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ABSTRACT

The category of the partial Jordan structures associated to bounded balanced
domains by Kaup’s canonical construction is characterised in terms of topological
algebra. It is shown that this category coincides with the category of weakly
commutative partial JB*-triples. The converse question is also studied: which
domains lead by Kaup’s construction to a given weakly commutative partial JB*-
triple?

1. Introduction

By a celebrated theorem of Kaup [7] there is a bijective functor between the
categories of bounded symmetric domains in complex Banach spaces and Jordan
triple product *-algebras with positive spectrum, the so-called JB*-triples. In
finite dimensions this result contains the holomorphic classification of bounded
symmetric domains due to Cartan [3] using Lie theoretical methods and to the
school of Koecher [10; 11] via a Jordan theoretical approach respectively. The
main point of both approaches is the observation that a bounded balanced sym-
metric domain is the integral manifold through zero of its complete holomorphic
vector fields. It is well known that the complete holomorphic vector fields of a
bounded balanced domain determine canonically a partial Hermitian Jordan triple
star algebra (partial J*-triple for short) structure on the space [2;9].

The purpose of this paper is to examine the converse question. Given a partial
J*-triple structure (E, Eo, {*}) on a complex Banach space E (for def. see [13; 2]
or Section 2 below), when does there exist a neighbourhood B of zero such
that the integral manifold of the family of vector fields {(a — {za*z}) 9/9z: a € Ey}
through B is a bounded balanced domain? That is, in the terminology of [13],
under which algebraic conditions are partial J*-triples geometric?

We solve this problem completely. Geometric partial J*-triples are exactly, up
to linear isomorphisms, the partial JB*-triples satisfying the identity of weak
commutativity {{xa*x}b*x} = {xa*{xb*x}} (a,b & Ey).

We begin the paper with some considerations that may have independent
interest. We prove that in a weakly commutative partial JB*-triple (E, E,, {*})
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the germs around the unit ball of Ejy of the mappings exp[(a — {za*z}) 8/9z] with
- a € Ey generate a Banach-Lie group G. This implies a Cartan-type uniqueness
theorem and hence a semidirect product decomposition into a linear and an
exponential quadratic part for G —a germ analogue of a result of Vigué and Isidro
[16]. With the aid of this decomposition we show that, given a connected circular
neighbourhood B of the origin that is invariant under the Jordan automorphisms
of E with the property that the integral curves through B are complete in E for
all the vector fields (a — {za*z}) 8/9z, the orbit Uaer, exp[(a — {xa*x}) o/ax](B) is
the integral manifold through B of the Banach-Lie algebra of vector fields
{(@ +iL — {xa*x}) 8/ox: a € Ey, L € Der(E)}. This shape estimate is a circular gen-
eralisation of a similar theorem of Panou [12] for bicircular partial JB*-triples.
This is our main geometrical tool in proving the equivalence of geometric partial
J*-triples and weakly commutative partial JB*-triples.

2. The group of automorphism germs

Throughout this section let (E, Eo, {*}) denote a partial JB*-triple, i.e. E is a
complex Banach space, E, a closed complex subspace of E and

"} (v, 0, ) = {xa*y}

is a continuous real-trilinear operation E X Eq X E — E symmetric bilinear in x, y
and conjugate linear in the variable a, such that

{EoESEG} CE, and for all a,b,c€Ey, x,y€E

{ab*{xc*y}} = {{ab*xic*y} — {x{ba*c}*y} + {xc*{ab *yh (1)
[{aa*a}| = [la|® forallac E, J2)
aOa* € Her,(E) forall g € E. I3

Here v 0 a* is the notation for the linear operator x — {va*x} and
Her.(E) :={a € L(E): |exp({a)| <1 if Re({) <0}

is the family of E-hermitian operators with non-negative spectrum. (As usual,
L(E) denotes the Banach algebra of bounded linear operators in E with the

operator norm.) )
We shall denote by D, the unit ball of Ey. It is well known [8] that Dy is the
integral manifold through 0 of the family of vector fields

Pi={Z, a€Ey} where Z, = (a {za*)) ai
Z

We regard 2 as a real-linear submanifold of the topological Lie algebra 9 of all
holomorphic vector fields on E endowed with the topology of local uniform
convergence and the Poisson product
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a a7, )
[ 2 ha2) ] = @i (@ae) ~ @2 7
0z 9z 9z
In particular (see e.g. [5, prop. 10.4, 10.10]), by setting
. d
Ly:=i-bDb*(z)— (b € Ey),
0z
for any a, b € Ey

[Za) Zo] = Lavis — La-io + ({za*z}b*z} — Hzb*zla*z}) ;—Z

(La» Zo]=ZLop (2.1)

[Ley Lyl = Lipbrayria — Apbray~ia-

Henceforth let & denote the closed real—liﬁear hull
. d
Z:= Spang{L,:a € Eq} U {l -z 5—}
z

in %. It is easy to see that the sum ? + ZLis topologically direct in . Moreover,

|

is a Banach norm on ? + %, determining its relative topology from . Therefore
we have the following lemma.

Z,+ ’(Z)f;H =l +1 (o€ ot Z e 2)

Lemma 2.2. P+ % is a Banach—Lie subalgebra of # if and only if
{za*z}b*z} = {{zb*z}a*z} (a,bEEy,z EE). J4)

Definition 2.3. We call a partial JB*-triple weakly commutative if it satisfies
postulate (J4).

Remark 2.4. 1t is well known [6; 12; 5, prop. 7.10.(c)] that geometric partial JB*-
triples are weakly commutative. Furthermore, if we have E = Eo then (J4) is an
algebraic consequence of the main identity (J1) (see [1]).

Recall that given a vector field k(z) 3/dz € %, its exponential can be defined
in terms of the maximal solutions z, .( - ) of the initial value problems
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iz(t) =h(z(t)) z(0) =x
dr

as follows

exp(t- h(z) fg) (x) := z4,(t)

whenever z,, , is defined on some neighbourhood of [0, t] in R.

We know that every vector field 7 P+ £ is complete in Dy, i.e. for any
tER, exp(tZ) is defined on Do and exp(1Z)(Do) = D,. Since the elements of
P+ £ are of polynomial type, it follows from the Picard—Lindelsf theorem that
foreachZe ? + ¥, exp(Z) is a holomorphic mapping defined on some neighbour-
hood of D,.

Henceforth let us denote by & the family of all holomorphic mappings with
stable subset D, defined on some neighbourhood of Dq and having values in E,
Notice that Fis a semigroup with respect to composition. Furthermore let ¥ be
the subsemigroup of % generated by the family {exp(Z):Z € 2 + #}. Given ¢ € &,
we shall write ¢~ for the germ of ¢ around Dy, i.e.

¢ ={¢E F ¢|U=y|U for some neighbourhood U of D,}.

Observe that ¢7 = ¢ and ¢z =y imply (¢, o $2)” = (r°yn)" in F Thus the
family F:= {¢™: ¢ € F} carries a natural composition semigroup structure. Since
the range of exp(Z) coincides with the domain of exp(—~Z) and
exp(—Z) cexp(Z) = id on dom exp(Z) for Z& P + %, the germ image

G:={¢": €4} with operation ¢ ¢5 := ($1°6)” (1, d2€ 9)
is a subgroup of F.

Definition 2.5. We call G the group of automorphism germs in (E, Eo, {*}).
This terminology is motivated by our purpose of looking for a bounded circular
neighbourhood D of D, where any element of G is the germ of some holomorphic
automorphism of D.

Theorem 2.6. If (E,Eop,{*}) is a weakly commutative partial JB*-triple then G
can be equipped with a connecied Banach-Lie group structure whose Lie algebra
is isomorphic to P + &,

Proor. We modify slightly Upmeier’s arguments [14] as follows.
Identify the vector field Z:= h(z) 8/9z with the differential operator
= [df(2)h(z): z € dom(f)] as usual. Then
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Joexp(Z)|Userns = go % Z"(f|Usesns) where M := sup k@)  ©2.7)

whenever U C E is an open set, Jf: U— E is a bounded holomorphic function and
U, is the inner parallel set U, := {z € U- infreu |z — x| > r} (cf. [5, (4.7), lemma
6.45]). By writing C for the Campbell-Hausdorff series in the Banach—Lie algebra
P+ %, it follows that

e 1 _.w1., .
exp(Z1) exp(Z,)|B= 2 = ZF 3 = Z! (idp)
k=0 k! =0 l! 2.8)

=2 ﬁ C(Z1, Z)'(ids) = exp(C(Z,1, Z,))|B

whenever B is the unit ball of E and Zi = h(z) 319z (k =1, 2) have such small
norms that (Z,, Z,) € dom(C) and supyj=ze., Ir@)) <1 (k=1,2).

Finally notice that Z — exp(Z)|Dy is injective on some neighbourhood of 0 in
P+ £ (see e.g. [5, lemma 6.47]).

Hence the theorem is a consequence of the following proposition.

Proposition 2.9. Let L be a Banach—Lie algebra, G a group. Suppose ® is a
bijective mapping of some neighbourhood U of 0in L into G such that

(i) ®(U) generates G and ‘

(ii) @HD(Z,), D(2Z,)) = C(Zy, Z,) for Z, Z, in some neighbourhood V of 0

in L.

Then there is a (unique) Hausdorff group topology 7 on G such that forany g € G,
{g@(eU): € >0} is a filter base for the J-neighbourhoods around &. Moreover,
there is a complex manifold structure M on G compatible with the topology T such
that for a suitable neighbourhood W of 0 the mappings ®, := gP|W (g € G) form
a complete system of local charts for M.

Proor. We may assume without loss of generality that U is the unit ball of L and
V = 8U for some 6> 0. Then {®(eU): € >0} is a filter base shrinking to the unit
e of G. (Indeed, N_.oP(el)= {®(0)} and PO)P(Z) = D(C(0, 2)) = ®(2)
(Z € L) whence ®(0) = e.) By (ii), ®(=Z) = ®(Z) ! for ZE V. Thus ®d(el) =
O(~el) = ®(U) ™" whenever 0 < e < 8. To establish the existence of the topology
T with the required properties, by the arguments of the proof of [S, theorem 6.52]
we have to show that given € > 0 and gEG

CAU)P(AU) C gP(elU)g™  for some A > 0. (2.10)
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By assumption (i), we may write g = ®(Z,) ®(Z,_,). .. ®(Z;) with a suitable
sequence Z;,...,Z, € V. It is well known* that, for fixed k,

x

C(Zi, C(Z.~2) = 3 L @dzyyz  (zely

n=0 1!

where ad(Z,) is the adjoint Z -~ [Zi, Z]. Hence Zw» O7HD(Z,)D(Z) x
@(Z,)™") is well defined on some neighbourhood of 0. Moreover, it is the restric-
tion of some invertible linear operator. Therefore Z +— ¢_l(g(b(Z)g_1) is also
well defined on some neighbourhood of 0 as the restriction of an invertible linear
operator. Hence (Y, Y,) ~ <I>_1(g“1<I>(Y1)(I)(Y2)g) is well defined and continu-
ous in some neighbourhood of 0 € [, x L, proving (2.10).

Let us choose the neighbourhood W of 0 so that C(W, ~W) C V. From the
construction of J it is immediate that D, is a local homeomorphism for any g € G.
It only remains to verify that @' °®g, is holomorphic for any g4, € G. Let
E8E D, (W)ND(W); ie., g =819(Z;) = g,9(Z,) for some Z,Z, EW. Thus
818 =0(Z,)®(Z,)" ! = ®(C(Z2, —21)). Hence for any Z € V we have

00 (05:(2) = D (57102 0(2)) = OHR(C(2,), — 2,))D(2))
= C(C(Z2, -2)),Z)

which is a holomorphic mapping of Z,

3. Canonical decomposition of automorphism germs

Throughout this section let (E,Eo,{*}) be a weakly commutative partial JB*-
- triple and use the notations of the previous section.

According to the construction 2.9 of the Banach-Lie group G of automorphism
germs, the continuous one-parameter subgroups of G have the form

t—exp(tZ)~ (ZE P+ 2).

*For example, this is an casy consequence of the formulation of C in terms of non-commutative
formal power series. The series  of log(e®e®e™) s Iy Ukt 4%Z s, (=1)"Im! A™
(because [didre*eZe 4] = (eAZ e e*ee ] whence edeZe—4 — exple’Ze™], of. [15]).
According to [4, section 3, by writing  [X, ... s Xl = [[XO,XI],XZ], Xl =
(=1)"(ad X,,) . . . (ad X;) X,, we have

C(C(4,Z2), —A) = C(4, C(z, -A))

__1)’11 1
=ZL——~——~—A,...,A,Z,A ..... A
k.n,k!m!k+m+1[ 1

&k m

— 1\ 1
=E(—*I')~{-1;~1[Z,A,...,A]+m+2[A,Z,A,...,A]+}=El-(aa,n "z,
m il m e —— ——— nomt .

" m
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Thus given any g € G, the tangent space 7T,(G) consists of the vectors
d ~
Ve(Z): o> ” Ogo(exp(tZ) g) (ZeP+ 2P). 3.1

Remark, furthermore, that we may define the derivatives of the automorphism
germs at the points of Dy (the unit ball of Ey) by the formula

(¢7):=dip  (pE % xEDy)

because ¢~ = ¢ implies the coincidence of ¢ with ¢ in some neighbourhood of
D, for any couple ¢, y € 4. (The symbol d? means the nth Fréchet derivative at
the point x.) Since G is generated by the family {exp(Z)~: Z € P + £}, it readily
follows from (2.7) that the mappings (x,g) — g% (n=0, 1, .. .) are real analytic
from Dy X G into L}(E), the space of all symmetric n-linear operations E" — E.

Definition 3.2. Henceforth we denote by L the subgroup of G generated by the
family {exp(L)™: L € ¥}.

Since £ C{l(z) 8/9z: il € Her(E)}, every element of L is the germ around D,
of some linear E-unitary mapping.

Theorem 3.3. For any g € G there exists a unique couple a € Ey, u € L such that
g=-exp(Z,) u.

Proor. Let ®: U— G be the local chart around 0 of G constructed in Theorem
2.6. Thus U is some neighbourhood of 0 in ? + % and ®:7 exp(Z)~. Let P,
denote the projection of ? + ¥ onto ¥ along 2 and let P, be its complement. By
Proposition 2.9 (ii) we have

exp(PiZ)~ exp(PoZ)™ = exp(C(P,Z, PoZ))™ (Zev) (3.4)

in some neighbourhood V C U of 0 where C denotes the Campbell-Hausdorff
series in 2 + #. Observe that

do[Z = C(P,Z, PoZ)] = P, + Py = idgp, . (3.5)

Therefore, by the inverse mapping theorem, V, :=Z N {C(P\Z,PyZ): ZE V} is
a neighbourhood of 0 in ?+ %. Thus, by (3.5), every g € ®(V) admits the
decomposition g = exp(P,;Z)~ exp(PoZ) ™ for a unique Z € V. By the definition
of P, and P, this means

gE{exp(Z.) " exp(L) " :a € Eo, L € £} (g€ V). (3.6)
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Recall [7; 16; 5, cor. 10.37] that

x

b~ 2 1
n=02n+1

(bOb¥)'b  (bE Ep)

is a real-bianalytic mapping of D, onto E, whose inverse is g —> exp(Z,)(0). Since
0= u(0) (:= uf?) for all u € L, it follows that

a=1(g(0)), u = exp(~Zr(z0y) g whenever g=exp(Z,)"u, u€L.(3.7)
(We write again simply g(0) for the value g§” and note that g(0) € D, for all
gE€G.)
For each g € G define
ag:=1(g(0)) and u,:= exp(~Zr o)) &-
Since h = exp(Z,,) "uy, for any h € G, by (3.7) it only remains to verify that
u, €L (h€G). (3.8)
Proor or (3.8). It is clear that g Ug is a real-analytic mapping G — G. Let us
first study the behaviour of its derivative on the tangent manifold T(G) of G. We
check that, with the charts (3.1) of 7(G),
dlg = uglvi(Z2) € v, (¥) (hEeG). (3.9)
Indeed, the mapping (Z,g) —> Uexp(z); Ug - IS real-analytic on (P+ %) xG.

Hence (Z, g) = ©™ uexp(z) sug ') is well defined and real-analytic on some neigh-
bourhood of {0} X G. Therefore

d - _
A (Z’ g) = ZJ_Z; O(D l(uexp(tZ),;ug 1)

is also well defined and real-analytic on the whole (2 + &) X G. Observe that by
3.1

dlg = u,vi(Z) = v, (A(Z, 8) (ZeEP+ L heEQG). (3.10)
Consider the mapping
L(Z) =@ Yuexpzy”)  (ZEVY).
By Proposition 2.9 (ii), for some neighbourhood V, C Viof 0in ? + ¥ we have

D™ thexpuz) ™ expv)~ Uexpry~) = O (D(L(C(1Z, Y))P(L(Y)))
= C(L(tZ,Y),L(Y)) ifiZ,YEV,.
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Since L has values in the Banach—Lie algebra £, A(? + &) x V,) C % Thus, by
real-analyticity, ranA C %, which proves (3.9).

Now we return to the proof of (3.8). The key observation is that the construc-
tion of Proposition 2.9 applies also to L. Thus L is a Banach-Lie group when
endowed with the group topology where {®(Z£N eU): € >0} is a basis for the filter
of e-neighbourhoods and when we equip L with the manifold structure of local
charts ®,[(£NU) (u€L). Now we may view the tangent manifold 7'(L) as
submanifold of T(G) in the usual way. For g €L and Z € Z we identify the vector

We(L) = | C*(@(£N 1)) 3 x> | y(expuz) )
dtio

with v,(L) defined by (3.1) for functions ¢ € C*(D,(U)).

Let us fix & € G arbitrarily. Since G is a connected Banach-Lie group, we may
choose a €*-smooth curve ¢ > g(r) parametrised on some open interval 7 D [0, 1]
and taking values in G such that g(0) = ¢ and g(1) = h. By (3.10) there exists a
€™-smooth curve L: ] — ¥ such that

d d
Eugm =d[g = u] d_tg(t) = Vi (L (7).

Since L is a Banach-Lie group whose tangent manifold is U,ey, v, (%), the initial
value problem in L

d—";ya) =voL®)  y(O0)=e (3.11)

admits a solution k: /— L. Thus both k(-) and ugy(., solve (3.11) on the interval
I. By uniqueness, they must coincide. In particular u, = u,;y = k(1) € L which
proves (3.8). '

Corollary 3.12. Given Z,,7,,. .. VL, E P+ L, there exists (a unique) a € E,
and a linear E-unitary operator W such that exp(Z;) - - -oexp(Z,) coincides with
exp(Z.) > W on some neighbourhood of Do. The operator W belongs to the sub-
group of GL(E) generated by exp(¥).

Corollary 3.13. Every g€ G is determined uniquely by g(0) and g&". Indeed,
8 = eXP(Zr(z0) " [dgco) eXP(~ Zr(g00))] ™ 6" In particular L = {g € G: g(0) =
0}.

Proor. From (3.6) we know that Ug = exp(=Zr(g0y) g is the germ around D,
of some linear operator. Thus u, = u{)~ = exp(— Zregon) ey g8V

Corollary 3.14. L is a closed topological subgroup of G.

Proor. Since (LN el)=D(eU)NL if ec (0, 1), the topology of L is finer
than the topology of G restricted to L.
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On the other hand, from (3.5) we see that for some neighbourhood V, C U of
0 in ?+ £, the mapping ¥: Z — exp(PZ)" exp(PoZ)”~ is real-bianalytic. In
particular, U'(V,) is a neighbourhood of e in G and, by Corollary 3.13,

W(V2) NL = {exp(P,Z) " exp(PoZ) : ZE Vs, exp(P,Z)(0) = 0}
={exp(PoZ) 1 ZEV,,P,Z = 0}
={exp(2)": ZeV,N ¥}

Thus if U, is any open subset of ¥(V,) in G then UNL=dT (U)Nn2D),
which proves that the topology of G restricted to L is finer than that of L.

Since the topology of a Banach-Lie group has countable bases for the neigh-
bourhoods of the unit, G is metrisable with a complete left-invariant metric (cf.
[5,6.22]). Since complete subspaces of metric spaces are closed, L is necessarily
a closed subset of G.

4. The structure of complete orbits

Our aim in this section is to prove the following theorem.

Theorem 4.1. Let (E, Eo, {*}) be a weakly commutative partial IB*-triple. Assume
there exists a neighbourhood B of 0 in E such that B C dom exp(Z,) for all a € E,
and the figure

UE exp(Z,)(B)

is bounded. Then (E, Eo,{*}) is a geometric partial JB*-triple, i.e. there exists a
bounded balanced domain D C E such that the vector Jields Z, = (a — {za*z}) 8/0z
(a € Eo) are complete in D.

Proor. With the notations of Section 3, define
Dp={u" exp(Z,)(x):a € Ey,u €L, x € B} 4.2)

where we denote by u” the linear operator whose germ around D, is u € L.
Notice that L"(:={u": u € L}) is the subgroup of GL(E) generated by the family
{exp(l): 1 € #}. Since £ C iHer(E), the group L” consists of E-unitary operators.
Hence Dy =L" U,eg,exp(Z,)(B) is a bounded connected L -invariant open
neighbourhood of 0. In particular, since {e"id:t€ R} CL", the domain Dg is
circular. Thus the holomorphic envelope D of Dy is a bounded balanced domain
(see [2]). Therefore the theorem is an immediate consequence of the proposition
below.

Proposition 4.3. Let x € E be a point such that the integral curve of any of the
vector fields Z, (a € Eo) through x is complete in E, i.e. x € dom exp(Z,) for all
a € Ey. Then the figure
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M:={Uexp(Z,)(x): UEL",a € Ey}

is the integral manifold through x of the Lie algebra of vector fields P+ & and
P + Lis complete in M. (Here we write again P:={Z,:a € Eo}, cf. Lemma 2.2.)

Proor. From (2.1) it readily follows that
exp(L) exp(Z,) exp(—L) = exp(exp(ad L) Z,)
= eXp(Zexp(L)(@))
for any @ € E; and L € %. Thus
Ulexp(Z.)) = exp(Zuwy) U  (UEL",a € E,).
Since U(E,) = E, for any U € L", this means that
M®:={Ux:Ue L"} Cdomexp(Z,) (b € Ey).

Thus the integral curves of the fields Z, through the points of M are complete
in E and

M= U exp(Z,)(M°). (4.4)

a€Eg
Let us now fix Z € ? + & arbitrarily and define
c(t, b) :=exp(tZ) exp(Z,)(0) (tER,bEE).
From Theorem 3.3 we know that
exp(IZ) ™ exp(Zs)™ = [exp(Zetry) * Uns)™  (LER,bEE,)  (4.5)
for some (uniquely determined) U, , €L". By (4.4) the mappings
bep =exXp(Zoepy) o Uy teR,bEE,)
are well defined on M° and for any fixed z € M° the map (¢, b) — ¢, ,(z) is real-

analytic R X Eq — E and ranges in M. To complete the proof of the proposition
it suffices to verify that if Z = (a + I(z) — {za*z}) 8/97 then

%qf»,b(z) =a+U(¢p(2) ~{ds()a*ds(z)}  (z€M°). (4.6)

Indeed, once we have established (4.6) we can argue as follows. Consider any
Yo € M. By (4.3), for some zo € M° and b € E, we can write y = exp(Z,)(z0).
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Define

y(t) P= ¢1,b(20) (ZE R).

We have y(0) = yo, y(1) € M (t € R) and, assuming (4.6),
d d
d*Y(f) =~ bu(z0) = a +1(y(1)) — {y()a*y(1)}.
t at

This shows that y(r) = exp(tZ)(yo) € M (t € R). Thus by the arbitrariness of go,
the vector field Z is complete in M.

PROOF OF (4.6). Let W, :={z € E: |z|| <|x|| + m + 1} (m=20,1,2) and choose
&> 0 such that sup{l|d + k(z) — {zd*z}||: ||d|| + k| < 6, z € W,} < 1. It is elemen-
tary that the initial value problem

220 =d+ kD - OPO)  2(0) = w,
has a solution defined in a neighbourhood of [0, 1] and ranging in W,, whenever
wo € W,y and || Z, + k(z) 8/oz] = |d| + k] < & (m=1,2). Hence
dom[exp(tZ) exp(Z,)] D W, if ||ezZ],||b] < 5.
By (4.5) it follows that
buolWo = exp(tZ) exp(Z,)|Wo if le(t, b)|. 1z], |b] < &.
From the definition of the exponential of vector fields we see that (4.6) holds

whenever [c(z, b)|, |1Z|, | b|| < 6. Hence, by the real analyticity of both sides of
(4.6) we obtain (4.5) for all tER, b C E,. :

Corollary 4.7. If B C N,cg, dom exp(Z,), then the figure Dy defined by (4.1)
satisfies

DpC (1 domexp(Z).

ZEP+F

Moreover, Dy is the smallest exp(P + ¥)-invariant subset of E containing B. If B
is exp(L)-invariant then Dy = U,ep, exp(Z,)(B).

5. On the integration of the vector fields Z,

Throughout this section let (E, Eo, {*}) be a partial JB*-triple. Fix a real-
analytic curve a: I — E, on some open interval 1 C R containing 0. Let us first
study the power series of the automorphism germs g’ (1 € I) defined by the solution
of the initial value problem
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d
—g":=Z,n(g", O=id~.
dtg n(g") 8

Here we write again Z, := (a — {za*z}) 8/3z. From the Picard-Lindel6f theorem
concerning the existence and continuity properties of solutions of ordinary differ-
ential equations it easily follows that

g'=(F)" (€D

where (t, x) — F'(x) is the maximal solution of /3t y(t, x) = Z,(y(z, x)) with
boundary condition y(0, x) = x. Let us write

pZ(x):s;l;dﬁF’(x,...,x) (k=0,1,...))

where d§F’ is the Fréchet derivative (hy,...,Hk:) — 9507, ... 9]0 X
F(2f, 1;h)). Since each F” is holomorphic

Fi(x) = 2 pi(x)  for(Lx)ED (5.1)

where 9@ :={(¢, x): t € I, x € dom F'}. Notice that & is a reighbourhood of I x {0}
in R X E. By the definition of the curve t — g’ (see Section 2)

%F ‘(%) =a@®) ~{F'()a@*Fx)}  ((tx) € D). (52)

Since the k-homogeneous polynomials p; can also be obtained by means of a
suitable contour integral operator applied to F?, it follows that for each.k the
operation ¢ > p} is real-analytic on the whole of I. Hence (5.1) and (5.2) imply

d t

eré =a(t) — {poa(t)*p6} po=0 (5.3)
d t i % t Q .

2P —2(poDa(t)®py pi=id (5.4)

dﬁ'_ Pl(x) = =2(pb D a(t)*)pi(x)
t

"21 {Pixa@*pi(x)}  p2=0 (k>1,x€E). (5.5)

Henceforth we focus our attention on the case when the curve ¢~ a(t) has
values in a subtriple generated by a single element ¢ € E,. Recall that, given
¢ € Ey, by [13, lemma 2.1] there exists a topological Jordan-homomorphism T:
6o(Q2) — Eo, where () is some bounded relatively closed subset of (0, =) and there



232 Proceedings of the Royal Irish Academy

also exists a continuous linear operator L: () — L(E) such that, by writing
£ :=1idg we have T(¢) = ¢ and

Liep) =T(@)DT(H)* (@, ¥ € Go()).
We assume in the sequel that
a(t) € T(Re 6,(Q)) @tel.
It is immediate from (5.3) that also pg € T(Re %,(Q)) for all ¢ € I. By setting
o =T Ya®), w:=T '(ps) (€I
we have

4 W=~ 0T 7 = 0. (5.6)
dt

It follows that the solution of (5.4) can be written as

pi= exp[—2L<L’ 7, a,dr):l (teD. 5.7

In particular p; € GL(E) for all 1 € I. Therefore we may define
Ci(x):=(p) 'pilx) (k=1,tER,xEE).

Applying this definition to the left-hand side of (5.5) we obtain
d k1
PLoCh@) = = 2 {pi@a()*pli()}  (k>1,tERXEE). (58
I=]

Lemma 5.9. Let A be a real flat subspace of Eo (i.e. bOc*=cnb* for all
b,c&€ A) and let sf denote the closed real linear hull of the family of operators
AOA*in L(E). Then forall a € oA, x,y E E and c € E,

afxc*y} = {(ax)c*y} — {x(ac)*y} + {xc*(ay)} (5.10)
exp(a){xc*y} = {[exp(a)x][exp(—a)c]*{exp(a)y]}. (5.11)

Proor. If by, b, € A then by axiom (J1)
by b3{xc*y} = {(b; O b¥x)c*y} — {x(ba O b¥c)*y} + {xc*(b, D bEy)}.

Thus, since b, 0b3 = b, Db, (5.10) holds for « € AT A*. By passing to real
linear combinations and then to limits in L(E), we obtain (5.10) for all ¢ € &. To
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prove (5.11), fix @, x, y and c arbitrarily. Define €’ := exp(ta) (t € R). Then using
Leibniz’s rule and then (5.10),

%{(e’xx«s—’c)*(e‘y»

= {(aex) (e ) *(eV)} — {(e%) (e ) *(€'y)} + {(€'x) (€ ") *(ae'y)}
= a{(ex)(e ') *(ey)}  (ER).
Since €° = id, hence (5.11) is immediate.

In order to express the right-hand side of (5.8) in terms of the homogeneous
polynomials C;, we apply Lemma 5.9 to

A = Spang L(Re %,((})), o= — 2L<f Ty a7d7>.
0

Since p} = exp(a), from (5.11) we see that

{pi®¥)a(t)*pr(x)} = {[piCI)I(PY) " (Pla)]*[pi Cor(x)]}
= pHCIX) (PLa(®))*Cin(x)}  (L,m=1,tER).

Thus we can write (5.8) in the form

d%cux) =~ 3 {CI0) (pha()) Ch (D). 5.12)

Remark 5.13. We may apply the previous considerations to the constant curve
{— c in order to get formulas for the Taylor coefficients of exp(tZ.). However,
in this trivial way, one only obtains rather complicated recursive expressions for
the Cj that are hard to simplify directly with the identity of weak commutativity.

The first two coefficients can be calculated in this manner. Solving (5.6) and
(5.7) for a,:= £ (t ER) we get

exp(tZc)(0) = T(m,) = T(tanh(£))

2

t2n+l d2n+l
= e
n=0 (2n + 1)! (d#nﬂ , tanh T)(C Oc*)e (5.14)
do exp(1Z.) = exp[—2L(log cosh(¢£))]. (5.15)

Definition 5.16. Let (E, Ey, { *}) be a partial JB*-triple and b € E,. In the sequel
we shall write

e(b) '=exp(Z,)(0),  I(b):=dsexp(Z,)
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and for k=1,2, ... we define recursively

Bi(b,x):=x, By(b,x):=~ ;1— i {Bi(b, x)b*B, (b, x)} (x€E).

=1 =1

Remark that exp(—{zb*z} 3/dz) = 2%~ B (b, z) in some neighbourhood of 0 in E
(see proof of (6.5)).

Proposition 5.17. Let (E, Eq, {*}) be a weakly commutative partial JB*-triple and
c€ Ey. Then

dsexp(Z)(x, ..., x) = kl(c)Bi(e(c),x)  (k=1,2,...).
Proor. Let us apply the previous considerations to the curve ¢t — T(e,) where

_ tanh(¢)
1 - [¢- tanh (&)

on some open interval [ containing [0, 1]. By (5.6)
d d
— areath(m,) = o, = — areath(z - tanh(¢))
dt dt

whence
po=T(m) = T(t tanh(§)) =1 e(c) GEDn. (5.18)

Substituting into (5.7), for all r € I

pi= exp[—ZL(log N [tianh(g)]z)} (5.19)

Thus py = exp(Z.)(0) and p| = exp[—2L (log cosh(¢)] = d} exp(Z.) by (5.14) and
(5.15). From Corollary 3.13 it follows that

g' =exp(Z.)".
Therefore it suffices to check that
() =t*""'Bie(c),x) (ELxEE,k=1,2,...). (5.20)

This is trivial for kK = 1. To perform the induction step, calculate p’a(t) in terms
of the representation 7. It is easily seen that

LT =T(¢¥) ¢, € Go(Q).
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Hence, by (5.19)

o ~ 1 tanh(¢)
pla = T{exp| -210g 1—[t-tanh(g)]z]l~[r-tanh(§>}2)

= I(tanh(§)) = e(c)

independently of 1 € I. Thus, by (5.12), if we assume (5.20) for all indices <k,

t

k
fer = — Z:& 7T {Bi(e(€), x)e(c) *Bu-re1(e(c), )}
=t*Bir1(e(c), x).
Remark 5.21. In [8] Kaup proved that
exp(Z:)(b) = e(c) + {(c)[id + b e(c)*]"tb for b € D,

where Dy is the unit ball of E,. Comparing this result with Proposition 5.17, we
obtain that

Bi(e(c),b) = (—bme()¥* !  ifbeE, (5.22)

for k=2,3,.... It is a natural question, whether we have
Bi(e(c), x) = (—xTe(c)*)* 'x for all x if (E, Eo,{*}) is a weakly commutative
partial JB*-triple. The answer is negative even in very simple cases.

Example 5.23. Let E = C>, {e1, ez, €3} be the canonical bases in E, and let
Ey:= Ce,. We define the triple product {*} on E X Ey x E by sesquilinear exten-
sion from the following relations:

{eleikej}={ejeikel}=ej (]= 1,2, 3)

{esefer} = es

{esefes} = {esefe} = e,

{esefes} = 0.
Then (E, Eo, {*}) is a weakly commutative partial JB*-triple. However,

(—e2O CXp(tZel(O))*)B’ez = —(tanh t)3€3
# Byexp(1Z,,(0)), e;) = — 5(tanh 1)%;.

6. Weakly commutative partial JB*-triples are geometric

Henceforth (E, E,, {*}) denotes an arbitrarily fixed partial JB*-triple and we
shall also use the notations established in Definition 5.16.
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Lemma 6.1. The linear operator I(c) is non-expansive for any ¢ € Ej.

Proor. Fix ¢ € Ey, set Q= {w > 0: 0° € Sp(cOc*)}, £:=id, and apply the re-
presentations T: €,() — Ep, L: 6,(2) — L(E) used in (5.14) and (5.15). By
(5.15) we have

I(c) = exp[—2L(log cosh(£))]
= exp[—2b 01 b*]

with
b= T(Vlogcosh(¢)).
Hence the statement follows by axiom (J3).

Theorem 6.2. A partial JB*-triple is geometric if and only if it is weakly commuta-
tive.

Proor. Itis well known that geometric partial JB*-triples are weakly commutative

(see [5, prop. 7.9.(c)]).

To prove the converse, let (E, Ey, {*}) be a weakly commutative partial JB*-
triple. According to Theorem 4.1, we have to see the existence of a bounded
neighbourhood B of 0 such that exp(Z,.) is well defined on B for any ¢ € E, and

sup BHCXP(ZC)(X)” <o,

cE Ly xe

For this it suffices to establish that for some p > 0,

£

> 1 sup sup 1d§(Z)(x, . . ., x)|| < oo. (6.3)

k=0 k! ceEp |Ixll<p

Notice that dgexp(Z,) = exp(Z.)(0) = e(c) lies in Dq, the open unit ball of E,,
independently of the choice of ¢ € E,.
Let us write

M := sup{[[{xc*y}|: x, y € E, c € Eo, [ x], Iyl ]| < 1}.
We prove by induction on & that

|Bile(c), x)| < M*™'  (cE€Eo,|xll<1,k=1,2,...). (6.4)
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Indeed, B,(e(c),x) = x (c € Ey,x € E) and by the recursive Definition 5.16,

18,116, 911 = - 3 [{Be(e), )e€)*B, e 1(e(), 2}

n

<13 mom =
n

=1

for all ¢ € Ey, x € E with ||x|| < 1 whenever (6.4) holds for k = 1,...,n
In view of Proposition 5.17 and Lemma 6.1,

s exp(Z)(x, . . ., x)|| < ktM* || x||* (cEEy,xEE)
for k=1,2,.... Hence (6.3) is fulfilled for any p<M™'.

Corollary 6.5. In a weakly commutative partial JB*-triple we have

XPZ)() = e(0) + 1(6) exp( 2e(0)°2) i)(x) (lxll <M~

Proor. According to Definition 5.16 and (6.4), the expression F(t,e,x):=
Zi=0t*Bii (e, x) satisfies

:%F(t, e, x) ={F(t,e, x)e*F(t,e,x)} (e <1,|x| < M™Y.

Therefore 2., By(e, x) is the power series of exp({ze*z} 3/dz) around 0 and this
series converges uniformly on the domains {(e, x): [l < 1, fxll<(@—e)M™} for
any € > 0. Thus the statement is immediate from Proposition 5.17. '

REFERENCES

[1] Braun, H. and KoecHER, M. 1966 Jordan-Algebren. Grundl. der Math. W. 128. Berlin—-Heidel-
berg. Springer.

[2] Braun, R., Kaur, W. and Uemeier, H. 1978 On the automorphisms of circular and Reinhardt
domains in complex Banach spaces. Manuscripta Math. 25, 97-133.

{3] Cartan, E. 1935 Sur les domaines bornés de espace de n variables complexes. Abk. Math.
Seminar Hamburg 11, 116-62.

[4] Dynkin, E. B. 1950 Normed Lie algebras and analytic groups. Lie Groups. AMS Translations,
series 1, 9, 471-535. (MR#11-712)

[5] Isibro, J. M. and Stacuo, L. L. 1984 Holomorphic automorphism groups in Banach spaces.
North-Holland Math. Studies 105. Amsterdam. Elsevier.

[6] Kaur, W. 1970 Uber das Randverhalten von holomorphen Automorphismen beschrinkter
Gebiete. Manuscripta Math. 3, 257-70.

[7] Kaur, W. 1977 Algebraic characterization of symmetric complex Banach manifolds. Math. Ann.
228, 39-64.

(8] Kaur, W. 1983 A Riemann mapping theorem for bounded symmetric domains in Banach spaces.
Math. Z. 183, 503-29.

[9] Kaue, W. and Upmeier, H. 1976 Banach spaces with biholomorphically equivalent unit balls are
isomorphic. Proc. Am. Math. Soc. 58, 129-33.



238 Proceedings of the Royal Irish Academy

[10] KoecHER, M. 1979 An elementary approach to bounded symmetric domains. Lecture Notes of the
Rice University, Houston.

[11] Loos, O. 1977 Bounded symmetric domains and Jordan pairs. Lecture Notes of the University
of California at Irvine.

[12] Panou, D. 1985 Uber die Klassifikation der beschrinkten bizirkularen Gebiete in CV. Disserta-
tion, Tiibingen University.

[13] Stacuo, L. L. 1990 On the spectrum of inner derivations in partial Jordan triples. Mathematica
Scandinavica 66, 242-8.

[14] Uemeier, H. 1976 Uber die Automorphismengruppen von Banach Mannigfaltigkeiten mit invari-
anter Metric. Math. Ann. 233, 279-88.

[15] VArRADARAIAN, V. S. 1984 Lie groups, Lie algebras and their representations. Graduate Texts in
Math. 102. Berlin—-Heidelberg—New York-Tokyo. Springer.

[16] Vicug, J. P. and Isibro, J. M. 1982 Sur la topologie du groupe des automorphismes analitiques
d’'un domaine cerclé borné. Bull. Sc. Math., 2 série, 106, 417-26.



