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AN UPPER ESTIMATION FOR THE EIGENFREQUENCES
OF VIBRATING LIAPUNOFF BODIES
(FIRST BOUNDARY VALUE PROBLEM)

I. Joé, L. L. Staché

1. For any bounded (open) domain QC R" and for j=1. 2, ... we define
the j-th eigenfrequency A;(Q) of the homogeneous € shaped and at its
boundary 0 Q fixed vibrating body by

M A,@ = inf sup({ || grad £ 1P [ 1 @)

where M, denotes the collection of the j-dimensional subspaces of the Sobo-

leff space Wyl * '
As it is well-known (cf. [1]), if 0 Q is an (n — 1)-dimensional C2-submanifold
of R”, then the eigenvalues of the boundary value problem

Af+A2-f=0, fEC5 Q)

are given by (1). On the other hand, it is also shown (e.g. [1], [3]) that all
the mappings Q > A, () are continuous with respect to the topology on the
set of the bounded R"-domains defined by the usual Hausdorff dictance.

While for all dimensions it is clairified (¢f. [2]) that

A,(Q)ZAJ({xeRn:nxn<(v—°i:—9)”"}) G=1,2 ..)

n

where vol, denotes the n-dimensional Hausdorff measure and w,=vol, {x&R":
:|| x]|< 13}, it is not at all known over two dimensions what kind of effective
upper estimates can be given for the value of A,;(Q) depending on some geo-
metric parameters of Q. However, for convex Q-s, it was proved (cf. [3]) that the
analogues of the best known two dimensional estimates (see [4]) hold in general
(and can not be improved). The purpose of this paper is to extend a theorem
of G. POLYA [5] concerning convex Q-s to a larger class of geometrical figures
(for generalized Liapunoff bodies, defined in the next sections).

* ie f& W(l)'2 if grad f exists in the weak sense and belongs to L*(£2) and supp f is
contained in some compact set which does not meet 3 Q.
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2. A bounded domain Q(CR") whose boundary is an (n— 1)-dimensional
C2-submanifold in R" is called a Liapunoff body if the Minkowskidn curvature
of 0Q with respect to the outward from Q oriented normal vectors is non-
-negative at any point of d Q. (Remark here that the convexity of Q is equi-
valent to the non-negativeness of the main curvatures of 0 Q separately.)

According to some recent results in geometric measure theory, it is possible
to give a generalization of the concept of Minkowskian curvature which applies
to the boundary of any open subset QC R". This can be carried out as follows:

It is shown in [6, Theorem 5] that by setting
(2 K={(x k):xco, ||k]|=1, Ip>0x+pkcQ and dist (x+pk, 0Q)=¢}
(3) h(x, k)=sup {E>0:dist (x+pk, 0Q)=p, Vo0, £} for (x, k)EK,

one always can find a o-finite Borel measure p. on K and Borel measurable

functions a;: K—R (j=0, ..., n—1) such that for all f&L*(Q) we have
h(x, k) ne—1
@ [rordr= [ se+el) 3 o/ ) o/dpdpx, b,
I+ k 0 j=0 7.
Here du. and a,, ..., a,_, are necessarily determined omly up to the

signed measures .
(5 da,=a;dy. (=0, ...,n=-0
in the sense that if (4) is satisfied when du and a,, ... a, , are replaced
dy d{f. and d,, ... , d, ,;, respectively, then we have

fadu=faaz  G-0,...,n-1)

E E

for all such ECK that Ja,-dy. or Sc'z'jdpj makes sense. Thus, for dyu (and hence
E E

- n—1

also dy)-almost every (x, k)€K, the polynomials o > > a;(x, k)p/ and p >
=0

n—1

> a(x, k)p/ differ only in a positive constant factor.

=0

We shall call the measure da; defined by (5), which depends only on the
geometric parametars of Q, the j-th curvature measure of the boundary of Q.
This terminology is motivated by the relation (6) below. The formula (4) can
be considered as a generalization of the main theorem in [11].

In the classical case, when 0 Q is C?smooth, we have (x, k)cK if and
only if k is the toward Q oricnted normal vector (of unit length) of the surface
0Q at the point x(€0£2). Now there is a natural choice for dy and a,, ...,
a,_.: We can define dp by

w(E)=vol, {x€0Q:3k (x, H)EE}



An upper estimation for the eigenfrequences of vibrating Liapunoff ... 61

(for the Borel measurable subsets E of KX: vol, ; denoting the (n— 1)-dimen-
sional Hausdorff measure). Then a,(x, k), ... , ,—1 (%, k) are the coefficients
of the polynomial

n—1 n—1
(6) P> 2 g HY=TT (1-pk/(x)
j=0 i—1

where ko (x), ..., k,_,(x) denote the main curvatures with respect to the
outer normal of 0Q at the point x. Thus, in this special case, the curvature
measures da; (defined by (5) and (6)) are all absolutely continuous with respect
to da, and the Minkowskian curvature ki+---+k,_, of 0Q coincides with

——fgﬁ,—. Therefore, to save the most properties of the classical case, we define
gene:.'(;lized Liapunoff bodies in the following way:

Definition. A bounded domain Q in R* is said to be a generalized
Liapunoff body if all its curvature measures 4(j=0, ..., n—1) introduced
above are absolutely continuous vyith respect to o, and the function — —gﬁ (which

: %o
we shall call now the Minkowskian curvature of 0£2) is non-negative.

Theorem 1. If QSR is a generalized Liapunoff body then the Junction
p > vol, ,0(Q_,) (where Q_, denotes the inner parallel domain of radius p>0
of Q, ie. Q_ ={xcQ:dist (x, 0Q)>0}) is non-increasing for 0< p<< co.

Proof. Let Q denote a generalized Liapunoff body and define X and %
as in (2) and (3). Choose dp, Gys «.. , a, ; so that (4) be satisfied. It is
proved in [6, Theorem S5, Corollary] that here we necessarily have

n—1
@) 2, 4(x, K)p!>0 whenever 0<p<h(x, k) ((x, k)eK).
=0
Remark that (7) is not a simple corollary of (4) and the positiveness of the

n—1
operation f > }. f(»)dy because these facts ensure only > a;(x, k)p/>0 for
o] j=0

0<p<h(x, k). It is easy to see from (2) and (3) that Q_,={x+Ek: (x, HEK
and p<€<h(x, k)}and hence

®@ lo_oCe+8k=1p, a0 () for (v, ()EK and E€[0, A(x, K)].
From (4) and (8) we obtain

© vol, O, [ 0. ® 42 dutx, By
Ko

n—1
where @, (€)= > ax, k)¥- Lio, & ¢x (§)-
j=0
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n—1
Recall that for p-almost every (x, k)& K, the polynomial P il >aj
j=0
(x, k)€/ has only real roots (cf. [6, Theorem 5]) and that from the definition of

Liapunoff bodies and (7) we have P, ,(0)>0 and Py (0)=a,(x, )= 2%| <o
Ko j(x &)
(for p-almost every (x, k)& K).

Since, in general, a polynomial P:R > R having only real roots and such
that P(0)>0 and P’(0)<<0 is constant or has a positive root and P decreases
on [0, min{{>0:P()=0}] (cf. [10, Lemma]) it follows from (7) and the defi-
nition of P, , that the functions ¢, , are monotone decreasing on the whole
[0, oo0) for y-almost all (x, k)& K. Therefore, from (9) we deduce that the function

l(d+ d-
e iR
2 \ag

(4

) vol, Q_, -
[+

is well-defined for all p>0 and it is decreasing.

"However, it is shown in [7] that the (n— 1)-dimensional Minkowski content

d| d-

of 3(Q_,) equals to ~~1-(— + &
.2 dt |, dt |

ded parallel set is easily an (n— l)-rectifiable subset of R* (for definitions see

[8D, a well-known theorem of M. KNESER (cf. [8]) implies that vol, ,0Q_,=

+ -
= (n— 1)-Minkovski content (9(Q_))= — 1 (Ei— a ) vol,Q_.. This com-

+._
2 \dg|, dt

)vol,, Q_,. Since the boundary of any boun-

e

pletes the proof.

3. The following geometric estimation is given in [10] for the eigen-
frequences A;(Q):

Theorem 2. Let Q be such a bounded domain in R* that sup vol,_, o(Q_)<
o>0

< o0. Then, by setting 1(Q)=vol, Qfsup vol, ,0(Q_,), we have
00 .

A, (Q)Zs%-l(ﬂ)‘l

The ideas of the proof of Theorem 2 are essentially based upon those
of the article [5].

Thus Theorem 1 directely yields our chief observation

Theorem 3. If Q is a generalized Liapunoff body in R" then

lim vol,_,0(Q_,)

10 A Qp< T oo
(10) 1 )£2 vol, Q
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In particular, if 0Q is a C?-smooth hypersurface, then

A (Q)2<-—TE-. vol, ,0Q
) vol, Q

Remark. One can prove that for any generalized Liapunoff body Q¢ R”
we have on the right hand side of (10)

Iifn vol, ,0(Q_))= j. cardinality {k: (x, k)EK}dvol,_, ().
o0 on

Proof. By [6, Lemma 9] we can fix disjoint Borel subsets B, B, ...
of K and open sets QM, Q®, .. .CR" with positive reach (for def. see [6] or

[11]) such that by setting p, 3¢ inf {—;— “reach Q@™ h(x, k): (x, k)EBm} and
K, 2 {(x, k): x€0Q™, ||k!|=1,3p>0 x+pk S Q) dist (x, 0Q) = o} we have

K= B,, p,>0 and B,CK,  (m=1, 2, ...).

m=1
Using [6, Theorem A, B] we can see that for each point yed(ﬂg"gm) there
exists a unique pair (x,, (¥), k,(»)) in K,, with the property y = x,, (%) + ¢, k,, (>
and, by [8, 3.2.3], for any fixed {ER, the mapping T% :y - y+Ek(p) satisfies
J card (T8)7'@ vol,_, 2= [ [14E—p,) KT 00+ [+ E— gy ()]0, ),
s

T ()
where k7, ..., ki, are the main curvatures of ()(Q(l"gm) (cf. [6, Theorem B]):
defined vol,_, almost everywhere on ()(Q(l")m). Hence, in particular,

an [ card {k: (v HEB} dvol,_, (0)=

{*:3k(x, ©)EBm)

= | e koN - =K )dvel,_ ().
{x+pmk:(x KYEBm)

The proof of the main Theorem in [6] shows (cf. [6, (5'), (5')] that the
measutes ¢;dp. in formula (5) are given by

Selade= | UG- e) KON - [+ G- e ki N]dvOl,_, 0}
o0 B {x+omki(x, YCB}

for BCB, and pER (m=1, 2, ...). Thus (11) yields

(12) j card {k: (x, k) EK}dvol,_ (x)= j ay(x, Kydp(x, k).
PYe! £
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On the other hand, applying the functions oxx ((x, K)EK) introduced
in formula (9), we see

[adu=[timo, ,@duco H=tim [ , Gduce b
x kelo pl0 g
since the functions ¢, , are monotone decreasing for all fixed (x, k)EK. Now,

to complete the proof, we need only to remark that, by (9) and by [8, 3.2.34),
we have

d d % ‘ '
Yoho1 00 = =2Vl Qo= = [ [0 L OdEdu( D)= [ 9y, @) dux B
dp dp K o X
for almost every pc (0, ).
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