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By using the dynamically defined reaction path (DDRP) method and starting from various initial polygons,
the intrinsic reaction coordinate (IRC) of the H, + H — H + H, reaction has been calculated. The nurnerical
stability of the method is illustrated by the evolution phases of the reaction path. Techniques and experiences
on the parameter choice and effects of the parameter values on the stability and computer time consumption

are discussed. © 1993 by John Wiley & Sons, Inc.

INTRODUCTION

For searching intrinsic reaction coordinates (IRCs)
and locating critical points (CPs) on potential energy
surfaces (PESs) of chemical reactions, a new curve
variational {so-called dynamically defined reaction
path (DDRP)] method!~ was recently suggested. The
pure theoretical foundation of the procedure? re-
quires an analytic coercive function with Morse-typet
CPs. The first numerical illustrations'? were applied
to polynomial functions satisfying this eriterion.
However, the energy functions of atomic configu-
rations are noncoercive and, to our knowledge, al-
most nothing is known about their analytic proper-
ties and precise behaviors up to the second order
around the CPs. It can, nevertheless, be expected
that the PESs can be approximated uniformly (up
to any order) by analytic functions having finitely
many CPs of Morse types located arbitrarily close
to the real CPs. In this case, the coercivity plays
merely a technical role. Such a function can be mod-
ified by adding to it an auxiliary function having
small values and derivatives on some given domain
containing the CPs and tending rapidly to infinity
outside this domain. By structural stability,* steepest
descent paths (SDPs) and CPs can be approximated
uniformly in this manner. It readily follows that this
adjustment can well be simulated by a numerically
much simpler method, namely, given a region with
‘piecewise smooth boundary (e.g, a multidimen-
sional ball or a rectangular polytope) containing the
CPs, we may project the overflowing pieces of the
trial curves to the boundary in each step. In chemical

practice, where we always know not too large a.

* Author to whom all correspondence should be addressed.
~ tSlegel type, in the terminology of refs 1 and 2.

priort regions outside of which the energy function
-changes irrelevantly little, the problem of coercivity
is settled satisfactorily. On the other hand, it can be
expected that the condition of analyticity in the the-
oretical work? can drastically be weakened. (The
proofs may, of course, become essentially even more
complicated.) Therefore, we can hope that any of
the frequently applied quantum chemical (semiem-
pirical or eb initio) methods coupled with our pro-
cedure can be used without further adjustments if
we require polygon approximations of the IRCs with
not too small edges. Due to the iterations involved,
such methods for approximating the energy function
provide functions that are piecewise analytic. How-
ever, we have no practical information about bound-
aries of such domains of analyticity and we cannot
expect a continuous coincidence of the calculated
values of two neighboring domains. If the discontin-
uities are small with respect to the edges of the IRC-
approximating polygons, satisfactory results can still
be expected. One of the main purposes of this article
is to show on perhaps the simplest practical case of
the collinear H, + H - H + H, reaction that the
DDRP procedure,®® works in a stable way even with
a thetoretica.lly badly behaving semiempirical energy
function. In a next article,” we are going to apply the
same technique®® to obtain IRCs of various collinear
reactions of three atoms (H atoms and halogens) not
yet investigated from this point of view. Searching
for IRCs of reactions with configuration spaces of
higher dimensions requires effective parallelization
From the experiences gained when working on this
subject.? we may conclude that 100-times vectori-
zation can make reactions practically treatable up
to 10 atoms. Of course, it is not yet foreseeable
whether some adjustment of the numerical proce-
dure for caleulating the energy function will or will
not be necessary in such complicated cases.
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DISCUSSION

Almost all known methods™"! work principally in
the same way, searching for the reaction path (RP)
either by walking SDPs in a “gutter” (or “bobsled
track™) from one into another valley through the col
or by finding first the saddle point (SP) and then
descending from it into the valleys/minima. again by
SDPs. Such methods proved to be satisfactory for
conventional computers and searching, procedures
because they are rapid enough and in most cases
assure convergence. Nevertheless, their disadvan-
tages are that they tend to be unstable when follow-
ing curved and bifurcating paths and they are par-
allelizable only in the program segments of
computing single gradient values of the energy func-
tion. Therefore, they cannot be run effectively on the
most modern vector computers. An obvious alter-
native to such up/downhill methods is searching for
RPs “crosswise™* (transversely) in the guiter. A drop
of rain or a ball on the wall of the eaves trough will
always find their way into the draining well or sink
hole and their motion will be controlled by the slopes
of the walls and the bottom of the gutter. In exactly
the same way, the virtual motion of a point selected
on a PES will be guided by the actual vector field
generated by, eg, a2 quantum chemical method.
Mathematical algorithms can therefore be con-
structed to follow the motion of the selected point
directed by the actual vector field on its trajectory
through the PES. The philosophy of our method
therefore is this: Let us first choose a polygont in
the multidimensional configurational space of the
problem to be investigated. Now, set out points uni-
formly distributed on the edges of the polygon
(“stringing of pearls’™) and use a (semiempirical or
ab initio) quantum chemical method to calculate
the energy of the actual chemical system and the
gradients or some approximating values of them at
the chosen points. Move the points with determined
steplengths toward the directions of the negative
gradients. By the effect of the vector field, the orig-
inal uniform distribution of the points (“a string of
pearis™) will be changed: In the directions of the
minima (attractor regions), the points begin crowd-
ing while in the neighberhood of the SP they are
going to become sparser. This will finally result in
the separation at the middle of the approximating
curve into two pieces (the string of pearls splits and
the beads will run down ‘the two far ends of the
strings). Therefore, it is practical to use a homoge-

*Liotard's (“chain-") method'* js such a method; it contains
the seeds of a method similar te ours, However, it tries to generate
the points of the next approximating polygon in a presumably
orthogonal direction of the represented ideal approximating
curve, Because the ideal curve cannot be restored by simple in-
terpolations from a finite family of its points, the resuiting poly-
gons by such a method may essentially be different from the
desired ones even if small steps are used.
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nizing procedure after several calculational steg
assure permanently the uniform distribution of
points.

One of the most important features of our D'
algorithm®® is its high numerical stability, whic
not influenced even by the differential topolo)
complexity (e.g., the existence of several multit
sitional states) of the PES that has been illustr
by a convincing example By using an artif
mathematical function,' this example has shown
when starting even from an almost hopeless pos
of an initial curve that crossed itself several t
we can safely reach the final IRC passing thr
all the stationary points (four minima and three
dle points) of the PES. Because the fundamental
of our method is to find RPs and their extr
points on PESs, in the present article we would
to illustrate further the procedure and show it
ture on a simple and well-known chemical rea
before using it routinely to calculate various lest
more complicated chemical systems.™ For the
of simplicity and rapidity, we chose the H,
reaction and the MNDO quantum chemical apj
irmation.*

Three parameters controlling the convergen:
the iterations seem to be particularly importan:
rameter 7 controls the lengths of steps take
defining the points Pj, P,, ..., P; of the nex
proximating polygon from the points P; of the fo
one by

P = P, + nVUP)

Here, U stands for the potential energy and V i
gradient operation. Our experiences show tha
big steplengths may jeopardize convergence. T
fore, a parameter o is used to prevent taking to
steps in formula (1). If

VUYL > o
holds for some point P; then instead of one big
several smaller steps of type (1), with #; inste
1, satisfying

HIVUPH < o

will be performed. (As usual, we identify points
their position vectors and write |- for Euel
length.) The resulting new vertices Py, ..., P,
tend to accumulate around the stationary poh
the PES. To get a faithful representation of

‘continuous curve by the constructed successive

gons, 2 homogenization procedure determined
edge length parameter ¢ has to be applied to P
P, In the course -of this-procedure, the dis
lP; — Pi.} of each neighboring pair of verti
consecutively checked. If {P' — P’ || = ¢, the

*The DDRP procedure is, of course, independent of th
acter of the quantum chemical method used for comput
energy function.
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(accidentally multidimensional) edge P}, P;, , will be
divided into n; = {|P} — P{,,l/¢] equal parts, re-
sulting in the points

'!P}(Hn = Piy
J@+ 1 =@ +n (4)

P'j'm = P, j’(i)+ll <.

of a new appreximating polygon. To avoid too large
numbers of points, if |[P; — P;.,}| < & then the ver-
tices Piyy, Piyy, ... will be omitted until we get a
value >¢ for the sum of their consecutive distances.
Hence, we get the new points

P}'(i) = Pfyp}'(nu = Pim;
-1 13¢8]
; 1Pl = Pl =e< 3 1P - Pl
= t=i
(5)

Thus, by (4) and (5) we obtain the polygon P} =
Py P . 9P"j‘(n') = Py satisfying

P! — P\l < sup 8/(8/g] = 2¢ (6)
&ze

which can be used as initial data for a further step.
These steps are continued one after the other until
achieving convergence. The criteria of convergence
are discussed inref, 2 and can be formulated in terms
of the Hausdorff distance®® berween two consecu-
tive approximating polygons.

If we start from a closed polygon, the convergence
of the procedure can easily be verified. In this case,
the area of the polygon tends to become zero, ie.,
the edges of the polygon represented in a plane
shrink to a 1-D line.”

To justify the stability of the algorithm, we started
from different initial curves constructed of various
polygons. The computations were carried out on an
IBM-compatible AT 286 PC equipped by an arith-
metical coprocessor 80287 and were designed to sup-
ply comparable results by using a fixed set of the
parameters ¢, 7, and o. The parameters were kept
fixed at values ¢ = 0.3, n = 0.002, and o = 0.003
during the whole procedure although the algorithm
would have permitted immediare alterations. The

choice of parameters was motivated by results of &

our former calculations on a number of collinear
three-atom systems,? where the above values proved
to be advantageous and safe. In the following, we
illustrate the working of the algorithm on the de-
velopment of the final RPs when starting from dif-
ferent initial curves. Eleven cases will be discussed
and displayed by sets of distinct curves in Figures
1-6 showing the phases of the evolutions of curves.
The sequences of approximating polygons in the fig-

*For muitidimensional cases, the convergence can he estab-

lished by examining the Hausdorfl distances between the suc-
cesive trial polygons.®
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Figure 2. Evolution of an IRC section from a [I-shaped
open polygon.

0.00 <o
0.00 0.5 E

3.00

t

d(H2~H3)A

0.50

0.00 I e T T T T T T T T T
0.00 050 1.00 150 200 2.0 %00

d(H7—H2)/A

Figure 8. Evolution of an IRC section from a closed
hexagon.
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Figure 4. Evolution of an IRC section from an M-shaped
open polygon.
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ures will always be denoted in the following order:
(first) K, (second) A, (third) O, (fourth) [J, (fifth)
v, and (sixth) 97,

Case 1

The initial curve was a section of a straight line (a
digon) determined by the points (0.66, 2.00; 2.00,
0.66). Apart from the initial and final curves, two
intermediate positions have also been shown in Fig-
ure I.

Case 2

The initial curve was an L-shafed-right angle (an
orthogon) determined by the points (0.30, 2.00; 0.30,
0.30; 2.00, 0.30). The next (second) curve shifted up-
ward to the right while the vertex at (0.3, 0.3) dis-
appeared and the curve lost its point. The third curve
moved still further up and smoothened, and finally
the last (fourth) curve showed the approximate [RC.
Of course, if we used more points on the curves the
final IRC would be nicely rounded (see Fig. 7).

Case 3

We started from a Greek capital letter [I-shaped open
polygon given by the points (0.10, 0.30; 0.10, 2.00;
2.00,2.00; 2.00, 0.30). From among all the investigated
cases, this initial polygon was the least similar to the
final IRC. This difference has been reflected in the
highest computation time needed for the develop-
ment of the final curve from the initial one (Table
I). Six phases of the development are shown in Fig-
ure 2. Starting from the injtial polygon, the evolution
curves are going through the following main phases
until reaching the finai IRC. The top right section
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=
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Figure 7. Complete IRC of the H, + H reaction as cal-
culated by the DDRP-modified MNDO method.
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Table I. Consecutive evolution curves indicated by %(first), A (second), O (third), [ (fourth), st (fifth), and t’é(sixth).

Number N of Iterations (s)

Figure * A e} O W &y
1 0 7(387T) 13 (53741) 39 (9899)
2 0 4 (7234) 12 (17.245) 21 (30,576) 26 (38,281) 43 (49.488)
3 0 2 (678T) 6 (16.451) 9 (22,002) 25 (34,207
4 0 2 (7229) 13 (25.837) 19 (30,325)
5 0 1 (31769 4 (8307) 19 (14.708)
6 0 2 (6224) 6 (13.945) 19 (29,319)

first buiges outward, giving a concave curve, then it
straightens and is becoming stepwise a deeper con-
vex curve while the left leg of the [I-letter shifts
parallel with itself, upward and to the right. Then,
the bottom section of the left leg first bends inward,
stepwise finding connection with the bottom section
of the right leg bending also inward, and finally melt-
ing with the top section they give the approximate
IRC curve (Fig. 2).

Case 4

The initial polygon (first curve) had the same shape
as in case 3 except that it had been turned upside
down and was determined by the points (0.66, 2.00;
0.66, 0.66; 2.00, 0.66; 2.00, 2.00). The starting position
was much more advantageous than that in case 3;
therefore, the computation sime was much shorter.
First, the left bottom vertex became more and more
rounded while the vertical line from the right top
bent toward left by going from concave to convex
curve and finally adhering closely to the baseline
formed lastly the approximate IRC.

Case 5

The initial curve was a closed tetragon (square) de-
termined by the same points as in case 4. As the
bottom left vertex moved inward and got rounded,
the top right vertex first humped outward, then going
through the stage of a straight line it became hollow,
merging finally into the left bottom section to give
the approximate IRC.

Case 6

Evolution of the IRC from a closed hexagon (vertices
at 0.35, 2.00; 0.35, 1.00; 1.00, 0.30; 2.00, 0.30; 2.00, 1.50;
1.50, 2.00) can be seen (Fig. 3). This geometric form
can be derived from a square whose diagonal two
vertices at 0.35, 0.30; and 2.00, 2.00 have been cut off
by two parallel straight lines. By this mutilation, the
evolution of the final curve is accelerated compared
to that of the original square. Disregarding this, in
the course of evolution the shapes of the set of
curves are similar to that of case 5 while the com-
putation time was shorter.

Case 7

Starting from an open six-sided polygon (a heptagon
with vertices at 0.55, 2.00; 0.55, 1.00; 1.00, 0.50; 2.00,
0.50; 2.00, 0.77; 1.00, 1.00; 1.00, 2.00), which was a
rather advantageous situation for the searching pro-
cedure, the final curve in three stages developed in
a short time (7923 s).

Case 8

The next initial curve was a block-letter capital T
with vertices at 0.10, 2.00; 1.00, 2.00; 1.00, 0.10; 1.90,
2.00. After three phases of evolution of the IRC, a
quasiconvergence could be reached in 16,192 s.

Case 9

The ninth trial polygon (an open pentagon) was a
block-letter capital M lying prone with vertices at
0.10, 2.00; 2.00, 2.00; 1.05, 1.05; 2.00, 0.10; 0.10, 0.10.
The evolution of the IRC in four stages is shown in
Figure 4, the evolution time being 30,325 s.

Cases 10 and 11

The initial polygons were a standing and an oblique
cross, respectively, determined by the points (0.2,
1.0;12, 1.0;2.2, 1.0; 1.2, 0.2; 1.2, 1.8) and (0.1, 2.0; 2.0,
0.2; 1.05, 1.1; 0.1, 0.2; 2.0, 2.0). The corresponding
evolution curves in four phases are shown in Figures
5 and 6, respectively.

1t is important to emphasize that in the present
caldiilations illustrated by Figures 1-6 our aim was,
naturally, not the determination of the complete RP
but the demonstration of the high stability of the
DDRP algorithm shown when starting from different

. initial curves/polygons. Therefore, we were satisfied

by projecting the actual successive approximating
polygons, obtained by relatively few iterations, to

the RP and did not strive for determining as long 2 .

section of the RP as possible. If we wanted to cal-
culate the whole RP (between rational limits, re-
garding that its ends extend to infinity), we would
have to continue the iterations much further (2 more
complete RP of the H, + H reaction is displayed in
Fig. 7). All our computations, of course, gave the
same [RC, with an SP at 0.820 A The computation
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times in seconds for the evolution phases in the Nth
iteration are summarized in Table L.

In the second part of our investigations, the shape
and location of the initial curve were kept the same
for all cases and the value of ¢ at 0.3 was fixed while
the values of the other two parameters, n (between
0.002 and 0.1) and o (between 0.001 and 3.0), were
varied. Starting from the chosen polygon (a concave
tetragon with vertices at 0.50, 2.00; 0.50, 0.50;.2.00,
0.50; 1.00, 1.00) is advantageous to accelerate con-
vergence and in this case the end of the procedure
can easily be checked by observing the fusion of the
sides of the tetragon into a solid line. For each pair
of values of the varied parameters 1 and o, the new
evolution curve was output in every step. In each
case, altogether 20 curves (including the initial one)
were computed and recorded. The time Ty
needed to reach convergence was generally less than
the total computation time T, necessary to deter-
mine all 20 curves, The data reflecting the variations
of parameters n and ¢ and the related computation
times are displayed in Table II. It is obvious from
these data how important the right choice of param-
eters is. By enhancing the value of 7 at fixed values
of o, the total computation time will be higher and
the differences in the computation times belonging
to the smallest and largest values of n will even be
drastic. Similarly, at fixed values of o one can always
find an optimal n value by which the computation
time needed to reach convergence is the shortest.
Further enhancement of n will increase also the
value of Ty Then, the value of 5 was fixed while
enhancing the value of o from 0.001 to 3.0. The total
computation time first reduced rapidly; then, from
around o = 0.1 the gain in time became negligible.
In this case, the change in T, Was the same as that
of Ty, 1.2, it reduced to the end. Itis not a surprising
although mconvement experience of ours and still
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useful information for users that the simultaneous
enhancement of 1 and o beyond 2 certain limit may
cause numerical problems. This happened in an in
vestigated case when o = 0.3 and n = 0.05. In thi:
range for o = 0.3 and 7 = 0.05. the shapes of curve:
became diffuse. For o = 1.0 or 3.0 and n = 0.05 o
0.1, the procedure became unstable, the points of the
curve did not eonverge to the RP but deviated fron
it irregularly, the number of points grew rapidly, and
finally, after exceeding the allowed dimension (pres
ently 200) the program exited. It is important to em
phasize that this kind of instability is not the usua
property of the algorithm and normally does not oc
cur but was due to the extremely bad paramete
choice. The most advantageous ranges of paramete
values were found to be in {0.01-0.1] for o and i
[0.005-0.05] for n. Even the minimum computatio
times T, fell into these ranges. It seems that th
values of o and 7 should be chosen either equal o
near equal to each other to reach convergence in th
shortest possible times. The best parameter choice
proved to be o = 0.1 and n = 0.05 (see Table I
Worth mentioning is that it is generally not praetic:
to have the shortest computation time because i
this case other problems may occur, e.g., for o =
0.3 and n = 0.05 diffuse lines appeared.

Our results were also compared to those calct
lated by other methods. The searching procedur
built in the MNDO program of the AMPAC 1.10 vey
sion gave an SP also at 0.820 A, which agrees wit
ours. By the MNDO program (QCPE 353) and en
ploying the above location of the SP taken from
separate calculation, we determined and obtaine
the same RP as with the use of the DDRP metho
by starting from the points (4.0; 1.0) and (1.0; 4.0
using a steplength of 0.2 A (Fig. 7). The only diffe
ences are in the numbers and locations of the poini
on the final IRC curves. Figures 8 and 9 show th

Table II. Effects of parameter variations on computing times.

n
[ Time (s) 0.002 - 0.005 0.01 0.05 0.1
0.001 T 16,214 24,581 37816 142,208 246,012
) Teonv 16,214 13,371 13,258 19,449 28,733
0.003 Tt 7204 8714 14,306 48,874 83,718
: Teonv 7294 4961 4754 8639 9769
0 Tt 5024 B416 6036 17,095 28,416
B 5024 2298 1762 2191 3151
0.03 T 4616 4853 4999 9310 15,626
i Teonv 4616 174 1116 081 1491
01 Tiot 4585 4728 4954 8046 D 12,871 D
' © Teonw 4585 -1608. 060. - 607 D A 1056 D
03 Tt 4585 4726 4908 17,266 D* 26,346 D*
’ Teonv 4585 1606 931 670 D* 1224 D*
L0 T 4585 4726 4908 Dimension overflow Dimension overflo
. Teonv 4585 1606 931
30 T 4586 4728 4908 Dimension overflow Dimension overflo
' Toonv 4588 1607 931

D, Diffuse lines, convergence cannot be determined definitely.

sNumber of points increases rapidly.
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Figure 8. MNDO energies in the functon of RC.

VINDO energies in the functions of the reaction co-
yrdinate (RC) and the H1—H2 distance, respectively,
lisplaying the location of the SP.

SUMMARY

Ne have shown that our DDRP algorithm generally
»ehaves in a stable way. By starting from polygons
f arbitrary geometric shapes,* the [RC and SP of a
iimple collinear triatomic System can easily be com-
wuted. Our experiences on the H; + H reaction and
ither triatomic systems?® raise hope that the method
'ould be used with the same effectiveness on more
‘omplicated chemical reactions.!® The run-time de-
nand depends much on the choice of the initial poly-
©on and the parameters, and in the present form of
he program®® it is higher than that of other searching
rocedures. However, because of the high paraliel-
zability of our method drastic reduction in com-
‘utation times can be expected in the near future
fter developing a program?® to exploit this advan-
ige and running it on a computer provided by par-
llel/vector facilities. This will hopefully make our
tethod most usefud for the theoretical investigations
f fundamental reaction kinetic problems,

“The polygon can be either open or closed, can have any num-
ir of vertices, and can be situated almost anywhere in the space.
evertheless, regardless of where we start searching from,

e shall by all means find ithe RP, the-only difference being in
‘mputation time and the only danger would be to get into other
nmains of extremal points or catchment regions.
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Figure 9. Curve energy vs. H1--H2 distance showing
the location of the SP.
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The FORTRAN code for the algorithm used is to be
distributed by QCPE.*
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