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A NOTE ON KONIG’S MINIMAX THEOREM

L. L. STACHO (Szeged)

Recently G. Kassay [1] published an elementary proof of Konig’s mini-
max theorem [2]. His method seems to be an interesting mixture of both of
the so-called methods of level sets and cones, respectively. Formally, Konig’s
theorem is an extension of Ky Fan’s classical minimax theorem [3] by re-
stricting convexity to diadic rational convexity. It is well-known [4] that
Ky Fan’s theorem can be deduced from the Brézis—Nirenberg—Stampacchia
level set minimax theorem by a function lifting. It is an old open question
whether there is a short direct connection between Konig’s and Ky Fan’s
minimax theorems.

The aim of this note is to show that the mentioned function lifting in [4]
transforms a Konig-type saddle function into a Ky Fan-type saddle function
with the same minimax values. A careful analysis of the proof of this fact
leads also to new generalizations of Konig’s theorem, which seem not be
provable with a simple adaptation of Kassay’s method.

Finally we remark that the question of Konig-type generalizations of M.
Sion’s minimax theorem [5] is still open.

1. On the continuity of convex functions

Throughout this section let V' denote an arbitrary vector space and
let 7 be the finest locally convex topology on V. It is immediate that the
absorbing convex subsets of V' form a neighbourhood basis of 0 for 7. We
say that a subset S C V is a simplex in V if § is the convex hull of a set
B C V such that the system {b—bo : b € B,b # bo} is linearly independent
for all bg € B.

1.1. LEMMA. Assume S is a simplex in V, K is a convex subset of S
and x € K. Then the following statements are equivalent:

(i) K is a neighbourhood of  in the relative topology of T on S,

(i){veV:I>0,z+eveK}={veEV:3>0 c+eve S}

ProoOF. By shifting a suitable vertex of S into the origin and restricting
ourselves to the subspace spanned by 5, we may assume without loss of
generality that S = co(B U {0}) the convex hull of some Hamel basis
B of V with the origin and z = Y I, ;b; for some by,...,b, € B and
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B+ Bn > 0 with 37, 8; = 1. Let us write
Co={bi—z:i=1,...,n-1}, Cr:={b-z:be B\ {by,...,0,}}.

Then C := {—2} U Co Uy is again a Hamel basis of V and

(1.2) {veV:iI>0,z4+eve S} =co((RC)U(-R4Cp)).

Therefore for each ¢ € C there exists ¢(¢) > 0 with z + [0,e(c)] ¢ C K for
ce€ C\Coand z+ [ —e(c),e(e)] e C K for ¢ € Co. Define

U:= co(U [-5(c),£(c)]c+:v).

ceC

Since C' is a Hamel basis of V, U is a convex 7-neighbourhood of z and

U= {x + Y deei (e A) €A, D [Ad/e(e) < 1}

ceC ceC

where A := {functions C — R with finite support}. By (1.2) we obtain

UNns = {:1;+Z,\cc: (c—=A)€EA, A 20(ce (), Z/\C/E(C)§ l} =
ceC ceC

= co( U [0,e(c)]c + x)

ceC

Since z,e(c)c+2 € K (c € C), we have U N S C K which completes the
proof.

1.3. CorOLLARY. If {g; : i € I} is a family of affine functions on V
such that the function f := sup;c7g; is finite on the simplex S then f is
continuous on S with respect to the relative topology of T.

PRrooOF. First of all remark that convex functions of one real variable
are always upper semicontinuous. Hence, for any z € S, 7> 0and u € {v €
€V :3e >0, z+cev € S} there exists ¢ > 0 such that f(z + &u) < 7+ f(z)
for all £ € [0,¢]. Thus the convex level sets K., := {z € §: f(z) < v} are
all open in the relative topology of 7 on S by 1.1. That is, the function
f is upper semicontinuous. On the other hand, affine functions are all
T-continuous on V. Hence f as the supremum of a family of continuous
functions is lower semicontinuous on S in the relative topology of 7.
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2. Koénig-convex and Ky Fan-convex mappings

2.1. DEFINITION. Let F be an ordered vector space and Z be any set.
We say that a mapping ® : Z — E is Kénig-convez if for every 21,29 € Z
there exists z € Z with ®(z) < (1/2)®(21) + (1/2)®(z2). The mapping @ is
said to be Ky Fan-convez if for every 21,2, € Z and t € [0,1] there exists
2z € Z with ®(2) £ (1~ t)®(21) +t®(z2). If —® is Kbnig-convex (resp. Ky
Fan-convex) then we say that ® is Konig-concave (resp. Ky Fan-concave).

Throughout the whole work we write D for the field of diadic rationals.

2.2. LEMMA. If® : Z — F is Konig-convez then for every finite segence
21y..ey2, € Z and 0 £ 61,...,6, € D with Y, t; = 1 there exists z € Z
with ®(2) £ 37, 6:®(z).

ProOF. Define Z := {functions Z — R with finite support} and

()= Y #H2)8(2) (Z€2).

z€Z

Let T:={z€Z:3z€ Z, ¥2) < ®(z)}. We have to prove that

(2.3) T> {‘567: range(Z) C D, 220, Z‘z‘(z):l},
z€Z

By writing 1, for the characteristic function of the set {2}, we have 1, € T
because ®(1,) = ®(2) (z € Z). Furthermore, if 71,%, € Z then for some
21,29 € Z we have (%) £ ). 7 Zi(2)®(2) (¢ = 1,2). Since ® is Konig-
convex, hence there exists z3 € Z with

1 1 1 1
D(23) £ §<I>(zl) + —2@(22) < ; (5'21(,2) + 52’2(2)> d(2).
Thus T O (1/2)T + (1/2)T and 1, € T (2 € Z) whence 2.3 is immediate.

2.4. LEMMA. Let E be a function space (with its natural ordering)
and let Z be a compact topological space. Assume ® : Z — E is a lower
semicontinuous’ Konig-convex mapping. Then ® is necessarily Ky Fan-
convez.

PRroOF. Fix any 29,21 € Z. By 2.2, for every § € D N [0,1] there ex-
ists 25 € Z such that ®(2s5) < (1 - 6)®(20) + 6§®(21). Given any t € [0,1],

1 Te. if E C {functions {2 — R} then for each fixed w € Q the function z — ®(z){w)

is lower semicontinuous on Z.
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choose a sequence 61,6,,... € DN [0,1] such that ¢ = limy_q, 6,,. By the
compactness of the space Z, there exists an index net (n; : i € T) with
lim;ez 25,, = 2* for some 2* € Z. Then

o(z*) £ liriréirnf ®(2s,,) < lirixéj_rnf [(1 = 6,,)®(20) + 6n;®(21)] £

g (1 - t)@(ZO) + t@(zl).

3. Konig’s theorem via Ky Fan’s minimax theorem

3.1. DEFINITION. Henceforth let X denote a compact topological space,
Y a non-empty set and let F’ be a function X x Y — R. We write Ex
(resp. Ey) for the space of all real functions on X (resp. Y). We denote
by 7x the finest locally convex topology on the subspace X := {Z : supp (T)
finite} and we embed the set X into X by identifying each point z € X
with its characteristic function 1,. In accordance with this embedding, we
denote the simplex {ZT € X : 7 2 0, > zex E(z) = 1} by co(X). The objects
Y, 1y,co(Y) are defined analogously.

We say that the function f is of Kénig-type if the mapping z — f(z,-)
is Konig-concave and upper semicontinuous from X into the function space
Ey (see footnote ') and y — f(-,y) is Konig-convex from Y into Ey.

Similarly we speak of fuctions of Ky Fan-type when replacing Konig-
convexity (concavity) in the above definition by Ky Fan-convexity (concav-
ity).

Finally we shall write shortly infsup f (resp. supinf f) instead of
infyey supsex f(2,y) (resp. sup,ex infyey f(z,y)).

3.2. PROPOSITION. Let f: X XY — R be a function of Konig-type.
Then the lifted function f: X X co(Y) — R defined by

f(,9) = = Y Y(u)f(z,y) (x € X, T€ co(Y))
yeY
s of Ky Fan-type and it satisfies
inf sup f = inf sup f, supinf f = supinf f.

Proor. For any z € X, clearly infze co (v) 7(:5,'?]) = infyey f(2,y).
Hence supinf f = supinf f. _ _

We have also infsup f = infyey sup,cx f(z,1,) 2 infsup f.

To prove the converse inequality, notice that co (Y) is a simplex in Y
and for any = € X, the function g, : § Eer Y(y)f(z,y) is affine on Y.
Moreover, if § € co (Y) and supp () = {v1,...,%n} then
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n n
9:(¥) = ;?(yi)f(z,yi) s ;g}gggf(x', yi)<oo (z€X)
since, for any fixed y € Y, the function 2’ — f(2', y) is upper semicontinuous
on the compact space X. Thus we may apply 1.3 to conclude that the
function ¥ ~ sup,ex f(2,7) is convex and continuous when restricted to
any finite dimensional affine section of co(Y'). Fix again an arbitrary 7 €
€ co(Y) and let supp (¥) = {v1,---,Yn}- Given any ¢ > 0, we can choose
diadic rationals 61,...,6, 2 0 with > 7, § = 1 such that

sup _f—(x’ Z 5i1yi) é sup -f—(-’l?,?/_) + €.

Since the mapping y — f(-,y) is supposed to be Kénig-convex, by 2.2 there
exists y* € Y with

) S S aisou =7 ;al)

i=1
Therefore

infsup f = sup f(z,y*) £ sup f(z,7) +e.
z€X zeX

By the arbitrariness of ¥ € co(Y) and € > 0, hence infsup f < supinf f.
By 2.4, the mapping z — f(z,-) is also Ky Fan-concave. Hence, given
any t € [0,1], zo,7; € X, there exists z; € X with

f(ztay) 2 (l—t)f(:vg,y)-{—tf(xl,y) (ye Y)
Ify € co(Y) then

F@u¥) = ) 3W)f(eny) 2

yey

; Zy(y) [(1 - t)f(il,'g,y) + tf(IE1, y)] = (1 - t)?(mm y) + t7($17 y)
yeY
Thus the mapping z — f(z,-) is Ky Fan-concave X — Eco(y)-

For any fixed ¥ € co(Y) the function f(-,7) = Eer J(yf(-.y) is a
finite convex combination of upper semicontinuous functions on X. Thus
the mapping z — f(z,-) is upper semicontinuous X — E,, )

Finally the mapping § +— f(,7) is affine co(Y) — Ex, whence it is in
particular also Ky Fan-convex.

3.3. CoroLLARY (Konig’s theorem [2]). If f : X XY — R is a function
of Konig-type then infsup f = supinf f.
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Proor. We may apply Ky Fan’s minimax theorem to the fuction f in
3.2. Hence infsup f = supinf f.

4. Generalizations

Throughout this section let X,Y denote two non-void sets, let f be
function X x ¥ — R. We shall keep the notations X,7x,co (X) resp.

a
Y, 7v,co(Y) established in 3.1. We denote by f the affine lifting

f2,9):= Y 9(®)f(z,y) (v€X, TE co(Y))

yeY

of the function f in the second variable to X x co(Y).

4.1. PROPOSITION. Assume the function f : X x Y — R has the fol-
lowing properties:

(i) SUDPzex f(x)y) < (y € Y)7 _

(ii) the set {g € co(Y):IyeY f(-,y) £ f(,7)} is dense in co (Y) with
respect to Ty. _ _

Then we have inf sup f = infsup f and supinf f = supinf f.

Proovr. The simple arguments at the beginning of the proof of 3.2 show
that supinf f = supinf f and infsup f > infsup f.

Since co(Y) is a simplex in Y and since the family {fz,):z € X} of
affine functions on X is bounded from above (by assumption (i)) for each 7 €
€ co(Y), it follows from 1.3 that the function co(Y) 3 7 sup,cx f(2,7)
is continuous with respect to the topology ry. Then, given any ¢ > 0 and
7 € co(Y), by assumption (ii) there exist y* € Y and 7* € co(Y) with

sup f(2,5) £ sup f(z,9)+¢ and f(-,y%) S F(-,7).
zeX z€X .

Thus infsup f < sup,ex f(,4") S supyex f(2,7°) £ sup,ex f(2,7) + ¢
for every § € co(Y) and € > 0. This implies infsup f < infsup f.

4.2. THEOREM. Let X be a compact topological space, Y an abstract
set and f: X XY — R be a function satisfying 4.1(ii) and such that
the mapping x — f(z,-) is Ky Fan-concave and upper semicontinuous (cf.
footnote ). Then infsup f = supinf f.

Proor. The lifted function f : X x co(Y) — R is of Ky Fan-type
(for definition see 3.1). Hence, by Ky Fan’s minimax theorem infsup f =

= supinf f. Since for every fixed y € Y, the function z — f(z,y) is upper
semicontinuous on the compact space X, also 4.1(i) holds. Thus, by 4.1,

also infsup f = infsup f = supinf f = sup inf f.
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4.3. REMARK. Several equivalent but seemingly weaker formulations
can be given for the conditions of 4.2.

(i) The Ky Fan-concavity of @ — f(z,-) can be replaced by Konig-
concavity in view of 2.4.

(ii) Observe that, by writing My := {functions ¥ — (0, 00)}, the family
of all figures

U= {77 Llalu@ <1} (e my)

yeyYy

forms a neighbourhood basis of 0 for the topology ry on the space Y.
Therefore condition 4.1(ii) can be formulated elementarily as follows:
For every finite family {,...,y,} C Y and t;,...,t, > 0 with
71t = 1 and for every u € My there exist y* € Y and {(y/',t") i =
=1,...,7'} CY xRy such that n’ 2 n, 5’ = y; (i=1,...,n), Y &' =

b

FOu) S Yo fCy!) and Y[ -t lu(y) + Yty < L.

=1 i<n i>n

4.4. COROLLARY. If X is a compact space, Y isa setand f : X XY —
— R is a function such that

e c): W ey, f(y") S Lyey TW)F(-,y)} is dense in co(Y)
with respect to the topology Ty,

{T€ co(X):Iz* € X, f(-,2%) 2 dozex T(z)f(=,-)} is dense in co (X)
with respect to the topology Tx and the mapping z — f(z,-) is continuous
(cf. footnote ') then infsup f = supinf f.

PROOF. In view of 4.3(i) we need only to verify the Kénig concavity of

z — f(z,-).
Let z1,z2 € X be arbitrarily fixed. We have to find z* € X such that

f(=*,y) 2 (f(z1,9) + f(22,9)) /2 for all y € Y.
Given any € > 0 and finite subset F C Y, define

pep(z) = Y max|f(z,y)|/e  (z € X).
yEF

By the continuity of the mapping z ~ f(z,-), the function e F belongs to
M (for definition see 4.3(ii)). By assumption, we can choose zep € X
and Z. r € co(X) such that

f@er,)2 Y Fep(e)f(z,) and Fep -3 €U,
reX
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where T* := (1/2)1s, +(1/2)1s, and Uy, , denotes the Tx-neighbourhood
of 0 defined in 4.3(ii). It follows from the definition of U, , that

Y Ter(@)f(@,y)— Y Zc‘*(m)f(x,y)l <

z€X z€X
< Y |Zr(e) -7 (a)| max| f(-,9)| Se (v€ F).
z€X

In particular

f(@er,y) 2 Y Fer()f(z,9) 2 ) T (2)f(z,y) — € =

zeX zeX
= 3/@9)+ 3 (@ny)—¢ (vE F).

If z* is an accumulation point (with respect to the topology of X) of the net
(ze,r 1 € > 0, F finite C Y) then, by the continuity of the functions = —

= f(2,y) (y € Y) on the space X, we have f(z*,y) 2 (f(21,9)+ f(22,9)) /2
forally € Y.
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