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ABSTRACT

In $pite-of much work on path-following methods, a sohd mathemancal
foundation (especially convergence conditions:and their practical measures) are

lacking in most cases. In our previous articles the g
searchmg procedure, the dynamically defined r
rigorous mathematical formulation, the algori
program, and some applications to abstract ma

eral theory of a new global
n path (DDRP) method, its
a practical computation

atical functions and simple

chemical examples have been presented. In this article we give a short theoretical
description and some practical criteria and measures for the convergence of the
method and illustrate the principles and uses by numerical mathematical and .

chémical examples.

Introduction

F or the theoretical investigation of a chemical
reaction, it is important to know the potential

energy surface (PES) of the given system. Because -

the determination of even a partial PES requires
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much computer time, one is usually satisfied with
the knowledge of the reaction path (RP) and its
stationary points. When determining RPs (or in-
trinsic reaction coordinates, IRCs),! the most popu-
lar and generally accepted local (or direct) meth-
ods® ¢ either follow the steepest descent path in
both directions starting from a formerly deter-
mined saddle point (SP) toward the minima repre-
sented by the reactants and products, or use the
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steepest ascent way from the minima toward the
SP. In these methods the runtimes are acceptably
short and the only problems are the smtable ‘k:home

(DDRP) method 1
12 contams ?

criferia and measures for the converg Hice of the
DDRP method are given and the principl

uses are illustrated by mathematical and chemical
examples.

- Discussion

Because the exact RP of a chemical reagtion is
: ‘can-only be estimated or guessed by
expenmental results and /or chemical.intuition; the
question immediately arises of when the, iteration
should be terminated (i.e., when the set of succes-
sive approximate polygons converges, in a satis-
factory way, to the RP). It cannot be told unam-
bigously whether, in any iteration method, the
convergence can surely be accepted under a previ-
ously defined lifnit value. The convergence can be
very slow in some phases of the computation,
whatever procedure has been applied for the accel-
eration of convergence. As we have shown in our
previous articles,® ™ the runtimes in the DDRP
method depend on the choice of the parameters
used: The computation time can be reduced by the
strategy of choosing the values of parameters, by
selecting a suitable starting polygon, or by taking
up points at the start as sparsely as possible. In
unfavorable cases, by a suitable transformation of
the potential function the computation time can
also be reduced drastically.'”-* It is obvious that
an algorithm is needed by the help of which it can
be decided if and when an iteration is to be
stopped. In our former calculations this problem
did not occur so sharply because both with the

abstract mathematical test functions'-'*'7:1 and

in the chemlcal sys’cems16 ~18 twowanable (two—

fon rate in the
B S approxlmate
polygons ‘The ﬁrst ques’aon to answer in relation
to this is how this current distance i is to be defined.
We can choose, for instance; one of the folowing
definitions:

e distance between the closest points

olygons C; and C,1.

becaduse if; for ex &, one of the

s coincides with either minima:then this
pomt‘wﬂl remain invariant in the course of
the procedure——that is, the distance chosen
in this way will be zero. In this case, if the
curve fails to converge to the RP,- this-fact
will not be reflected in the change of this
distance. Regarding that the lengths of poly-
gons C; and C;,, may differ from one an-
other and the numbers of points taken up on
them are not necessarily equal, it may be
more practical to define the distance, as in
the following definition.

2. Determine the maximal bias d(C;, C;) of the
corresponding points with respect to the arc-
length proportional parametrization of the
polygons C;, C; to be compared. This dis-
tance concept can well distinguish between
the different (consecutive) curves. It follows
from the results of ref. 12 that, for analytical

"This is not a necessary condition, although it is suitable in
the DDRP method.
*Phase or evolution curves.
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coercive energy functions,
d,(C,,C*) >0 (i— ) 1)

where C* is some RP between two stationary
points whenever the initial curve is piece-
wise analyti¢ and crosses only finitely many
times the boundaries of catchment regions.
Since d, satlsﬁes the trlangle inequality, we

may examine the convergence of the iterates

C by stud gg the ehstances d (C,, C; ) There

hne inte: ola’ﬂon can be sausfactory How—
ever; in these cases we can only estimate
the real d, distance within some nonvanish-
ing ertor. A numerical procedure with: linear
in_:rpolanon for determining dJ(P, Q) is
desaribed as follows. We are given the
representations

(P1, Psseos Pust) for P

(2)
(91, G271 Goet) for Q

respectively. First we compute the lengths
P y p &

i .
S* == 261, 6i = ”pi—‘p("‘l“‘l”

i=1

. 3)
P o= Z &, g = Hqi - ‘Ij+1"

j=1

of the linearly approximating polygons P,
(). For any A € [0, 1], the respective points of
P’ and Q' corresponding to the arc-length
proportional parameter A are

) N(A)—1
P'(X) = pyuy + Suiny|stA— 1 51.]
i=0
x( Pnoy+1 — PN(,\)),
N(A) = min{k: s*A< Y, 6,.}, 8, =0,

i<k

M(A) -1 .
QX = gy + 8;4})\)'}*’\ - X 6‘,'] 4

j=0

XCPnoy+1 = Py

DDRP METHOD

M(}) = min{l: tEA < Y g,.}, gy =0
jsl

It can be shown by the convexity of the norm
that the value max,[[P (1) — @'(Dl is taken
ertex of one of the polygons P’ or
Thus the linear approximate value of

d(P Q)is

d(P,Q) =d (P, Q) = aﬁ;eafllP’(/\) - QI

A {'zs,./sm <k<n) )

i<k

U{Zsi/t*:lslszn}

j<l

Alternatively, oneé can take any L” distance
of the curves. Here

R il/p
4P, Q) = [ [P - o dA]

i/p
z{j; P'(A) — Q’(/\)H"d/\] (6)

For practical purpéses; linear approximations
of the I! or I? distances ¢ome nto considera-
tion: They are weaker (more libeial) than the
d, distance, which is the lineat approxima-
tion of the I” distance. The calculation of the
distances defined in such a manner, by a
computational program, is a simple routine’
task.

. A less routine task is to take the Hausdorff

distance dy; of the curves. Recall® that

dy(A, B)
= max{ sup mf lla — bll, sup inf lla - b!l}

acA bEB beB 9€A

(7)

This concept gives a faithful description of
the family of compact subsets (in particular,
rectifiable curves) of the phase space. Re-
cently we have shown® that, for any contin-
uous initial curve C; joining two stationary
points of a coercive energy function by con-
tinuous gradient, there exists a RP C¥ such
that

dy(C;,CH) -0 (i — o) (8)
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Theorehcally, it may happen that the curves
C; tange more and more in some close neigh-
o] d of CH; thus dy(C,Cy) » 0 if C
ts -the' boundaries of catchment re-
many times. Followmg closely
flmhon, we have alteady. pub-
ating ‘linearly ap-
] ausdorff ‘distances™; however,
‘works very slowly. Because the
am produces the sequences of

cal to efnploy, after
s between the last

asis of the. chstance value last deter—
, we ¢an decide to continue or stop the

Examples

The theory discussed earlier is illustrated on
three test:.»functlons (Ie Muller Brown,” MB; Lio-

cular systems ("l" IH and HHF) Note

for two of the three mathematical functions
(MB'» and L) open polygons (digon and ftrigen,
rtices at —2.00, 2:00; 2,00, —2.00 and 0.80, 7.60;
10.00,. 70@ 10.00, 0.00, respectively), were used.

For the third one (SB), a closed polygon (hexagon,

vertices at —0.50, 0.50; —0.50, —0.50; 0.00, —1.00;
0:50, —0 50 0.50, 0.50; 0.00, 1.00) was used as Oth

FOXIIT .two chemical species, the
m the same closed te-
Figs. 1 and 2; vertices at
0.50; 1.00, 1:00). I addi-
on and the last approxi-
 final polygon régarded
converged; see dotted
everal intermediate evo-
<been calculated for the
eless, for technical. rea-

d in Figures 1 and 2
¥ the presentahens of

1 and. 2 mark' pseudo d true 5Ps, respectiv’el’y
Orie can see that the SPs on the approximating
(phase) curves (solid and dashed curves) move
toward one another as the iterations proceed and
close inside the trué on the converged curves
(dotted-curves). The ns in different numeri-
cal values charaet ‘consecutive phases of
evolutions are 1 : able I-V. In Columns 1
and 2, the serial numbers of the: polygons to be
compared are tabulated. The serial:number of the
starting polygon (Oth approxunatmn) has been
chosen zero; therefore, the serial number of the

2.0
g 15|
= I
(2]
T i
a2y B
£ 10}
©
0.5 |-
0.0 b :
[0.0 0.5

d(H1-H2)/A

FIGURE 1. Starting polygon (solid lines) and phase curves for the HHH reaction. Intermediate phase curves and the
final / converged reaction path are represented by dashed and dotted curves, respectively. Empty/ full circle(s) on the

curves denote pseudo /true saddle point(s), respectively.
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DDRP METHOD

2;0 [~
1.5
o d
% 1.0 T PRI S -: 3 '~'—.‘;1.‘s4-4.‘_'__'..'.' e
0.5 - 5
0.0 L - -
0:0 0.5 1.0 1.5 20

d(H= H)/A

ings) and phase curves for the HHF reagction. lnterm diate phase curves (dashed
action path (dotted curve) are displayed. Empty/ full circle(s) on the curves denote
pseudo/true saddle pomt(s) respectlvely

polygon obtained in the ith step can be denoted same two polygons are expressed in percentages
sunply by i. In Column 3 the dlstances of two (here the difference between the Oth and first ap-
proximations is regarded as 100%). In Column 5
the changes in the:number of points reflect turning

Serial Number of the Distances between the . Differences between the

ith (i + 1)th ’ 7th and (i +1)}th Polygons
Polygons in % " in Number of Points in Total Length
0 1 100.00 102 —.606140
1 2 38.98 6 —.049481
2 3 17.70 6 .023323
3 4 9.59 7 .032278
4 5 . 577 0 .032669
5 6 .0.1 1829 3.69 0 .029018
6 7 .009078 2.83 4 026364
7 8 .067538 2.35 0 .024617
8 9 .006659 2.07 0 .023481
9 10 .0061 48 1.92 4 022777
10 11 .06581‘9 1.81 2 .022286
11 12 005622 1.75 2 .021901
12 13 .006474 1.71 4 .021589
13 14 .005350 1.67 0 021278
14 15 005275 1.64 0 021012
15 16 .005201 1.62 -1 .020763
16 17 005125 1.60 -2 020489
17 18 005072 1.58 4 .020256
18 19 005012 1.56 1 .020040
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course of the same

LDe-seen from the tables

that ¢ nees betiveen conseciitive
ap roxlmatmg P will stop or slow down
Ons "1ICe. proceeds, Thus, - de-
Meter values, a tym.
d-beyond whijch, there is ng




BDRP METHOD

TABLE 1l
( v ctenstlc Data for the Mmler-Brown Funchon

Senal Number of the Dlstances between: the Differences betweenthe - .
A'i‘t:hv N (I + 1th » hand (i + 1)th Polygons
Polygons inA. in Number-of Points
a 1 1.891465 55
1 2 A72134 4
2 3 -5
3 4 6
4 5 -1
5 6 -2
6 7 —1
7 8 6
8 9 -5
9 10 3
10 11 -3
11 12 0
12 13 .048837 3
13 14 3 -2
14 15 -1
15 16 -1
16 17 0 -
17 18 ‘020909 0
18 19 .029806 -2
19 20- 26580 0
20 21 -1
21 22 02448 -2
22 - 23 .020394 0
23 24 021127 2
24 25 .051325 -3
25 26 .026328 0
26 27 .059457 1
27 28 041492 -4
28 29 .053227 0
29 30 111473 ~1
30 31 .366784 -2
31 32 204493 -3
32 33 170671 -5 . v
33 34 .088157 -1 - 04821 6
34 35 .052104 1 - .02_81 65
35 36 .073726 -1 ~.075572
36 37 .016306 -2 .016898
37 38 .009693 -1 009379
38 39 007349 3 .003055
39 40 .004050 ~1 .002542
40 41 .002634 2 .002124
41 42 .003131 -2 .000991

garded as the one converged. The HHF system in
the eighth iteration step (Table II), the MB function
(Table II) in the forty-second step, the L function
(Table IV) in the thirty-first step, and the SB func-
tion (Table V) in the twentieth step have been

converged. For technical reasons, we have to disre-
gard printing out complete tables for the test func-
tions. The interpretations of Tables I-V can be
carried out as for the HHH system. By using
MNDO-level energy calculations, the SPs for the
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TABLE V.

Characteristic Data for the Liotard Function.

Sérial-Numbervof the Distances between the

Differences between the

ith (i + 1)th " ithaand (i + 1)th Polygons .
Polygons inA in:% in Number of Points
0 1 168
1 2 47
2 3 -7
3 4 -13
4 5 -1
5 6 3
6 7 -5
7 8 -8
8 9 . 9 3
9 10 063412 3
10 11 .054008 -4
11 12 .046578 1
12 13 .040130 ~7
13 14 034762 7
14 15 049208 -4
15 16 .0382072 3
16 17 .023680 -7
17 18 021277 -6
18 19 017603 12
19 20 .041338 0
20 21 015597 -5
21 22 013907 —~4
22 23 039167 -2
23 24 012082 11
24 25 010991 0 .0
25 26 010386 -6 018165
26 27 007447 -8 .009306
27 28 .007329 6 .012604
28 29 .008804 0 007533
29 30 ©.005314 9 .008038
30 -8 001910

31 .005764

HHH and HHF reactions were found to be at
0.82/0.82 A and 0.731/1.365 A, respectively (cf.
Figs. 1 and 2). We are also planning future path
followings by the DDRP method coupled with ab
initio energy calculations, and comparisons of re-
sults with those of local and (other than ours)
global methods.

Supplementary Material

Supplementary illustration material (evolution
curves, complete tables, etc.) for the examples used

in the text can be obtained on request from the
authors. The FORTRAN code for the algorithm
used is to be distributed by QCPE."”
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TABLE V.
Charactenstlc Data for the Staché Ban Function.
Senal Number of. the Distances between the ‘ Différences between the
Th G+ Dth lth and G+ 1)th' ool "‘ons
Polygons in Numberof Points in TotalLength
0 1 46
1 2 56
2 3 16
3 4 0
4 5 12
.5 . ® 387 —4
6 7 -3:39 4
7 8 3.20 -4
8 9 2:91 8
9 10 2:.09 -4
10 11 . 03 247 4
11 12 015404 2.14 -4
12 13 011841 1.65 0
13 14 .015365 2.14 0
14 15 .015539 2.16 -4
15 16 .011323 1.57 8 08
16 17 .010008 1.39 —4 .0091 72
17 18 011168 1.55 4 020604
18 19 .009226 1.28 0 .012350
19 20 006311 .88 0 ) 021590
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