der(Z) admits a (unique) left multiplicative primite function
L
F : IR → Aut(Z) such that

d

dt

L
F (t) =

[L
F (t)

]
F (t), L

F (0) = Id.

2.2. Theorem. Given a smooth curve γ : IR → Z(−), the curve

Ee(γ) := L
K

(
e, γ(.)

)
e

ranges smoothly in Tri(Z). Conversely, given any smooth curve ε : IR →
Tri(Z), there is a unique γ ∈ C∞

(
IR, Z1/2(e)⊕Z−1

1 (e)
)

with Eε(0)(γ) = ε.

Proof. Since t 7→ K
(
e, γ(t)

)
ranges smoothly in Der(Z), its left multi-

plicative primitive function is well-defined and ranges smoothly in Aut(Z).
Hence indeed Ee(γ)e ∈ C∞

(
IR,Tri(Z)

)
. To prove the converse, we have

to see that, given a smooth curve ε : IR → Tri(Z) with starting point e =
ε(0), there is a unique smooth curve g : IR → Aut(Z) such that g(t)e =
ε(t) and d

dtg(t) = g(t)K
(
e, v(t)

)
for some smooth curve v : IR → Z(−)(e).

According to Proposition 2.1, the maps Z(−)(f) 3 w → expK(f, e)f ,
f ∈ Tri(Z) are real analytic local charts of Tri(Z). Hence it readily fol-
lows that ε(t) = h(t)e, t ∈ IR with some smooth curve h : IR → Aut(Z).
Fixing such a curve h (and regarding g in the form g = hk), it suffices
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to see that there is a unique smooth curve k : IR → Aut(Z) such that
k(t)e = e and d

dth(t)k(t) = h(t)k(t)K
(
e, w(t)

)
, t ∈ IR for some smooth

curve w : IR → Z(−)(e). By abbreviating d
dt with ′ as usually, this means

the condition

k′(t) = k(t)K
(
e, w(t)

)
− `(t)k(t) where `(t) := h(t)−1h′(t)

on k(.) with suitale w : IR → Z(−)(e). The requirement k(t)e = e implies

0 = k(t)−1(e)k′(t)e = K
(
e, w(t)

)
e− k(t)−1`(z)k(t)e =

= P (−)(e)w(t)− k(t)−1`(z)e = w(t)− k(t)−1`(z)e.

Thus necessarily w(t) = k(t)−1`(z)e = k(t)−1`(z)k(t)e ∈ Z(−)(e), t ∈ IR
if a required curve k(.) exists. Since h ranges in Aut(Z), ` = h−1h′

ranges necessarily in the tangent of Aut(Z) that is `(t) ∈ Der(Z), t ∈ IR.
As a consequence, also k̃−1`(t)k̃ ∈ Der(Z) and k̃−1`(t)k̃e ∈ TeTri(Z) =
Z(−)(e) whenever k̃ ∈ Aut(Z). Therefore the initial value problem k′(t) =
k(t)K

(
e, k(t)−1`(z)e

)
− `(t)k(t), k(0) = Id is wellposed in L(Z), with a

unique solution ranging in the isotropy subgroup of the point e in Aut(Z).
Its boundedness ensures that its (maximal) domain is the whole IR.

The model of curves in Tri(Z) in the real vector space of curves
in Z(−)(e) described by Theorem 2.2 is a powerful tool in the study
of the natural differential geometry of Tri(Z). In 2000 Chu and Isidro
[2] have found an interesting generalization of the classical Riemannian
connection on surfaces to Tri(Z) by replacing the orthogonal projec-
tions to the tangent planes with the Pierce projections P (−). That is
given two vector fields X,Y on Tri(Z) (functions Tri(Z) → Z such that
X(e), Y (e) ∈ TeTri(Z) = Z(−)(e), e ∈ Tri(Z)) we define

∇XY := P (−)Y ′X

i.e. ∇XY (e) = P (−)(e)Y ′(e)X(e) = P (−)(e) ddt
∣∣
t=0

Y
(
expK

(
e, tX(e)

))
,

e ∈ Tri(Z). We shall refer to ∇ as the algebraic connection of Tri(Z).
In [2] one have established partial results on the algebraic form of the
geodesics of finite rank tripotents in some JB*-triples. In 2005 in [7,
Lemma 1] we achieved the solution of the geodesic equation

P (−)(ε(t))ε′′(t) = 0

for ∇ with curves in the form ε = Ee(ω) with the following arguments.
Let g(t) = L

K
(
e, ω(t)

)
and ε(t) = g(t)e. Then ε′ = gK(e, ω)e = gω

and g′′ = ε′ω + gω′ = g[K(e, ω)ω + ω′]. Since g(t) ∈ Aut(Z) for any t,
P (−)(ε(t)) = g(t)P (−)(e)g(−)(t) and hence

P (−)(ε(t))ε′′(t) = g(t)P (−)(e)
[
K

(
e, ω(t)

)
ω(t) + ω′(t)

]
.
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Given any vector w = w1/2 +w1 ∈ Z1/2(e)⊕Z−1
1 (e) = Z(−)(e), from the

Pierce rules it follows that P−1
1 (e)K(e, w)w= 0 and P1/2(e)K(e, w)w=

2−1{w1, e, w1/2}+2{w1/2, e, w1}−2−1{e, w1, w1/2} = 3{w1, e, w1/2}. Thus
for the components ωλ(t) := Pλ(e)ω(t), λ = 2−1, 1 we get the linear
differential equations ω1′ = 0 and ω′1/2 = 3D(ω1, e)ω1/2. Hence Theorem
2.2 yields the following result.

2.3. Theorem. A curve ε in Tri(Z) is a ∇-geodesic if and only if

ε(t) = L
K

(
e, w1 + exp[3tD(w1, e)]w1/2

)
e

for some e ∈ Tri(Z), w1 ∈ Z−1
1 (e) and w1/2 ∈ Z1/2(e).

As an immediate consequence, we get the following minor correction
to [2, Thm. 2.7]: for fixed e ∈ Tri(Z) and w = w1/2 + w1 ∈ Z1/2(e) ⊕
Z−1

1 (e), the curve ε(t) := expK(e, tw)e is a ∇-geodesic if and only if
{w1, e, w1/2}={e, w1, w1/2}=0. For a nontrivial example let E :=

[
10
01

]
,

R :=
[
i0
00

]
, A :=

[
00
11

]
B :=

[
01
01

]
and let Z be the C*-algebra of all

4 × 4 matrices. Then with e :=
[
E0
00

]
, w1 :=

[
R0
00

]
, w1/2 :=

[
0A
B0

]
we

have e ∈ Tri(Z), w1 ∈ Z−1
1 (e), w1/2 ∈ Z1/2(e) and {w1, e, w1/2} =

{w1/2, e, w1} = 0.

Another issue for an effective application of Theorem 2.2 can be the in-
vestigation of minimal and stationary curves with respect to the distance
in Tri(Z) inherited from Z. By definition, a smooth curve ε : [0, 1] →
Tri(Z) is a minimal curve if the length of any (smooth) curve in Tri(Z)
joining the endpoints ε(0) and ε(1) is not less then that of the curve ε.
We say that ε is a stationary curve if d

dτ

∣∣
s=0

Length(ετ ) = 0 whenever
(τ, t) 7→ ετ (t) is a smooth mapping [0, 1]2 → Tri(Z) such that ε0(t) = ε(t)
and ετ (a) = ε(a) for τ, t ∈ [0, 1] and a = 0, 1. In contrast with the close
relationship in classical surface geometry in Euclidean spaces between
the stationary curves and the Riemannian connection, in our setting the
situation seems to be more involved. For instance, in the case of the
commutative C*-algebra Z := C[0, 1], any curve εα(t) :=

[
s 7→ eiα(s,t)

]
is

minimal joining the constant functions ε0 and ε1 whenever α is a smooth
function [0, 1]2 → [0, 1] such that each subfunction α(., t) is maps in-
creasingly the interval [0, 1] onto itself. Disregarding the few cases where
Tri(Z) happens to be a Riemannian manifold, there seem to be no results
in the literature on metric minimal and stationary curves of tripotents
in general complex JB*-triples. Recently [15] we achieved the following
reformulation of the length variational equation for tripotents by the aid
of the techniqe with multiplicative primitive functions.

2.4. Proposition. Let ε : [0, 1] → Tri(Z) be a smooth curve in the
form ε(t) = L

K
(
e, ω(t)

)
e where e ∈ Tri(Z) and ω : [0, 1] → Z(−)(e)
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is a smooth curve. Then Length(ε) =
∫ 1

0
‖ω(t)‖ dt. If the curve ε is

stationary then we have∫ 1

0

[
ξ(t)δ

(
ω(t),K

(
e, ω(t)

)
u
)

+ ξ′(t)δ
(
ω(t), u

)]
dt = 0

for any vector u ∈ Z(−)(e) and for any smooth function ξ : [0, 1] → IR
with xi(0) = ξ(1) = 0 where δ(z, v) := lims↓0 s

−1‖z + sv‖, z, v ∈ Z
denotes the subgradient of the norm in Z.

An immediate difficulty in the progress along these line is the fact
that the bad smoothness properties of the norm in most JB*-triples do
not allow to carry out a routine partial integration in the latter formula.
Hence the following problem is still open. In which JB*-triples are all
∇-geodesics curves stationary?

3. The Grassmanian structure of the
equivalence classes of tripotents

Since the tangent space TeTri(Z) = Z1/2(e) ⊕ Z−1
1 (e) is no complex

subspace in Z (in particular ie ∈ Z−1
1 (e) = iZ1

1 (e) and Z−1
1 (e)∩Z1

1 (e) =
{0}), Tri(Z) is no complex submanifold of Z. Observe that if we ”go in
the wrong directions” in Tri(Z) in the sense that we consider curves in the
form ε(t) := g(t) with g(t) := L

K(e, ω(t)) and ω(t) ∈ Z−1
1 (e) then the op-

erators D
(
ε(t)) determining the Peirce subspaces do not change. Indeed,

it is well-known that D(e, w) = σD(w, e) whenever w ∈ Zσ1 (e) whence
d
dtD(ε) = D(ε′, ε

)
+ D(ε, ε′) = D(gω, ge) + D(ge, gw) = g[D(ω, e) +

D(e, ω)]g−1 = 0. The equivalence of tripotents

e ∼ f
def⇐⇒ D(e) = D(f)

was introduced and studied already in 1985 by E. Neher [13]. Originally
he formulated this relationship as {e, e, f} = f and {f, f, e} = e and
called it ”association” but established its equivalence with D(e) = D(f)
immediately. Since any automorphism of the triple product maps an
equivalence class of ∼ onto another equivalence class and since the maps
Ψe : Z1/2 ⊕ Z−1

1 (e) 3 w 7→ expK(e, w)e, e ∈ Tri(Z) are local charts on
Tri(Z), it can be expected that the quotient manifold

IM := Tri(Z)/∼ :=
{
e∼: e∈Tri(Z)

}
where e∼ := {f ∈Tri(Z) : f ∼ e}

equipped with the maps

Ψ∼
e : Z1/2(e) ∈ w 7→ expK(e, w)e∼ =

[
Ψe(w)e

]∼
, e ∈ Tri(Z)
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becomes a real-analytic manifold. If so, IM must be symmetric in the
following sense (cf. [2]). The Peirce reflections

S(e) := 2P1/2(e)− Id, e ∈ Tri(Z)

belong to Aut(Z) with Se|Z0(e)⊕Z1(e)=Id and Se|Z1/2(e)=−Id. Easily
seen, S(e) commutes with the chart map Ψe that is S(e)Ψe(w)=Ψe(−w)
for all w ∈ Z1/2(e). Consequently, its quotient mapping S∼(e)f∼ :=[
S(e)f

]∼, f ∈ Tri(Z) is a welldefined symmetry of IM that is S∼(e)
is holomorphic with S∼(e)e∼ = e∼ and

[
S∼(e)

]′(e∼)=−Id. It is an open
problem for the time being, in which cases does IM become with this atlas
a complex manifold (i.e. all the coordinate changing maps

[
Ψ∼
e

]−1◦ Ψ∼
f

are holomorphic). In 2001, Kaup [10] published a paper on the Grassma-
nian manifold

IP :=
{
Ja : a ∈ Z, ∃V ⊂ Z subspace Ja ⊕ V = Z

}
of all principal inner ideals Ja :=

⋂ {
J ⊂ Z : a ∈ J, {J, Z, J} = J

}
which are complemented in Z. One of its main conclusions is that the
maps

Θe : Z1/2(e) 3 u 7→ expD(u, e)Je, e ∈ Tri(Z)

form an atlas on IP and IP becomes a complex symmetric manifold with
them. Notice that the equivalence e ∼ f of two tripotents can also be
formulated in terms of their Peirce 1-subspaces as Z1(e) = Z1(f) (as an
easy consequence of e∼f ⇔ {e, e, f}=f & {f, f, e}=e ⇔ D(e)=D(f)).
As it is also shown in [10], that actually we have

IP =
{
Ja : a∈ Reg(Z)

}
=

{
Js(a) : a∈Reg(Z)

}
=

{
Z1(e) : e∈Tri(Z)

}
where Reg(Z) :=

{
a ∈ Z : Sp

(
D(a)

)
> 0

}
denotes the set of all von

Neumann regular elements in Z and

s(a) := lim
n→∞

ϕn
(
D(a)

)
a, a ∈ Reg(Z)

is the support tripotent of a ∈ Reg(Z) welldefined with any sequence
(
ϕn

)
of real polynomials such that ϕn(x2)x→ 1 locally uniformly for x > 0.
Thus, with the family ID := {iD(e): e ∈ Tri(Z)} of triple derivations,
the diagram of mappings

Tri(Z)
↙ ↓ ↘

ID ↔ IM ↔ IP

e
↙ ↓ ↘

iD(e) ↔ e∼ ↔ Z1(e)

is commutative. Thus the complex structure of IP provided by the charts
Θe on IP can be translated to ID and IM by its means. Henceforth we
shall be concerned with the problem how to describe holomorphy in IM
and ID in intrinsic manners, not involving principal ideals explicitly. Such

9



kind of an approach may have interest from the following view point: the
algebraically less sophisticated maps u 7→ expD(u, e) in the construction
of the charts of IP apply to rather ”big” objects such that we may have
Je ∩ Jf even if e 6∼ f while e∼ ∩ f∼ = ∅ and D(e) 6= D(f) simply in the
latter case. As a first natural question we can raise is how ID does behave
topologically in its covering real-linear operator space Der(Z). We gave
the following answer in terms of decompositions with the projections

πk`(e) : L(Z) 3 L 7→ Pk/2(e)LP`/2(e), Πm(e) :=
∑

|k−`|=m

πk`(e).

3.1. Theorem [8]. Π0 and Π1 map Der(Z) into itself and we have

Der(Z) = ∆1(e)⊕∆0(e) where ∆m(e) := Πm(e)Der(Z).

ID is a real-analytic direct submanifold of Der(Z). For any e ∈ Tri(Z), the
map u 7→ K(e, u) is a bijection Z1/2(e) ↔ ∆1(e) and TiD(e)ID = ∆1(e).
The families{[

Z1/2(e) 3 u 7→ iD
(
expK(e, u)e

)]
: e ∈ Tri(Z)

}
,{[

Z1/2(e) 3 u 7→
(
expK(e, u)e

)∼]
: e ∈ Tri(Z)

}
are real-analytic atlases for ID and IM, respectively.

The main topological properties of the natural map ID ↔ IM can be
established by a fine estimate as follows.

3.2. Proposition [8]. If e, f ∈ Tri(Z) and we have ‖D(e)−D(f)‖ < 1
66

then there exists f ′ ∈ f∼ such that ‖e− f ′‖ ≤ 16‖D(e)−D(f)‖.

As a consequence, by writing d(z,A) := infa∈A ‖z−a‖, z ∈ Z, A ⊂ Z
for the point-set distance in Z, the quotient topology of the equiva-
lence classes in IM inherited from the norm topology of Tri(Z) coin-
cides with the topology by the bias d0(e∼, f∼) := infe′∈e∼ d(e, f∼). It
coincides also with the topology by the Hausdorff metric dH(e∼, f∼) :=
max

{
supe′∈e∼ d(e′, f∼), supf ′∈f∼ d(f ′, e∼)

}
. Moreover the mapping

e∼ 7→ iD(e) is bilipschitzian IM ↔ ID with respect to dH .

Next we proceed to the question if the real-analytic structures given in
Theorem 3.1 are compatible with those inherited from Kaup’s complex
manifold structure on IP. There is a natural candidate for a canonical
technique to translate the coordinate map Θe(u) := exp(u, e)Z1(e) =
JexpD(u)e into IM and ID. Namely we can project the range of expD(., e)
into Tri(Z) by using support tripotents resulting in the mappings

Θ̃e(u) :=
[
s
(
expD(u, e)e

)]∼
, Θ̂e(u) := iD

(
s
(
expD(u, e)e

))
into from Z1/2(e) into IM and ID, respectively. Are they real-analytic with
respect to the atlases of IM and ID given in Theorem 3.1?
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3.3. Theorem [8]. If Z is a JC∗-triple, e ∈ Tri(Z) and u ∈ Z1/2(e) then
the function st := s

(
[exp tD(u, e)]e

)
is the solution of the initial value

problem

(3.4)
d

dt
st = P1/2(st){u, e, st}, s0 = e.

By a JC*-triple we mean a JB*-triple which is isomorphic to a sub-
triple of some C*-algebra L(H) with a suitable Hilbert space H. It is a
well-known consequence of the Gelfand-Neumark theorem of JB*-triples
due to Friedman and Russo [4] that to establish Theorem 3.3 for gen-
eral JB*-triples, it suffices to prove its statement additionally only in the
special case Z = H3(O) of the 27-dimensional exceptional JB*-triple. It
seems that any JB*-subtriple of H3(O) generated by a tripotent and an
element from its Peirce (1/2)-subspace must be a JC*-triple. The solu-
tion of (3.4) passes in such a subtriple necessarily and the theorem is
valid in general. However, we have no complete proof for the moment.

To bypass this difficulty, in [8] we construct holomorphic atlases on IM
by means of the solutions of (3.4), leading to some results of independent
interest. To this aim, first we have to understand the connection between
the tangent vector fields of Tri(Z) and those of IM. Consider a flow

[
φt :

t ∈ IR
]

of mappings φt : Tri(Z) → Tri(Z) which preserve the equivalence
classes of ∼ (i.e. e∼f ⇒ φt(e) ∼ φt(f)) such that φ0 = Id and each curve
t 7→ φt(e) is smooth. Then the vector field e 7→ X(e) := d

dt

∣∣
t=0

φt(e) ∈
Z(−)(e) has the property

D
(
X(e), e

)
=D

(
X(f), f

)
, D

(
e,X(e)

)
=D

(
f,X(f)

)
whenever e ∼ f.

We shall call such tangent vector fields equivariant. Different flows
[
φt

]
,[

φt
]

may give rise to the same mappigs of equivalence classes in the sense
that φt(e∼) = ψt(e∼) for all t ∈ IR, e ∈ Tri(Z). Then, for the generator
vector fields X := d

dt

∣∣
t=0

φt and X := d
dt

∣∣
t=0

φt, we have

D
(
X(e), e

)
= D

(
Y (e), e

)
, D

(
e,X(e)

)
= D

(
e, Y (e)

)
, e ∈ Tri(Z).

We call this property the equivalence of the fields X,Y and write X ≈ Y
for it.

3.5. Proposition [8]. (1) Given an equivariant field X, its projection
P1/2X : e 7→ P1/2(e)X(e)

is the unique equivariant field Y with X≈Y and Y (e)∈Z1/2(e), e∈Tri(Z).
(2) A bounded locally Lipschitzian tangent vector field X on Tri(Z)

is equivariant if and only if exp tX preserves the equivalence classes of
∼ for all t ∈ IR.

(3) The family of all smooth equivariant vector fields in Tri(Z) is a
Lie algebra with the operation

[
X,Y

]
∗ := ∇XY − ∇YX and we have[

X,Y
]
∗ ≈

[
X̂, Ŷ

]
∗ whenever X ≈ X̂ and Y ≈ Ŷ .
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Define the auxiliary manifolds

Sλ :=
{
(e, x) : e ∈ Tri(Z), x ∈ Zλ(e)

}
, λ = 1, 1/2, 0.

Heuristically, S1 can serve as a ”disjointification” of the Grassmanian IP.
Its main features for the study of the solutions of (3.4) can be summarized
as follows.

3.6. Proposition [8]. S1 is a real-analytic direct submanifold of Z × Z
with

T(e,x)S1 = Z
(−)
1 (e)× Z1(e) ⊃

{(
P1/2(e)D(a, b)e, D(a, b)x

)
: a, b ∈ Z

}
.

Given two smooth vector fields C : Tri(Z) → Z, D : Z → Z being
complete in Tri(Z) and Z, respectively, the statements (1),(2),(3) below
are equivalent.

(1) [exp tD]x ∈ Z1

(
[exp tC]e

)
for all (e, x) ∈ S1 and t ∈ IR,

(2) D(x) = {{C(e), e, x}+{e, C(e), x}+{e, e,D(x)} for all (e, x)∈S1,
(3) [exp(tD)]Z1(e) = Z1

(
[exp tC]e

)
for all (e, x) ∈ S1 and t ∈ IR.

For any couple (e, u) ∈ S1/2, let us introduce the tangent vector field

C(e)
u (f) := P1/2(f)D(u, e)f, f ∈ Tri(Z).

On the basis of Propositions 3.5 and 3.6 we can complete the argument.

3.7. Theorem [8]. For each e ∈ Tri(Z) there exists a neighborhood W
of 0 in Z1/2(e) and a real-analytic map Te:W → Tri(Z) such that

Te(0) = e , expD (u, e) e ∈ Z1

(
Te(u)

)
, u ∈W.

Proof. Fix any u ∈ Z1/2(e) and set xu := expD (u, e) e. Notice that the
vector field Eu(f) := P1/2(f)D (u, f) f , f ∈ Tri(Z) is a tangent to Tri(Z)
and its exponential is a welldefined mapping Tri(Z) → Tri(Z). Let

Te(u) := (expEu)e, u ∈ Z1/2(e).

Then the curve t 7→ et := Te(tu), t ∈ IR, is the solution of the initial
value problem e0 = e, d

dtet = P1/2(et)D (u, et). Consider the mapping

F (f, y) :=
(
P1/2(f)D (u, e) f, D (u, e) y

)
, (f, y) ∈ S1.

From Proposition 3.6 we see that F is a tangent vector field to S1 and
its exponential is a well-defined mapping S1 → S1. In particular, there
is a curve t 7→ (ft, yt) ∈ S1, t ∈ IR, such that (f0, y0) = (e, e) and
d
dt (ft, yt) = F (ft, yt). Then we have d

dtyt = D(u, e)yt, y0 = e and d
dtft =

P1/2(ft)D(u, e)ft, f0 = e. By the uniqueness of solutions of initial value
problems, yt = (exp tD (u, e))e and ft = et for all t ∈ IR. Since (ft, yt) ∈
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S1, we have yt ∈ Z1(ft) for all t ∈ IR. In particular expD (u, e) e = y1 ∈
Z1(f1) = Z1

(
Te(u)

)
which completes the proof.

On the basis of these results we can describe the holomorphic atlases
corresponding to Kaup’s coordinatization for IP both on ID and IM as
follows. Consider the vector fields

C(e)
u : Tri(Z) 3 f 7→ P1/2(f)D(u, e)f, (e, u) ∈ S1/2.

According to the results of Section 2, they are real-analytic (with respect
to the coordinates Z(−)(e) 3 w 7→ expK(e, w)). and tangent to Tri(Z).
Hence the curves t 7→ [exp tC(e)

u ]e are well-defined on the whole IR and
range in Tri(Z). By definition they are solutions of (3.4). Also the maps

YeZ1/2(e) 3 u 7→ [expC(e)
u ]e, e ∈ Tri(Z)

are all well-defined. real-analytic and range in Tri(Z). Using Propositions
3.5, 3.6 and Theorem 3.7 we conclude the following.

3.8. Theorem [8]. The vector fields C(e)
u are equivariant and complete in

Tri(Z). For any tripotent e, there exists a neighborhood We of the origin
in Z1/2(e) such that the restricted map Ye|We is real-bianalytic with

Ye(0) = e, [expD(u, e)]Je = JYe(u) = Z1

(
Ye(u)

)
, u ∈We .

By setting Ŷ (e)(u) := iD
(
Ye(u)

)
, Ỹ (e)(u) :=Ye(u)∼, Y

(e)
(u) :=JYe(u),

the families{
Ŷ (e) : e ∈M

}
,

{
Ỹ (e) : e ∈M

}
,

{
Y

(e)
: e ∈M

}
are holomorphic atlases for ID, IM and IP with commuting diagram

Z1/2(e)
↙ ↓ ↘

ID ↔ IM ↔ IP

u
↙ ↓ ↘

Ŷ (e)(u) ↔ Ỹ (e)(u) ↔ Y
(e)

(u) .

Since the points of IM are actually pairwise disjoint subsets in Z, it is
natural to ask how can we describe the holomorphy of a function IM → C
(and hence holomorphy to general Banach spaces) in terms of holomorphy
in Z.

3.9. Theorem [8]. Let U be an open subset of IM and let U :=
⋃
e∼∈U e∼

denote its trace in Z. A function Φ : U → C is holomorphic if and only
if for any point e ∈ U , there exists an open neighborhood V of e in Z
along with a holomorphic function φ : V → C such that φ(f) = Φ(f∼)
whenever f ∈ U ∩ V .
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[6] J.-M. Isidro - L.L. Stachó, Holomorphic automorphism groups in Banach
spaces, North Holland Mat. Studies 105, North Holland, New York - Am-
sterdam - Oxford, 1985.
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