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On nonlinear projections of vector fields
L. L. STACHO

ABSTRACT. Given a locally Lipschitzian bounded vector field X in a neighbor-
hood U of a closed domain D with Lipschitzian boundary and given a contin-
uously differentiable projection P of U onto a C'-submanifold of U, if X is
complete in D then its projection P'X is complete in P(U) N D . We outline
an application to the problem of contractive projections in Jordan theory.

1. Introduction

In 1985 W. Kaup [6] solved the longstanding problem of what type of algebraic struc-
ture characterizes the image of a C* -algebra by a contractive linear projection. One of the
basic ingredients of his solution was the fact, established also by the author [8] in 1982, that
the image of a complete holomorphic vector field in the unit ball of a (complex) Banach
space is complete in the unit ball of the range by a contractive linear projection. Recently
much interest is paid for the natural order-free generalizations of real C* -algebras, the
so-called real JB * -triples [4]. The problem if the range of a contractive linear projection
of a real JB* -triple is a real JB * -triple is still open.

In this paper we prove a theorem concerning possibly nonlinear projections of locally
Lipschitzian bounded vector fields on domains in Banach spaces. Our result may have inde-
pendent interest in nonlinear real analysis even in finite dimensions besides its application
to complete polynomial vector fields on the unit ball of a real JB * -triple as a first step
toward the solution of the problem of contractive projections in real Jordan theory. We
organize the paper to be self-contained.

2. Preliminaries, notations

Throughout the whole work Dy denotes an (arbitrarily fixed) open subset in a Banach
space F with norm || || and D is an open subset of Dy such that its boundary 9D is
Lipschitzian of codimension 1 contained in Dgy. That is

0D C Dy, UnNOD={ze€Uy,: ¥o(z) =0}, UsND ={z €U, : ¥u(z) <0} (acdD)
for some family {¥,: a € 3D} of Lipschitzian functions of the form

U,:Us =R, ac€U,open C Dy, |¥o(z)— Voly)| < tia llz - yll (z,y € Ua) ,
Uo(z + XAey) = ¥o(z) + A whenever z,z + Ae, € U,
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with suitable unit vectors e, € E (a € 8D) . We regard any locally Lipschitzian bounded
map

X:Do—=E, |X(at)|<M, [[X(at)-X(a,t)| < Mzs(lla~a'|+[b—-b])
for a,a’ € Dg and t,t' € R with |la —d'||, [t — t'| < egp.

as a time-dependent vector field on Dy with the value X(a,t) at the point = and in the
time ¢. By the classical Piccard-Lindel6f theorem on the existence and continuity of the
maximal solution of ordinary differential equations [7, 1], under our hypothesis there exists
a unique open subset Qx C Dy X IR along with a map sx : Qx — Dy such that for each
a € Dy the section Qx4 :={t€R: (a,t) € R} is an interval containing 0 and

%sx(a,t) = X (sx(a,t),t) teQ), sx(a,0)=a,

1) limgtsup 0, Sx(a,t) exists and € 8Dy if supf, < co ,}
' lim;inf o, sx(a,t) exists and € &Dq if infQ, > —co

where 0D, stands for the boundary of Dg. In the sequel we reserve the notations

sx,{dx,Q0x,, for the maximal solution of the initial value problems d/dt z(a,t) =

X(:L'(a, t),t), z(a,0) = a € Dy. Given a subset S C Dy, we say that the vector field

X is complete in S if R = Qx, for all a € §. By the boundary behaviour (2.1) we

have

X complete in D <= X complete in D <= X complete in 8D

2.2
(22) <= for every a € 0D there exists t; > 0 with sx(a,t) € D (|| < to).
Recall that a map f : S —+ F where S C F and F is another Banach space (with
norm || ||z ) is differentiable (in Fréchet sense) with derivative f'(a) € L(E,F) :=
{linear maps E — F} at the point a € § if § is a neighborhood of the point a in
E and

lim ||£(a +£) - [£(a) + /@A)l p 1] =0 .

As usual, we regard L(E,F) as a Banach space with the operator norm ||L||g p :=
sup{||Lzl|g/|lzl| : 0# z € E} (L € L(E,F)). '

A set S C Dy is a C¥-submanifold of Dy if there exists a closed linear subspace
F C E such that for every point a € S one can find neighborhood V, open C Dy of a
along with a & -times continuously differentiable one-to-one map ®, : V, — E such that
its range ran®,(:= ®,(Va) = {®.(z) : z € V,}) is an open subset in E and its inverse
&' is also k-times continuously differentiable on ran®, and SNV, = FNrand, .

By a projection of Dy we mean a mapping P : Dy — Dy such that P(a) = a for
a €EranP.

With the standard techniques of differential geometry using local charts to describe
the behaviour of curves tangent to vector fields we get the following.
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2.3 Lemnia. Let P be a twice continuously differentiable projection of Do with bounded
derivative onto a closed C? -submanifold of Do . Assume X:DgxR—E isa locally
Lipschitzian bounded vector field. Then the vector field

Y = P'X : (a,t) = P'(a)X(a,t)
is also locally Lipschitzian and bounded with

(2.4) sy(a,t) € ranP for g € ranP and t € Qy,a -

Proof. We have p := SUDgep, |P'(a)lg g < o0 and £:= sup(a,t)epoxRHX(a,t)H < 0.
Then |[Y(a,t)ll = [IP'(@)X(a,0)ll < 1P ()l g g IX ()l < p€ (a€ Do, tE IR) showing
the boundedness of the vector field Y.

Given any (a,t) € Do x IR, there exist 0 <8, < oo with [|X(a1,t1) - X(az, )|l £
WW—MH+M—M)deWm—PWMl<NVWWumm+UMrWN
for |la; —all,llaz — all,lt1 —tl, lt2 —tl < 5. Then we have [|Y(a1,t1)— Y (ag, t2)ll =
1P/ (a2) (X (a1, 1) — X (a,t2)) = (P'(a2) =P'(01)) X (a2, 82)]| < (- 22+ 1P" (@l 8.0 *
1) (llay = azll + |t; —t2]) whenever lay — all, llaz —all , [t — t|,|ta —t| < 0. This estab-
lishes the locally Lipschitzian property of Y.

Fix a € ranP arbitrarily. Since ranP is a closed C?-submanifold of Dy,

anPOV =3"YFnV), &@a)=0
for some twice continuously differentiable one-to-one map &:V — V where V, V are

open sets in E,acVCDy,0€ V = ran® and ®! is twice continuously differentiable
on V. We can cheese—/ 1o he <o small that @,8,®" and Y on V, respectively

o1, [@t ! [@“.1]" on V are bounded and Lipschitzian. Choose to such that we have
Sy(a,t) € V for |t| <to. To prove (2.4), it suffices to see that

@)y e F (|t] <to) where  3(t) := ®(y(t)) and y(t) := sy (a,t) (lt| < to) -
ince 4/t y(f) = [PWO)XO,2) (] < to) and y(©) =a,

gy = PEONZED0 (<t 70 =0

(2.5) B 5 5
where P:=®oPod™", X@p:[@@r%@ﬂX@r%@)(ﬁevy

We can use similar estimates leading to the boundedness and local Lipschitzianity of Y
to prove that Y is bounded and Lipschitzian. Thus, by the Piccard-Lindeldf theorem,
y is the unique solution of the initial value problem (2.5). On the other hand ranP =
&(ranPN V) C F. Thus, since F is a closed linear subspace of E,

ran¥ = ran(P'Y) C ranP’' C F .
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However, then we can solve the initial value problem (2.5) within the subspace F'. By the
uniqueness of the solution of (2.5) it follows F(t) € F ([t| < to). Since also y(t) € V
(Jt| < to), hence y(t) = " 1(y(t)) € @1 (FNV)=ranPNV . That is (2.4) holds. O

2.6 Remark. In finite dimensions the conditions of the Lemma can be weakened. Indeed
if dimFE < co in the above Lemma it suffices to assume P to be continuously differentiable
of and ranP to be a C?! -smooth submanifold of Dg . In this case we can only assure that
the vector field P’'X is well-defined and ranges continuously in F . Then instead of using
The Piccard-Lindelof theorem to establish the existence and uniqueness of the solution of
(2.5), we can argue as follows. By Peano's theorem [2] on ordinary differential equations
with finite dimensional continuous vector fields, (2.5) has a solution with values in F'.
For any solution ¥ of (2.5) the function z:= @1 0¥ is a solution of the initial problem
2(0) = a, d/dt z(t) = P'(2(t)) X (z(t),t) (Jt| < to). However, this latter is unique and
coincides necessarily with y whence (2.4) is immediate.

It is well-known [2] that Peano’s theorem does not hold in general in infinite dimen-
sional Banach space setting.

Question. What kind of weaker additional hypothesis are necessary for a continuously
differentiable projection P and a locally Lipschitzian bounded vector field Z with the
property P'(a)Z{a,t) = Z(a,t) (a € ranP, t € IR) to assure sz(a,t) € ranP (a €
ranP, t € Qz,)7

3. Main result

3.1 Theorem. Let E be a Banach space, D, D, open C E such that D C Dy and 8D
is a Lipschitzian submanifold of codimension 1 in Dy . Assume X : Dy xIR -+ FE isa
locally Lipschitzian bounded vector field which is complete in D and let P : Dy — Do be
a twice continuously differentiable projection such that ranP is a C? -submanifold of Dy .
Then the projected vector field Y{a,t) := P'(a)X(a,t) (a € Dgy, t € R) is also complete
in DNranP .

Proof. According to Lemma 2.3 and (2.2), it suffices to establish that for any boundary
point a € 8D there exists g > 0 such that the solution y : (—tg,tp) — Do of the initial
value problem

(32) Ly =Y@©,0 (d<to), yO)=a

ranges in 0D .

Fix a € 8D arbitrarily. Since 0D is a Lipschitzian submanifold of codimension 1 in
Dgy, we can choose a bounded open convex subset U of Dy along with a Lipschitzian
function ¥ :U — IR and a unit vector e € E' such that

U(z+Ae) =¥(z)+ A (zyz+re€U), a€cUNID={zeU: ¥(x)=0}.
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Observe that the mapping
R(z) :=z — ¥(z)e (zel)

is a Lipschitzian projection of U onto U N 8D . Therefore the vector field Z (z,t) =
Y(R(z),t) (z € U, t € R) is bounded and locally Lipschitzian on U. Thus, for a
sufficiently small value to > 0 which we fix henceforth, the initial value problem

9 u(t) = Y(R@(®),1) , u(0) =a
has a unique solution u: (—tg,tp) — U . We are going to show that
(3.3) T(u) =0  (|t| <to).

Remark that from (3.3) it follows R(u(t) = u(t) and hence d/dt u(t) = Y (u(t),t) (Jt| <
to) . By the uniqueness of the solution of the initial value problem (3.2), we have necessarily
y(t) = u(t) = R(u(t)) € ranR C 8D which completes the proof of the theorem.

We prove (3.3) as follows. Since u has the continuous (moreover locally Lipschitzian)
derivative t — Y (R(u(t)), the function t — ¥(u(t)) is locally Lipschitzian. Recall that
(locally) Lipschitzian functions of one real variable are absolutely continuous [7] and hence
differentiable Lebesgue-almost everywhere satisfying Newton-Leibniz rule. Thus for (3.3)
it suffices to see that

(3.4) hrglsoup [\Il(u(t +6)) — ¥(ut))] < (|t} < to, e ==%1) .

Fix ¢ € (~to,to) and € € {£1} arbitrarily and write
o= Ru(t), vi=Y(@t), z(6):=sxad) (§€0xa).
Observe that for 5 — 0 we have
19 ule-+) = (a0 + 80) < T e+ 8) = utt) + 0l >0
¥ ([u(®) + 0] - T(u(®)e) = ¥ (R(u() + ) =
= T(a +6v) = ¥(a+ bv) — ¥(a),
[P(a(5)) ~ a] = 5[P(=(8)) - P(s(0))] >

aPMW:%l

o [E(P((®) ~ ¥(a-+ )| < o5 [Pa(6)) ~ o + 0] > 0

T (u(t) + 6v) — T(u(t)) =

| =

o2(1) = P(0)X(a,t) =Y(a,t) = v,

where M is the Lipschitz constant of ¥ . ;From these estimates it readily follows

(3.5) Iin;f:)up % [T (u(t +e8)) — (ut))] = Iin&lisoup %\IJ(P (z(e6))) -
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By assumption, the vector field X is complete in D . Since z(0) = a € 8D, we have
z(6) € D (§ € Ux,0) . By assumption, the projection P maps the domain D mto itself.
Hence also P(0D) C D. Therefore

P(z(8)) € D thatis U(P(z(6))) <0 (0 €Qx,0) -

Then (3.4) is immediate by the observation (3.5). O

4. Application in real Jordan theory

Let E be a complex Banach space and let B(E) := {z € E : |jz| < 1} be its
unit ball. By a remarkable result of W. Kaup [5, 3Ch. 10] the following statements are
equivalent:

(i) B(E) is (holomorphically) symmetric,
(ii) for each vector e € E there exists a vector field X, : E — E of the form X (z) = e+

Qe(z,z) (z € E) for some (necessarily unique) complex-bilinear continuous mapping
Q.:ExXE—-E,

(ili) there exists a (unique) operation of 3-variables on E denoted usually by {zy* z}
which is complex—lmea.r in the variables z,z, conjugate-linear in y and satisfies
Hzz*z}| = |l=I° (z € B),
lexp(CLellg g <1 (Re¢ <0, e€ E) for the linear operators L.(z) := {ee*z},

{ev*z} = {2°7) (z,9,2 € E),
{ab*{zz*z}} = {{ab*z}y*z} — {z{ba*y}*z} + {zy*{ab*2}} (a,b,z,y,2 € E).

The Banach algebraic structures involving an operation of 3 variables with the properties
described in (iii) are called Jordan-Banach triple *-algebras abbreviated usually as JB* -
triples. Any complex C*-algebra A can be regarded as a JB*-triple with the triple
product
{zy*z} := —21—:cy*z + %zy*x (z,y,z€ A) .

(From the equivalence (ii) <> (iii) it follows that PE is a JB*-triple whenever P is a
linear projection with the triple product {zy*z}. Indeed, given any vector e € E, the
vector field Y, := PX, is complete in B(PE)(= P(B(F))) with Y;(0) = Pe. This is an
immediate consequence of Theorem 3.1 by the following lemma Wthh applies in real not
only in complex Banach spaces.

4.1 Lemma. Let E be a real Banach space with norm || ||, let P € L(E,E) be a
projection with ||Pllg p = 1 and let V : E — E be a polynomial vector field* which
is complete in B(E). Then the vector field Y(z) := PX(z) (z € E) is complete in
B(PE).

* That is X(z) = Co+ Y p_,Ck(z,...,2) (x € E) for some n < 0o, Cy € E and

k
continuous k -linear mappings C: E* - E (k=1,...,n).

52



Proof. Being linear, for the projection P we have P'(z) = P (z € E). Thus P is
trivially a continuously differentiable mapping whose range is a closed linear and hence
in particular C*-submanifold in E. Since ||Pllzz = 1, for the unit ball we have
B(PE) = P(B(E)) C B(E). Notice that the boundary 0B(E) = {z € E: |jz|| =1} isa
Lipschitzian submanifold of E of codimension 1. We prove this latter fact as follows. Let
any unit vector a € dB(E) be given. By the Hahn-Banach theorem we can chose a linear
functional ¢ € L(E,IR) such that ¢(a) = ||¢||g g = llall = 1. Define

Q) =2-9()a (z€B), Fi=QE)={zcE: ¢z)=0},
K:={zeF: ||z||<1/3}, U:={z+Xa: z€ K, A>0}.

Remark that U is an open neighborhood of @ in E. Observe that for some Lipschitzian
(and concave) function ¢ : K — IR we have

UNoB(E)={z+9Y(z)a: z€ K} =
={zeU: ¥(z) =0} where U(z) := ¢(2) — ¥(Q(2))

and ¥(z+ Aa) = ¢(z+ Aa) ~P(Q(z+ Aa)) = ¢(2) + A —¢(Q(2)) = ¥(2)+ A (z,2+Xa €
U). Thus we can apply Theorem 3.1 with Dy := E, D := B(E), X(z,t) := V(z)
(z € E, t € R) to conclude that the vector field Y is complete in B(PE). _

For the sake of self~containedness we include a detailed proof of (4.2). Given any point
z € U we have ||Q(2)]| < 1/3 and hence the for the ball of 2K + Q(z) codimension 1
and radius 2/3 we have K C 2K + Q(z) C B(E). Therefore, since B(FE) is convex and
open, for the cones

' C) i=co(2K +Q(2)]U{2}) = {z+Xa: 0< A< ¥ (), T € 2K +Q(2)}
where {7 (z) := ¢(2) - (36(2)/2) |z — Q(2)|| and
CH =24+ RCT) —2)={z+Xa: A>9I (z), z € F}
where {7 (z) := ¢(2) — (36(2)/2) l|lz — Q(2)|| we have
(4.3) C)cBE), ¢ cE\B(E) forany z€UNJB(E) .

(4.2)

Since a € UNJB(F), it follows in particular

0£{z+Xxa: 0< <o) (z)} c BE),

0#{z+Xa: 2> 9P ()} c E\B(E) (z€K).

Hence for every z € K the segment I(z):= {z+ Aa: $$7(z) < A < i (2)} contains
some point from AB(E). On the other hand, by (4.3), for any = € K the intersection
I(z) N 9B(E) consists of a unique point and

Iz ndBE)=I(z)\ |J (c{PucH)=

2€UNJB(E)
={z+| su z)a} = {z+[ inf (H)(z)]a} .
el sy} = o+ b 9O @)
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Thus (4.2) holds with the function
Y@ = inf yP(z) = sup  ${I(z)la} .

z2€UNOB(E) zeUNSB(E)
Given any z,y € K with ¢(y) > 9(z), by setting z := z + ¥(z)a we have
0 < 9(y) — ¥(@) = ¥(y) —¥{P(2) <P (Y) - (P (2) = ¢(2) Iy — =] < [y — ]|
which shows the Lipschitzian property of 4. O

4.4 Remark. Though Jordan theory had its origins, inspired by early quantum mechanics,
in the study of the algebraic structure of symmetric operators on a real Hilbert space, as far
most investigations involving topology were carried out in the setting of complex Banach
spaces and manifolds. The systematic study of real JB * -triples began perhaps just in 1995
with the paper [4].

By a real JB* -triple we mean a real Banach space E equipped with a continuous
operation {zy*z} of three variables such that the norm || || of E and the triple product
{zy*z} admits an extension to the complexification E®(iE) with the properties described
in (iii). Lemma 4.1 yields immediately the following.

4.5 Corollary. If E is a real JB* -triple with norm || || and triple product {zy*z},
respectively, then for any contractive linear projection P: E — E the (time-independent)
vector fields

PX,:z v+ Pe—~ P{ze*z} (e € PE)
are complete in B(PE) the unit ball of the range of P. O

References
[1] J. DIEUDONNE, Foundations of Modern Analysis, Pure and Appl. Math. Vol. X, Aca-
demic Press, New York - London, 1960.

[2] A.N. GopuNoV, On the theorem of Peano in Banach spaces, Funkcional. Anal. i
Prilozhen. 9, (1975), 59-60.

[3] J.-M. IsiDRO - L.L. STACHG, Holomorphic Automorphism Groups in Banach Spaces:

An elementary introduction, North Holland Math. Studies 105, North Holland Publ.
Co., Amsterdam - New York, 1985.

(4] J-M. Is;brO - W. Kaurp - A. RODRIGUEZ, On real forms of JB* -triples,
Manuscripta Math. 86, (1995), 311-335.

(5] W. Kaup, Algebraic characterization of symmetric complez Banach manifolds, Math.
Ann. 228, (1977), 39-64.

[6] W. KauP, Contractive projections on Jordan C*-algebras and generalizations, Math.
Scand. 54, (1984), 95-100.

[7] S. LANG, Real and Functional Analysis, Springer Verlag, New York, 1993.

[8] L.L. STaCHG, A projection principle concerning biholomorphic automorphisms, Acta
Sci. Math. 44, (1982), 99-124.

54



