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1. Introduction

Throughout this work let H, HD, ..., H™ be arbitrarily fixed complex Hilbert spaces. Our chief aim will be to study the
structure of the strongly continuous one-parameter automorphism groups of the space 8= BMH®D, ..., H™) of all bounded
N-linear functionals H® x .. x H™ — C that is the maps

U: R — 2 := {surjective linear isometries B — 5}

with the group property U(t + h) = U(t)U(h) (t,h € R) and being such that the functions t — U(t)® are continuous for
all fixed @ € B. The case N =1 is covered by Stone’s classical theorem [8,12]: given a strongly continuous one-parameter
subgroup U : R — U (H) := {unitary operators H — H} ~ I, there exists a possibly unbounded self-adjoint linear operator
A on some dense linear submanifold of H such that U(t) = exp(itA) (t € R). In the case N =2, as a simple consequence
of the theory of unbounded C*-algebra derivations [2], in £(H) >~ B(H,H) we have a precise abstract description of the
special one-parameter isometry groups of the form U(t) X = exp(itA) X exp(—itA) with a suitable possibly unbounded self-
adjoint operator A. Our problems with N =2 and B(H",H®) ~ £(H® H®) are naturally associated with Jordan triple
derivations [7,10], and may have far reaching importance even for the description of all strongly continuous one-parameter
automorphism groups of general JB*-triples (complex Banach spaces with symmetric unit ball). Namely, by the Hille-Yosida
theorem [3,12] the infinitesimal generator of a strongly continuous one-parameter group of automorphisms of a JB*-triple is
a possibly unbounded Jordan triple derivation. As far as we know, the bounded JB*-triple derivations are well-understood [1].
However, no results seem to be concerned with the unbounded case even for Cartan factors. From a Jordan theoretical view
point, LHM H®) is a typical Cartan factor of type I where the connected component of the automorphism group contain-
ing the identity consists of mappings of the form X — UXV with suitable unitary operators U € {/(H®) and V € /(HD)
[6,11]. Hence the structure of all norm-continuous one-parameter groups W: R — Aut(L(H, H®)) ~ 2( is immediate: in
this case W(t)X = [exp(itA2)]X[exp(itA1)] for a suitable couple of bounded self-adjoint operators A; € LHM), B € LH®).
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It seems that even the strongly continuous one-parameter subgroups of Aut(L(H™ H?®)) are not fully described in the
literature. One may expect that, for any number N of factors, the elements of the identity-component of 2 should be
mappings of the form

(U1 ® - @UNID :=[(X1,...,XN) > P(U1X1,...,Unxn)| (@ €B).

This seems also not yet been established in full generality, and Jordan theoretical arguments cannot be expected to be
suitable for the proof. Our main result, which is prompted by this conjecture, is the following seemingly plausible statement.

Theorem 1.1. Let U : R — AHD, ..., H™) be a strongly continuous one-parameter group such that
U =U1®---®@Un:t (teR)

with suitable unitary operators Uy ; € UM®). Then there are possibly unbounded self-adjoint operators Ay : dom(A;) — H®
(k=1,..., N) defined on dense linear submanifolds in the respective spaces such that

U(t) = [exp(itA1)] ® --- ® [exp(itAn)]| (t €R).

Corollary 1.2. f W : R — Aut(LHD, H?®)) is a strongly continuous one-parameter group then W(t)X = exp(tA1) X exp(tA) for
a suitable couple of possibly unbounded self-adjoint operators Ay : dom(A;) — H®.

The main technical obstacle for the proof arises from the fact that an operator U; ® --- ® Uy admits alternative repre-
sentations as [(k1U1)]® - Q [(kyUn)] with k1, ...,ky e T:={k € C: |k| =1} and ]_[,':':1 K = 1. Our considerations, which
rely heavily upon complex Hilbert space structure, can be divided into three main steps. First we establish that, under the
hypothesis of Theorem 1.1, there are multiplier functions kj : R — T with ]‘[,’:’:1 ki) =1 (t € R) such that each component
t — Kk (t)Uy ¢ is strongly continuous; that is, all the functions t — ki (t)Ug (hy (hy € H®: k=1,...,N) are continuous from
R into H® with norm topology. Assuming then without loss of generality the strong continuity of the components t > Uk.t,
we show that the families {Uy: t € R} are Abelian and then, by means of their Gelfand representations we can choose the
multipliers i : R — T even in a manner such that we have Uy ; = Kk(t)U,[< with some not necessarily strongly continuous
one-parameter groups t — Uf(. We finish the proof after a series of probabilistic arguments where we establish that this
representations can be improved to the form Uy = )(k(t)ﬁ,[c with strongly continuous one-parameter groups t > ﬁfc and
continuous functions xj : R — T, respectively.

2. Preliminaries, adjusted strong continuity

Throughout the paper R and C are the standard notations for the sets of real and complex numbers, respectively
and T :={x € C: |k| =1} denotes the unit circle. Without danger of confusion, in each of the spaces H,H®D, ..., H™),
we shall write (.|.) and ||.|| for the inner product and the norm, respectively. The products (.|.) are supposed to be
linear in their first and conjugate-linear in their second variables. With this convention, h* will denote the linear func-
tional x > (x | h). Conveniently, we shall use the customary tensor product notations [9, Section 1.3] in the space
B=BMHD, ... HM) of all bounded N-linear functionals HV x ... x HM — C equipped with the usual operator norm
[Pl := SUpjx, j=...=jxy|=1 |® X1, ... Xn)|. Given a family hy e HV, ... hy € H™ of vectors, we shall write h} @ --- ® hj
for the elementary functionals

N N
1@ @hy (LX) e [ o) = ] ).
k=1 k=1
Also we shall write A1 ® --- ® Ay for the composition operators
[A1® - ®@ANID = [(X1,....XN) = P(A1X1,..., ANXN)] (P €B)
if Ax € LH®) := {bounded linear operators H®¥ — H®)}. Notice that
[A1® - @ANIN; @ ®hj =[ATh]" ® - ® [Axhn]".
The factorization of non-trivial composition operators is unique up to constant coefficients: if Aj,..., Ay # 0 we have
A1® --® AN =B1®---® By if and only if By = BxAy for constants with ]_[,'{V:1 B = 1.1 In particular for unitary operators
Uk, Vie e UHDY),
N
U1®--@Un=V1®---QVN <= Vi=xUy, «ieTwith nKk=1~
k=1

1 Indeed, evaluated at Vi ® --- ®yy, the relation A; ® --- ® Ay = B1 ® --- ® By entails ]‘[,’:’:1 (AkXk | Yk) = ]_[,’:’Zl(kak | yk) for any xq,...xy. Given
any index k, if x¢,y; € H® (£ k) are so chosen that (B;X; |y¢) =1 then for any x,y € H® we have (Byx |y) = Bi(Ax |y) X,y € H®) with g :=
I [¢k(A(jX( | y¢). The converse implication is trivial.
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Lemma 2.1. Assume ||@ — V|| < ¢ where @ :=g] ® --- @ gy and ¥ :=h] ® - - - ® hy, with unit vectors g, hy € H®. Then

dist(Tgy, Thy) := min |kge — uhyl| <2V e (k=1,...,N).
Kk,ueT

Proof. Fix any 1 <k < N. Define ki :=[],. ek Ke where for £ # k we set k¢ := (g¢ | he)/|{(ge | hy)| if g¢ Y hy and k¢ :=1 if
g L hy. With this choice

N
K1,....kn €T, []wm=1 and (g¢|xehe)=|(g )] >0 (£#£k).

m=1

Observe that for the vectors Xy := gy + «¢hy with the values p; : =1+ |(hg | g¢)| we have

(Xe |80) = (X¢ | iche) = pee[1.2], [Ixell = (X¢ |X) 2 = 2p0)'? €[V2,2] (£#K).
Thus, since also ¥ = [k1h1]* ® - - - @ [knhn]*, for any x € H® we can write

[® — WK1, ... Xkt X K1, - XN) = (X[ g — ) [ e

€: £k

Therefore we have the norm estimate

(x| g — )| [T ee<lio—wiixi [T lxell-

£: L#£k €: b#k

Since here ||@ — ¥| <&, 1< p; and ||x¢|| < 2, it follows |(x | g — kxhy)| < 2V~ 1g|x|| for all vectors x € H®. Hence
dist(Tgy, Thy) < [lgx — hyll <2V e, O

In particular, with & :=0 we see that g ® --- ® gy =h] ® --- ® hy, implies hy = kg for suitable «g, ..., ky € T with
I—[,’:’:] ki = 1 whenever the vectors g, h, have norm 1. For later use, notice also that if g, h € H are unit vectors in a Hilbert
space then

dist(Tg, Th) = dist(g, Th) = min[2 — 2Re(g | kh)]"* = v2[1 - (g | 0)[]"/*. 2.2)

lcl=1

Lemma 2.3. Suppose F: R — P(H) := {Tg: (g|g) = 1} is a continuous mapping with respect to the distance (2.2). Then F(t) = Thy
(t € R) for some continuous function t — h; € 0 Ball(H) := {g: (g|g) =1}.

Proof. Since the real line R is o-compact, it suffices to establish the local version of the statement: for every s € R there is
an open interval I around s where the set-valued function F admits a continuous section say Is >t +— h{s] e f(t). [Proof. In
this case there is a strictly increasing double sequence (Tp)5> such that R = J,[Tn, Tat1] and each interval [Ty, Tn1]

is contained in some I,. Since h[TS:’”,h[TS:] € F(Ty), for each n € {0, £1, £2, ...}, there is a (unique) constant x, € T such

—00

that h[TS””] = /cnh[Ts:’l]. Then the function assembled as h; := ,unhgs”] for T, <t < T, where puo:=1, up = ]_[,f:1 ki and

Hp:= ]_[,?:71,“ Kx (p=1,2,...) suits our requirements.]|

To prove the local statement, we may assume s = 0 without loss of generality. The continuity of F entails the continuity
of function (¢, u) — dist(F(t), F(u)). Hence we can choose I to be an open interval around 0 such that +/2 > dist(F(t), F(u))
(t,u € Ip) that is

|(v|w)| >0 wheneverveF(t), weF(u)andt,u € .

Fix any vector fy € F(0). Since, by (2.2),
1/2
dist(F(t), F(0)) = v/2 [1 — max Re(f | v)] ,
veF(t)
for every t € Iy there is a unique unit vector f; such that

1
f, cF(t) and (fp|f;) = ‘?Qpa(’f) Re(fy [v)=1— 3 dist(F(0), F(t))2 > 0.

In particular, with suitable unit vectors u; L fy and with suitable angle parameters 0 < ¢ < 71 /2 we can write
fi = cos i fp + singru;  (t € Ip).
Given any convergent sequence t, — t in Io, the continuity of F means that [(f;, |f:)|=1— 2~ 1dist(F(t,), F(t))* — 1, that is

| COS @, COS @ + SIN @y, Sin@e (g, | ut)| — 1.
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Since ¢y, ¢ € [0, w /2], we have 1 > cos(¢r, —@r) = COS @, COS @ +Sin ¢y, sing; > | cos (ptn €OS @¢ +sin @y, sin@e (U, | ue)| — 1.
Thus necessarily ¢, — ¢;. Hence, for any cluster point ¢ of the sequence ((uy, | u;))32 ,, it follows |cos? @ + ¢ sin? ol =1
that is ¢ =1 unless ¢y = 0. In any case we must have

n=1’

(fr, | fr) = cos @y, cos ¢r + singy, singe(ug, | u;) — 1

which implies ||, — f;|| = [2 — 2Re(f;, | f;)]'/? — 0 for any sequence t, — t in Iy. O

Proposition 2.4. Assume ¥ : R — B is a continuous function of the form W¥(t) = h’f‘t Q- ® h’{“ with suitable unit vectors
h € H®. Then there are functions k1, ...,kn : R — T such that I—[,I:I:1 kk(t) = 1 and the modified components t — ki (t)hy ¢
are continuous (as mappings R — [H(">, norm topology)).

Proof. According to Lemma 2.1, the functions Fy : t — Thy; are continuous from R into the metric space [PH®), dist]
in the sense of (2.2). Thus, by Lemma 2.3, we can find functions p1, ..., un :R — T such that the functions ¢+ fi ; :=
Mk(®Ohyr € Fe(t) (k=1,...,N) are continuous. Then their product t — ¥ (t) :=f} - ® F‘ is also a continuous map
R — B. Observe that lI/(t) = u@®)¥ () (t € R) with the scalar-valued function ,u(t) = ]_[,< ]pok(t) From the continuity
of both ¥ and ¥ we infer the continuity of u: R — ’IFZ Hence also the functions t +— fkt = u(tH)fy are continuous.
Since fk t =11 £k /,l,g(t)hkt and since ¥ (t) = [L(t)llf(l') = t® f* [ ®@---fy Nt the choice «1(t) := 1_[]:2 u,(t) along with
K (t) := i (t) for k > 1 suits our requirements. 0O

Conventions 2.5. To simplify notations for the proof of Theorem 1.1, henceforth let U: R — 2 =2AMH®, ..., H™) be a one-
parameter subgroup of operators of the form

UO=U;® - ®Uk, U ecU®).

An application of Proposition 2.4 to functions of the form U(t)[h] ®---®hy]=[U1h1]*®---®[Un (hy]* yields immediately
the following.

Corollary 2.6. Given any family hy e H® (k=1, ..., N) of unit vectors, there are functions kj, : R — T such that ]‘[,’:’:1 k=1 and
the functions t + Ky (t)Uy chy are continuous.

As usual, we say that a net (Vy)ge4 of bounded linear operators B — B is strongly convergent to V (notation: Vo <> V)
if |(Vq — V)®|| — 0 for all @ € B. Accordingly, a function V: R — L(B) is strongly continuous, if V(t,) <> V(t) whenever
tq — tin R.

Proposition 2.7. For some functions k1, ..., kn : R — T, the operator-valued functions t — Ky (t)Uy  are strongly continuous.

Proof. Fix any family h; e HV ... hy € H™ of unit vectors along with a family «1,...,ky : R — T of scalar functions
with ]_[?':1 kj(t) =1 such that the functions t — ky(t)Ui hy are continuous. This is guaranteed by Corollary 2.6. Consider
any index k € {1,..., N} and let 0 £x € H® be any vector. It suffices to see that the function t > Kk (t)Uy ¢X is continuous.

Applying Corollary 2.6 with the vectors hy, ..., hy_1,X/||X||, hg11, ..., hy, we see the existence of functions Ky, ..., K :
R — T with ]’I?’Zl K¢(t) =1 such that the functions t — Ky (t)Uy (X, t = K¢(t)Ug thy (€ #k) are continuous. Given any index
£ #k, it is a consequence of the continuity of both the functions t > K, (t)Ug h, and t — k¢ (t)Ug chy that the coefficient ra-
tio t = K¢ (£, (t) is also continuous (see footnote 2). Hence we deduce the continuity of ¢ — [[],. sk Ke (t)m]?k(t)U,fytx.

However, here we have [[];. ;. Re(O)ke O 1R () = [TTN_; KO, 2k ke =kp(t). O

Corollary 2.8. In the setting of 2.7, the functions t — ik (t)U* . are also strongly continuous.

k,t

Proof. It is a well-known elementary fact [5] that the adjoints of the elements of a strongly convergent net of unitary
operators in a Hilbert space form a strongly convergent net. 0O

3. Separate commutativity

In view of 2.7 and 2.8, we may use symmetric strongly continuous factors in the one-parameter group U by passing from
Ukt to ki (6)Ug if t >0 and K (—t)Uy; _, for t <O with suitable functions 1, ..., &y : Ry — T.

2 In general, if vq — v #0 and pqve — v are convergent nets in a locally convex Hausdorff vector space V, then necessarily puq — p for the
scalar coefficients. Proof: there exists a continuous linear functional ¢ on V such that ¢ (v) = 1. Beyond some index oy we have ¢(vy) #0 and py =
d(UaVa)/P(Va) = ¢ (UV)/P(v) =
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Conventions 3.1. In addition to 2.5, henceforth we assume without loss of generality that, for k=1,..., N,

(1) t+— Uk, is strongly continuous,
(2) Uko=1d, Uyt = Uljt (t eR).

Proposition 3.2. The families {Uy;: t e R} (k=1, ..., N) are Abelian.

Proof. Consider any t > 0. We can see by induction on n=1,2, ... that
Upne = k" Uke" (1 <k<N), 1‘[ K = (3.3)

for some family {K,f"): 1<k<N, n=1,2,...} CT of constants. Indeed, for n =1 the choice K,f]) =1 suits trivially.
Assume (3.3). for some n > 1. We have then

U( 4+ Dt) = [U} g1y © - @ Uy ugnye]
uOUm) = [Uf, ® - ® Uz*v,t]*[(Kl‘”)(UT )@@ (e (Ux )]
=[(" (Vi) © @ (e (U, t>"“>] -
Since factorizations of composition operators are unique up to constants, it follows

U =0, kULt (1<K<N), l_[ o =

for some o™, ..., 0" € T. Thus (3.3) holds with n+ 1 in place of n for k""" := 5" k", which completes the induction
step. As a consequence of (3.3), the families

U :={Upn: n=0,%1,£2,.. )

U*

are Abelian because Uy, = U, knt

k. m (t>0,1<k<N) and the powers of Uy ; commute. Since

U1 CUg1/20 CTUR1/31C -

each family {Uyq4: q€Q} = Ureo Uy, 1/m where Q := {rational numbers} is Abelian. Given any couple s,t € R, choose se-
quences (pn), (qn) in Q converging to s and t, respectively. Then the commutator [Uys, Uy ] (:= Uy sUk — Uk,tUks) is the
strong limit of the commutators [Uy p,, Uk q,] =0 because the product of two bounded strongly convergent sequences of
normed space operators converges strongly to the product of their limits. O

Theorem 3.4. Given a strongly continuous one-parameter group U : R — 2l of the form 2.5, there are functions k1, ...,ky : R — T
and there are (not necessarily strongly continuous) one-parameter groups t — U ,tc € UMHD) such that

Uke=kk®OUp,  kx@) =1 (teR, 1<k<N).

Proof. By Proposition 3.2, the families U4 := {Uy,: t € R} are necessarily Abelian. Thus, given any index k, the complex
norm-span Ay of U is a commutative unital C*-subalgebra in £(H®). In particular, for some compact topological space £2,
Ay is isometrically isomorphic to the algebra C(£2k) of all continuous functions §2, — C equipped with the spectral norm,
and there is a surjective linear isometry Ty : C(§2) <> Ay along with a family of continuous functions uy: 2y — T (t € R)
such that

Tkukyt = Uk,t (t eR).
Similarly as in the proof of (3.3), the relations U(s)U(t) = U(s +t) (s,t € R) imply that
Uk sUkt =M (S, ) Uk s4¢ (S, t €R)

with suitable functions A1, ..., Ay : RZ — T satisfying ]_[,1;’:1 Ak(s,t) = 1. Fix any index k € {1, ..., N} along with an element
wo € 2, and define

K (t) =upr(wo),  Up=kx®OUpe (tE€R).

By Convention 3.1(2), Uk, o = Idgw whence ug o =1 and ki (0) = 1. Since A (s, DUk sy = Tk‘l [Ak(s, OO U 541 = Tk‘l [Uk sUk,tl =
Uk sUk ¢, we have

Ak(s,t) = ug s(wo) g ¢ (Wo) Uk, 51 (Wo).



424 LL. Stachd / J. Math. Anal. Appl. 363 (2010) 419-430

It follows
UpUj, = g s(@0) g ¢ (@0) Uk sUk ¢ = e s (@0) g ¢ (@0) Ak (S, U 54t
= U st (W) Uk 54t = U/s<+t (s,teR). O

Remark 3.5. In contrast with previous constructions, the product of the functions «1,...,xy in Theorem 3.4 may differ
from 1 in general.

4. Local Gelfand-Neumark representations

Conventions 4.1. Throughout this section let k € {1, ..., N} be an arbitrarily fixed index and write H:= H® for short. We
shall consider a one-parameter group t +— U’ € U/(H) of operators along with a function « : R — T such that

(1) t— U :=L(t)Ut is strongly continuous,
(2) k(—t)=k () (teR), k(0)=1.

For motivation recall the decomposition fck(t)Uf< = Uy, of the strongly continuous factor t +— Uy of U(-) in Theorem 3.4.
As further standard notations, define

A= {the C*-subalgebra of £(H) generated by {U": t e R}},
T:C($2) < A the Gelfand representation of A,
ut:=T 0" (teR).

Representation 4.2. Modifying slightly a familiar construction [5], for any unit vector x € H, let
Hy :=Span{Ax: A € A}

be the closed (necessarily separable) subspace of H spanned by the range of the continuous function t — « (t)U'x. Since A
is spanned by its self-adjoint elements and since the orthocomplement of any eigensubspace of a self-adjoint operator is
also an eigensubspace, we have a complete orthogonal decomposition

H=(PHy, (4.3)
jel
with any maximal family {Hx;: j € J} such that Hx; L Hx, (j # ¢ € J) guaranteed by the Zorn Lemma. For later use we fix
a decomposition (4.3). Given any index j € ], the mapping

oj(@) :=(Telx; | x;) (¢ eC(£))

is a positive linear functional with ¢;(1;) = 1. By the Riesz-Kakutani Representation Theorem, there is a unique probability
Radon measure jj on §2 such that

/w(w)uj(dw)=¢j(<ﬂ) (¢ eC(2)).
wes2

Since

(U Tolx; | [Ty 1x;) = ([Ty 1" U [Telx; | x;) = / Y (@) (@)p() kj(dw),
wes

the representation T extends to an isometric isomorphism
Tj: L*(2, ) < Hy;
with the property
(U'T;f | T;g)= / ul() f(w)g) njdw) (teR, f,gel?($2, 1))
wes2

Notice that the restricted operator U! | Hy; € U(Hy;) is unitarily equivalent to the multiplication operator
MY fi=u'f (f el?(2, 1),

Namely we have Mij) =TJ71U§.Tj.
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Remark 4.4. According to the usual convention, the space L2(£2, i j) consists of equivalence classes of functions modulo
zero sets with respect to ;. Actually such zero sets may be rather “large” in the sense that w;(supp(i¢)) =0 (j#¢) in
general.

Example. Let H=(2(= {[£,]° : 3, [&n|* < 00}) and U'[£,1%%, := [eM£,]2° . We can take | =2 ={1,2,...}, Xj = [8;n]°,.
In this case, each measure w; is supported by the single point {j}, and ;(£2\ {j}) =0.

Remark 4.5. Recall the following simple fact concerning the strong convergence of bounded sequences (or even nets) of
operators: Given an orthogonal decomposition H = @je] H;, asequence A1, Ay, ... € L(H) with sup,, || An|| < oo converges strongly
to 0 if and only if it converges to O strongly componentwise that is if limy, [|ApX|| =0 (j € J, x e Hj)).

In terms of the Representation 4.2, we can interpret Remark 4.5 as follows.

Lemma 4.6. Given a mapping t — w; from R into C(§2) such that max |w;| < 1 (¢t € R) the statements below are equivalent:

(i) the operator-valued function t — W, :=Tw, is strongly continuous;
(ii) all the restrictions t — W¢[Hy; (j € J) are strongly continuous;

(iii) all the multiplication operator-valued functions t Mf,i)(t) (j € J) with Mf/i)(t) =[f > w(t)fl e LL*($2, 1j)) are strongly
continuous.

Remark 4.7. The main step in our proof of Theorem 1.1 will be to show that, given any index j € J, we have
K(OU" [Hy; = x0T} (teR)

with a suitable continuous function x;:R — T and a strongly continuous one-parameter subgroup t lNJj. of U(Hx;).

5. Probabilistic arguments

We are going to carry out the program of Remark 4.7.

Conventions 5.1. Throughout this section let £2 denote a compact topological space and let w be a probability Radon mea-
sure on it (i.e. «(£2) =1). Given any bounded p-measurable function a: £2 — C, we shall write My for the multiplication
operator My : f — af on L?(£2, ). Furthermore let [uf: t € R] be a one-parameter family of continuous functions £ — T
in the sense that uf*"(w) = uf(w)u"(w) for all t,h € R and w € £2. Finally we assume that x : R — T is a function such that

k() =1, k(=t)=k({) (teR)

and the mapping t — « (t)Mg is strongly continuous that is

im [[[1 (¢ + WMyeen — K (OMye]f 1> = lim / [t + W+ (@) f (@) — K Ou(@)] f (@) dw) =0 (5.2)

wes2

for any t € R and f € L2(£2, ).

In terms of the Representation 4.2, given any index j € J and, by taking u := v, for the existence of a decomposition
required in Remark 4.5 we have to prove that «(t)u' = y ()ui* (t € R) with some continuous function x : 2 — T and
a suitable one-parameter group [u‘: t € R] of continuous functions £2 — T such that the operator-valued function t — Mgt
be strongly continuous.

Lemma 5.3. Given a sequence ay, ay, ... : 2 — C of w-measurable functions such that sup, sup |a,| < oo, the multiplication opera-
tors Mg,,Mg,, ... € L(L%($2, j0)) converge strongly to 0 if and only if the functions a, converge stochastically to 0 with respect to the
measure (4; that is, if

lirrlnu{a) €R2: |ap(w)| >} =0 (¢>0). (5.4)

Proof. If a, /4 0 stochastically then liminf, u{w: |an(@)| > €} > 0. Since Mg, 12 1? = [ lan|? n(d.) > e2pf{w: |an(w)| > €},
in this case we have liminf, Mg, 1% > 0 that is Mg, 1o /4 0 in L2(£2, w).

Assume (5.4) and let M := sup, sup|a,|. Let € > 0 and a function f e L?(£2, ) be given. By the Markov inequality,
wlw: |f()] >y} < [I1fI?u(d)/y (y > 0). Thus we can choose a value y > 1 such that Jopes IMf (w)|? w(dw) < /3
with the set S :={w: |f(w)| > y}. As a consequence of (5.4), there exists an index N such that, with the sets §2, :=
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{w: lap(w)y|® > &/3} we have yZu($2;) < &/3 whenever n > N. Then, for any n > N, fs lan fI2 u(d.) < &/3 and also
Ja, lan f1%2 pu(d.) < &/3. For the remaining points w € £2 \ (£, U S) we have |a;(w)|*> < &/(3y?) and |f(w)|®> < y?. There-
fore |[Mq, flI? = [ lan f1? u(d.) < & for the indices n > N. Thus (5.4) entails Mg, fIl — 0 (f € L2(22, ). O

Proposition 5.5. We have

m [t - i pdon pide) =0

w1,w€

Proof. By assumption u® = 1y, is the unit element in [u’: t € R]. Also «(0) = 1. Thus, according to Lemma 5.3,

lim e{e: [k (u(@) —1| > e} =0 (¢>0). (5.4')
Notice that

|u"(@1) — u"(@2)| = |k () (u" (@1) — u"(@2)) | < [ " (@1) = 1] + [ (" (@) - 1.
Hence, with the product measure & ® u, from (5.4") it follows

lim 11 ® (@1, @) € 2% |uM(@1) —uM ()| > e} =0 (> 0). (5.4")

Since always |u/(w1) — u"(wy)| < diameter(T) = 2, given any & > 0, with the abbreviation She == {(w1,w) € 022
[u"(w1) — u"(w)| > €} we have the estimate

2
/ [u"(@1) — u"(@2)|” (dwr) pudan) < 2[1— 1 & 1(She)] + 221 ® 11 (Sh.e)-
w1,
Then (5.4") implies limsupy_o [, 40 [uh(w1) — u"(w2)|? p(dwr) w(dwy) < €2 for any € > 0. O

Remark 5.6. By the aid of Euler’s identity 2isinkx = (e®*)¥ — (e~™*)¥ and the closed formula for sums of geometric sequences,
we get

2":_2 _2n+1  1sin@n+1)x
sin“ kx = - = .

P 4 4 sinx

In the standard reference [4 p. 36] we find ZZ:] sin® kx = % — W The form above is obtained hence by the aid

of the identity cos ‘”’3 sin & ﬂ = (sina —sinB) with o :=(2n+1)x and B :=x.

Notation 5.7. Henceforth we write

T . 5
=— E in“ kx.
én(x) n sin“ kx

Lemma 5.8. For any indexn=1, 2, ..., we have
4 n+1)@2n+1) , _ 4n?
/—7)( 2—sm X or0<x<—
#n(X) 6 372 I 2n’
1 T T
xX) > - for — <x< —.
&n(x) 1 f m 2

Proof. Recall that y >siny >2y/m for 0 < y < m /2. Hence

T T, 1¢./2 \ 4 @+D@2n+1) 4n?
= 2n n l; n ;(yr ) 2 6 372

On the other hand,

T T . 8n 8n
<x<— = dnsinx>—x>——=4
2n 2 T 7T 2n
n+1 sm(2n+1)x 2n+1 1 _ 1
= - sinkx - > —— = ad
Z 4nsinx 4n 4~ 4
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Definition 5.9. On T we introduce the arc length distance

L k1 —k
d(k1, k2) ;= 2arcsin |]272| (k1,k2 €T).

Furthermore we define

A(8) := sup / |ut (@1) — u(@)]* w(dan) p(dan),
ltlga{m,a)zeﬂ

22 = (01, w2) € 2% d(u (@), u (@) <T}.
Remark 5.10.

(1) From Proposition 5.5 we know already that

AB)NO (5N 0).

(2) It is a simple fact from elementary geometry that
/4
d(k1, k) < o= d(kc¥, kX) =kd(c1,62) (k=1,...,n).

(3) Since ut*S =u'u’ (s,t € R), for any pair of positive integers m, n and for any t € R we have u™ =[u™]™ and hence

2) 2)
‘Qt/(mn),n/(mn) - ‘Qt/n,n/n'

(4) In terms of the principal branch of the complex logarithm
log, (re") :=logr+ip (r>0, - <@ <),
in case of ¥ € T with d(k,1) <m /n we have log*(K", 1) =klog,(k,1) = £kd(k,1) for k=1,...,n. Hence

k
(@1.02) € 200y = log,[u/ @) /u M ()] = log,[u' @) /ut@p)] k=—n.....n),

uk/ (1) fuk M () = exp(% log, [”t(CU])/Ut(wz)]) (keZ).

Proposition 5.11. For any t € R we have

o0
pou( (1 28mm) >1- 000

n=1

Proof. Let t € R be arbitrarily fixed and write &€ := A(]t]). According to Remark 5.10(3),
(2) ) (2)
2w D202 22303 D
that is the sets .Qt(/zg, /! form a shrinking sequence. Thus it suffices to establish that u ®“(~Qr(/2n) n/n) >1—-e(m=1,2,..).
Fix also n > 0 arbitrarily. Then

/ Uk (1) — uF (@) P pdeon) piden) <& k=1.....n).
w1,w€82

It follows
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By Lemma 5.8 we have ¢n(3d(u/™ (1), u'/"(w2))) > 1/4 for all (@1, wy) € 22\ 27) . Therefore

]

1
> / én (d(iuf/"(wl),uf/"@z))) p(dwr) p(dwy)

2
(@1,0)€22\ 20 o

1 1
= Z'u’ ® 'u(‘Qz \ ‘Qt(/zg,n/n) = Z[l —U® M(‘Qt(/zrzn/n)]

whence the statement is immediate. O

Corollary 5.12. There is a (1 ® jt-measurable function o : 22 — R such that we have
ul(wr)/ul(w) = exp(iqee (w1, @2))  (q € Q := {rational numbers})

for 1 ® p-almost every (w1, ;) € 22,

Proof. Let t; :=1/m and consider the pairwise disjoint ; ® p-measurable sets

o0
Smi= [ 2t M=1,2,..),
n=1
4
Dg::Sg\USm (t=1,2,..).

m=1

Since A(t) \ O for t \ 0, we have u ® M(U?:l Do) > ®u(Sm) >1— A(tm) /1 (m— 00). Thus the set £22\ UR=1 Dn
has u ® w-measure zero. Let (w1, ;) € Dy and q € Q be any rational number. For some pair of integers k and n withn >0
we can write g = k/(¢n!) = (k/n!)t,. Thus, according to Remark 5.10(4),

)
te/n!, o /n!

ul(wr)  u®/mte(wy)
ui(wy)  u®k/mee (gy)

Therefore the real-valued function

(w1, ) €Dy = (w1,w2) €L

!
= exp(n—‘! log, [ut* (wy)/ut* (m)]) = exp(% log, [u* () /ut* (wz>]).

1
a(wr, @) = 7o log, [u(w1)/u' (@2)] ((@1,w2) €Dy; £=1,2,...)
is well-defined u ® p-almost everywhere and suits the requirements of 5.12. O
Theorem 5.13. In the setting of 5.1, there is a continuous function x : R — T along with a jt-measurable function & : 2 — R such
that
K (Ou' (@) = x (t) exp(itd(w))
forallt € R and p-almost every w € £2.

Proof. With the function « : 22 — R constructed above,

1 ® p{(wr, @2): ul(wr)/u’(wz) = exp(iga(wi, @2)) (e Q)} =1.

Thus, since w is a probability measure, there is a point wg € 2 (moreover wg can be chosen p-almost everywhere in £2)
such that

p{w e 2: ul(w) = ul(wo) exp(iga(w, wp)) (€ Q) } =1.

Fix wg with this property. Recall that there is a function « : R — T such that the mapping t — « (t)u is continuous from R
into C(£2) equipped with the topology of stochastic convergence. Then there is a (unique) function o : Q — T such that

X0(q) exp(iqa(a), a)o)) =k(qQui(w) forall g€ Q and p-almost every w.
Define
ad(w):=a(w,wy) (weN).

Observe that the mapping t — exp(itd(w)) is continuous from R into the space S(§2, i) of all u-measurable functions
2 — C equipped with the topology of stochastic convergence (because t;, — t implies the convergence
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exp(ityd(w)) — exp(itd(w)) pu-almost everywhere in w € £2). It is well known that the product of bounded stochasti-
cally continuous maps is stochastically continuous. Hence t > u'exp(—iqd) as a mapping R — S(£2, i) is stochastically
continuous. However, the functions « (t)u’ exp(—iq@) (t € R) are constant p-almost everywhere. Therefore the function

qr— xo(qQ) = [,u—almost everywhere value of « (q)u? exp(—iq&)]
ranging in T must admit a continuous extension x from Q to R. O

Corollary 5.14. There is a point wo € $2 such that for all ¢ € Q and for j-almost every w € 2 we have u?(w) = ul(wp) x
exp(iqo(w, wp)) and the function q — « (q)ul(wp) admits a continuous extension from Q to R.

6. Proof of Theorem 1.1

Remark 6.1. According to Theorem 5.13 and in view of Remark 4.7, we can represent each operator-valued function t
Ukt =K (t)U}, in Theorem 3.4 in the form

k (3
(=P x @ exp(itAl?) (te®) (62)
jei
with suitable families [X; ),
ators

j € Ji] of continuous functions R — T, respectively not necessarily bounded self-adjoint oper-

A;k) :D;.k) — Hgk), D;k) dense linear submanifold C Hgk)

for some orthogonal decompositions
k) (k) _
HY =PHY *k=1,....N).
j€lk
Thus, with the operators
k k ~ (.
M =P X( () Ide, UL =P exp(ltAY))
jelk j€lk

we can represent our object the semigroup U(-) in Theorem 1.1 in the form

c=M"e oM.

*

U(t) =B'C' where B! := [55]* ®-® [va]

According to Lemma 4.6, the Hilbert space operator-valued functions t Mt(k) respectively t — [7,2 are strongly continuous.
Recalling the elementary fact [5] that the product of bounded strongly convergent nets of linear operators is strongly
convergent, we see that both the operator-valued functions t — B, t — C' are also strongly continuous. Since the restrictions

of the operators Mﬁk) are multiples of the identity on the subspaces H;k) (j € Ji), the family {U(t), B!, C': t e R} is Abelian.
Consequently

cth=ue+nB " =u®)UmB B " =U)B 'UM)B " ="
for all t,h e R.

Lemma 6.3. Assume (as in the setting described in 6.1) that we have the orthogonal decompositions H® = @j@]!{ H(,k), and the
operators

[@Xj(l)(f)ldﬂm} ®- ®[EBXJ< )(t)ldH(N)i| (teR)
jeh jeln

form a strongly continuous one-parameter group R — AMHD, ..., H™) with some (not necessarily continuous) functions x ;k) :

R—T (e Jx; k=1,...,N). Then, with suitable real constants a<~k) (je Jx; k=1,...,N), we can write

*
[@ exp 1a( ) 1dH<1>] R ® [@ exp ldH(N)] (t eR).

jeh jeln

Proof. Given any index 1 <k <N, for any j € Ji choose a unit vector h;k) € Hy‘). Notice that

(T @ e [h]) ]_[xj")(t) ] @ e [hV]" (6.4)
k=1
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for all t €R, and j; € J1,...,jn € Jn. Since t — C! is a strongly continuous one-parameter group R — AMHD ... HM),
each coefficient function

N
k
Vi@ =[x ©
k=1

in (6.4) must be a continuous homomorphism (R, +) — (T, -). Therefore
Vir,..in (@ =exp(icj,, .jyt) (te€R; j1€J1,...,jN € JN)
with suitable constants cj, ... jy € R. Fix any tuple (j7,..., j§) € J1 x --- x Jy of indices. We can write
Vit i bty ey O
Vi, 5 (O

_,® e . ) . .
=Xj: ® eXp(l[CJT,..-,J,’;_l,Jk,Jiﬂ,---,J’,‘V — g3 lt)-

X5 0 = x5 ©

Thus the statement of the lemma is fulfilled with the choice

W ._ s :
Qj = Cltt g didiyg iy = Citedy K< N3 jr€J1,oos in-1 € IN-1),

N e ) i
a5 = vt qdkdpag iy UNEIN). O

6.5. Finish of the proof of Theorem 1.1.
In the setting established in 6.1, it suffices to see that in (6.2) we can also write

Upe = @ exp(itﬁ&k))
jelk

with suitable possibly unbounded self-adjoint operators ’Aj.k) :D;k) — H;k) (€ Jk; k=1,...,N). This is possible in view of
Lemma 6.3 with the choices

O] (k)
Aj ._Aj +a; 1dH5_1<).
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