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In [1] E. M. Niri3IN introduced the notions of superlinear and posi-
tive superlinear operators concerning his investigation on Fourier series with
respect to general orthonormal systems. According to [1], a mapping T :
E—~38(0, 1) where E is any Banach space is by definition superlinear if for
every ecE there exists a linear mapping L, : E~S(0, 1) such that Le=Te
and |L,f]=|Tf] for each f¢ E. Furthermore, if E = £LP(X, u) for some p=1
and for every e€E, L, can be chosen to be a positive linear mapping then T
is called a positive superlinear operator (L7 —S).

The aim of this paper is to examine these concepts in a vector lattice
theoretical setting.

DeriNITION 1. Let E, F be avector space and a vector lattice, respecti-
vely. A mapping T : E—~F is superlinear if for every ecE there exists L,€
¢ 2(E, F)such that L,e = Te and |L,|=|T|.(Throughout this work, we deal
with real vector spaces. The symbol |T| means the operator f—|Tf|.)

PRrOPOSITION 1. Suppose the space F is oder complete (for def. see [3]).
Then T : E—~F is superlinear if and only if |T| is a vector norm on E i.e. if,
| T(e,+¢5)| = | Tey| +|Tey| and |The,| = |2] [Tey] Ve, €L, 2€R.

PROOF. Let T : E—~F be superlinear. Then we can write | T| = sup |L,|.
ecE

But L is clearly a vector norm whenever L : E~F is linear.

Conversely, assume T is a vector norm on E and F is order complete.
Given ecE, define L on the subspace R, by Liie=ATe (AcR). We have
L%=|T| on R,. Thus by the generalized Hahn-Banach theorem [2], LY
admits a linear extension L, such that L,=|T|. To complete the proof, we
show—L,=|T|. Indeed, —L,f = L(=f)=|T(=/) = |Tf| V¥ s€E.

DEFINITION 2. Let E, F be vector lattices. A mapping T : E—~F is po-
sitive superlinear if for every e€E there exists L €L, (E, F) (i e. L,p=0
~ whenever p€E., (i.e.p=0in E)suchthat L,e = Teand |L,|=|T].
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THEOREM 1. Let E, F be vector lattices, T : E~F a superlinear operator.

Assume that the ordering of F is complete. Then equivalent are

(a) T is positive superlinear.
(b) ey=e, implies Te,<|Te,| and — Te,=<|Te,| for ail ey, 6 €E.
(¢) Bysetting P=|T| and Qe= inf P(e+ P), (e€E), we have

E

Qe=(Te)V ((—T—e)) for all e&E.

PRrOOF. (a)=(b) : Suppose T is superlinear and e;=¢, in E. Then choos-
18 Le,, L, in accordance with Definition 2, we obtain

Te, = Loy ey=Le, =Ly &) =|Tey)
nd

—Tey= —Le,ey = Loy(— ) <Le 0= |Ley 1] =|Te,].

(b)=>(c): Let p be any element of E. and ecE. An application of (b)
) ey=eand e;=e+p yields Pe+p) = |T(+e+p)|=Te. Similarly, if e, =
=—¢=p, e=—e we have P(e+p) = [T(e+p)| = |T(—e—p)|=—T(=e¢).

(c)=>(a): By assumption, P is a vector norm on E. Hence for any oy,
!€R+7 €y, ezeE and P1 P26E+,

1’22' och(ej+pj) = 1ZZ’P(ocjej-l— ocjpj)..>_P(i’ZZ' ocjej—{—%'ocjpj).

Since 3 «;p;€E,, too, it follows that Q is also a vector norm on E
1,2

et now eeE\{O} be arbitrarily given and define L?: Re—~F by Lo(2¢)=A Te
€R). Observe that Q(le) = AQe=by (©=2(Te)V(=T(—e)))=2Te =
+ Lg(2e) if 2=0 and Q%) = |2|Q(—e)=Dby(c)=|A| (T(=e)V(—Te)) =
(|A|T(—e)) V (ATe)=Te = L2(%e) if 2=0. Thus L¢=Q on Re. By the ge-
ralized Hahn— Banach theorem [2], L9 admits a linear extension L, to
such that L,=<Q.

Clearly L,=<P since Q=P. On the other hand, L,cL.(E, F) since
{=P)=Q(=p)=P(p—p) = 0 for all pcE,.

Next we turn our attention to the continuity properties of positive su-
rlinear operators. It seems that those ranging in S(0, 1) (as in Nikisin’s
iginal definition) are of particular importance among them because, as we
e, positive superlinear operators between locally convex topological vector
ttices are very rarely continuous unless being linear.

LemMma 1. If E, F are vector lattices and T : E~F is positive superlinear
en T is convex, positive homogeneous and positive valued when restricted
E,, furthermore T(—p) = — T, for all pcE,. '

Proor. If peE, then Lyp,L_,p=0.ButL,p= T,and L_,(—p) =
T(_, whence T, = |T,| and T(—-p) = —|T(-p) = —|T,| = —T,.
ws T coincides with |T'| on E,. This implies its convexity and homoge-
ity on E  since T is a vector norm.
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LemMa 2. Suppose T : RZ—R is a continuous positive superlinear map
ping. Then T is necessarily linear. ‘

Proor. We may assume also T=0. Then we have T(,, 4,)#0 for all
7, 29<0. Indeed, T(4;, 4y) = 0=y, A, would imply |L (2, 4o)| = [T (%, )| =
=01e.0 = L4, &) = 4L, (1, 0)+ 4, L0, 1) and hence L, = 0 (for L,€
€-£..(R? R) by Definition 2) for all e€R. Thus, by Lemma 1, range T contains
both positive and negative numbers. Since T is a vector norm,-t‘hl_s means
that the set @ ={e: Te = 0} is a 1 dimensional subspace of R?, disjoint from
(0, 22)X(0, ). Therefore we can find a linear functional p€.£, (R? R) such
that ¢(1, 1) = T(1, 1)>0and @ = {e: pe = 0}. Let f¢R? be arbitrarily fixed
and consider the linear functional L;. Since |Ls|=|T|, we have {¢: L;e = 9}
D@. Hence for some A€R,, L;= A@. To conclude, we prove i, = Ag
for all f g¢@. We may assume O<Js=A2, Then ,lof| = |L, f|=|Tf| =
= |Ls f| = As¢f| whence A = 4, completing the proof.

THEOREM 2. Let E, F be topological vector lattices and let Fi={pcF%)
o|fl = lgfl VfeF}. If F§ sparates the points of F then each continuous posi-
tive superlinear map T : E—~F s linear.

PRroor. Let us fix any g€ F¥. Observe that the functional ¢ o T is also
positive superlinear (E—~R). In fact, given e, =<e,, from Theorem 1. (b) we
obtain Te,=<|Te,|, —Te,=<|Te,| whence o¢Te,=g|Te,| = |pTe,| and
—o@Te,=g|Te)| = |9Te|. Now from Lemma 2. we see that for any p,,
ps€E,, the functional R®5(p;, o)~ 9T (0yp,+ 0sD,) is linear. Thus for all
€1, &,€Rp; +Rp, and 2€[0, 1],

1 1. 1 1 ‘
DT} —e,+—e, | ——Te, —-—Te,| = 0.
[ [2 3+ 5 ..] 5 ATy 2]

Since F¥ separates F, it follows

1 1 1 1
T|—e;+—e,| = —Te;+—Te
{2el+2 2] 2 T2

i.e. the mapping T is linear when restricted to any 2 dimensional subspace
of E spanned by positive elements. Thus if ¢, f E then

rlgergt ) =T [Gle e gera] = %T(e+ )+

1
T(er+fy)— —2!—T(e_ +f) = [%Te+ +—2—Tf+ } -

! =1
+oT(-e—j) = 5

' 1
_‘[%Te_ +—;~Tf_] = -;—(Te+ —Te_) Jr%(rf+ —Tf) Te+ 7Tf

1
2

___establishing the linearity of T.
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CorOLLARY 1. If E is a topological vector lattice and Q is a compact to-
ological space then each continuous positive superlinear map E-~C(Q) is
ineat. : A

Proor. The functionals 8,=[C(Q)ef—~f(x)] (x€Q) form a separating
amily in C(Q) and satisfy 8, |f| = [f(x)| = |3, f].

COROLLARY 2. If E is a topological vector lattice and u is an arbitrary
neasure then each continuous positive superlinear map E—L=(u) is linear.

Proor. By Kakutani’s representation theorem on M-lattices [3], each
.= — space is isometrically order isomorphic to some C(&2) space for suitable
ompact topological space.

CorOLLARY 3. If E is a topological vector lattice and 1=p=< then
very continuous positive superlinear map E —[? is linear.

Proor. Every continuous superlinear operator T : E—~IP can be viewed
s a continuous positive superlinear E —~[=. mapping. _

The following question arises from the above coroliaries: Is there any
ion-linear continuous positive superlinear operator LP (0, 1)~L%(0. 1) if
< o ? The answer is always affirmative in this case.

EXAMPLE. Let 1=p=e and l=¢<e. The mapping T:LF(O, 1)~
~L39(0, 1) defined by

1/2 /2 1
tffif | tf pl=0-Df 1

TfE[(O,l)Bt—» 0 1 0 12
(l—t)ff else

1/2
s positive supetlinear and continuous but non-linear.

PRroor. The non-linear character of T is obvious.
Continuity: Suppose f,~fin L?(0, 1) (n— ).

Now
1/2 2. 1 - 1
ffn—"j‘f and ffn_)ff} (n»oo),
. 0 0 ij2 1/2
Hence Tf,(f)—Tf(t) whenever
172 y 1 1/2 1
t [ 7|=|U=0ff|or |t [ pl=[0=0ff =0
by | i/2 0 ij2

i. e. almost everywhere. Since the sequence {|Tf,|};" consists of functions
1

majorized by the constant sup f |fnl, it follows
n 9

1 1/p .
1, ~Tflus = [ [ ITAO-TFOledt] 0, (n ),

-
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Rdsitive superlinearity: Given e€ LP(0, 1), it is immediate that the linear
mapping L, : LP(0, 1)~ L3(0, 1) defined by

12 12 1
,tff if ffe z-l(l—t)f e\
Lf=[(01)3t~ ¢! 2
(l—t)ff else
1/2

is positive and fulfills the requirements of Definition 2.
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