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On Hermitian interpolation of first order data with locally
generated C1-splines over triangular meshes

By László L. Stachó

Abstract. Given a system of triangles in the plane R2 along with given data of

function and gradient values at the vertices, we describe the general pattern of local

linear methods involving only four smooth standard shape functions which results in a

spline function fitting the given value and gradient data value with C1-coupling along

the edges of the triangles. We characterize their invariance properties with relevance for

the construction of interpolation surfaces over triangularizations of scanned 3D data.

The numerically simplest procedures among them leaving invariant all polynomials of

2-variables with degree 0 resp 1 involve only polynomials of 5-th resp. 6-th degree,

but the characterizations give rise to a huge variety of procedures with non-polynomial

shape functions.

1. Introduction

Recently [7] we published a C1-spline interpolation method over 2-dimensional

triangular meshes with polynomials of 5-th degree with low operational costs: us-

ing first order data (value and gradient) at the mesh vertices for input. The result

relies on the following basic tool: given a non-degenerate triangle with vertices

p1,p2,p3 ∈ R2 along with three values f1, f2, f2 ∈ R respectively three linear

functionals A1, A2, A3 ∈ L(R2,R) and three vectors u1,u2,u3 ∈ R2 such that

uk 6‖ pi − pj , we can construct a polynomial F : R2 → R of 5-th degree of the
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form F = F0 −H where

F0(x) =

3∑
i=1

[
Φ
(
λi(x)

)
fi + Θ

(
λi(x)

)
Ai(x− pi)

]
,

H(x) = λ1(x)2λ2(x)2λ2
3(x)2

3∑
k=1

λk(x)−1Mkuk
Gkuk

(1.1)

in terms of the barycentric weights λ1, λ2, λ3 : R2 → R of the triangle T =

Conv{p1,p2,p3} associated with the vertices and the shape functions

Φ(t) = t3(10− 15t+ 6t2), Θ(t) = t3(4− 3t) (1.2)

for an Hermite interpolant F0 on T with the data fi∈R, Ai∈L(R2,R) (i = 1, 2, 3).

The correction term H is defined by means of the linear functionals R2 → R

Gku = λ′ku =
d

dt

∣∣∣
t=0

λk(x + tu) = λk(x + u)− λk(x),

Mku =
∑

{i,j}={1,2,3}\{k}

[Giu]
(
30fi + 12Ai(pj − pi)

)
.

It is worth to notice that the function F0 in (1.1) restricted to the edge [pi,pk]

depends only on the terms fi, fj , Ai, Aj and the impact of the correction by adding

H results in the reduced side derivatives (RSD)

F ′(xt)uk = Θ(t)Aiuk + Θ(1− t)Ajuk for xt = tpi + (1− t)pj .

As a consequence, if we choose any family
{
uE : E being a mesh edge

}
of vectors

such that uE 6‖ E, by applying the construction (1.1) with the associated data over

every triangle of the mesh, we obtain a C1-smooth (continuously differentiable)

function on the union of the mesh triangles.

The shape functions Φ,Θ and also the RSD method described above appeared

in [7] without heuristic introduction. Actually they arose from our earlier study [8]

with somewhat restrictive postulates on the possible polynomial C1-interpolations

over triangular meshes based on computer algebraic analysis of technics developed

in [2],[5],[6],[11].

Our goal here is to characterize all RSD methods with shape functions

Ψ0,Ψ1∈ C1
(
[0, 1]

)
instead of (1.2). This requires a completely different approach

as that in [8] relying heavily upon polynomial identities. From our main result
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Theorem 3.5 it turns out that there is a very general pattern behind (1.1) with

F0(x) =

3∑
k=1

[
Ψ0

(
λk
)
fk + Ψ1

(
λk
)
Ak(x− pk)

]
,

H(x) =
∑

{`,m,n}={1,2,3}

G`un
Gnun

{
f`χ0(λ`, λm, λn)+A`(pm−p`)χ1(λ`, λm, λn)

}
.

(1.3)

If Ψ0,Ψ1 fulfill the minimal necessary condition (established in (2.1) later) for

giving rise to a Hermite interpolation of the type F0 in (1.3) then we can find

plenty of suitable functions χ0, χ1 ∈ C1
0(R3

+), namely those satisfying only the not

too restrictive conditions (3.6),(3.7), in order for H being an RSD correction for

F0. This degree of freedom enables various canonical constructions for the modi-

fiers χ0, χ1 in terms of the shape functions Ψ0,Ψ1 to ensure specific properties of

the interpolation operator F :
{

(pk, fk, Ak) :k=1, 2, 3
}
7→
[
F0+H by (1.3)

]
.

We complete the paper with the investigation of two essential properties of

the interpolant F having obvious importance in applications used to construct

smooth surfaces in the form of the graph of a function R2 → R passing through

a finite family of points in R3 (obtained as vertices of a triangularization from

scanned data):

(i) The range shift property F
{

(pk, 1, 0) : k = 1, 2, 3
}
≡ 1, that is all constant

functions remain invariant when interpolated with F. In this case the graph of

F
{

(pk, f(pk) + c, f ′(pk)) : k = 1, 2, 3
}

is just a shifted form of the graph of

F
{

(pk, f(pk), f ′(pk)) : k = 1, 2, 3
}

for any function f ∈ C1(R2).

(ii) Affinity invariance: F
{

(pk, Ax + b, A) : k = 1, 2, 3
}
≡ Ax + b. That is all

affine (constant+linear) functions remain invariant when interpolated with F. In

particular if the graph of a function Conv{p1,p2,p3} → R is a 3D plane triangle

then the function obtained with interpolation by F has the same graph.

In Section 4 we give a parametric classification of the procedures with range

shift property. Concerning affinity invariance, we have no complete results yet: in

Section 5 we provide several necessary and sufficient algebraic conditions. As a by

no means obvious fact, it turns out that the procedure (1.1) with the polynomials

(1.2) has range shift property but fails to be affinity invariant. We also provide

an affinity invariant procedure with polynomials of 6-th degree: namely that of

the form (1.3) with Ψ0 = Ψ1 = Φ and χ0(t1, t2, t3) = 30t21t
2
2t3, χ1(t1, t2, t3) =

30t21t
3
2t3.

Hermite interpolation involving triangular meshes became an attractive top-

ics nowadays, motivated by the enormous power of recent computer architectures.

Most highly intersting new works like [3],[4],[10] focus on methods with spectacu-

lar accuacy but involving large data for the values at generic points. In contrast,
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we primarily investigate the algebraic aspects of constructions resulting in inter-

polants over each mesh triangle being independent of the data outside its vertices.

Such constructions are suited in fitting a C1-surface to scanned data of points and

normal vectors of 2D surfaces in 3D not being homeomorphic to a plane (e.g.

sphere or torus). Though ”minimalist” approaches compromise the accuracy of

approximation, by modifying some ideas of [3, Section 2], one can prove that the

interpolation accuracy by an affinity invariant operator can be majorized with

the maximum norm of the second derivative of the underlying functions.

2. Preliminaries

For standard terminology, RN resp. RN+ stand for the set of all real resp.

non-negative N -tuples [ξ1, . . . , ξN ]. Actually, we shall only be interested in the

cases of dimensions N = 1, 2, 3.

Given a subset Ω of RN , we write C(Ω) for the family of all continuous func-

tions with domain Ω. If the interior Ω◦ of Ω is dense in Ω, we define C1(Ω)

as the set consisting of all functions f ∈ C(Ω) with continuous partial deriva-

tives D1f, . . . ,DNf on Ω◦ admitting a continuous extension to Ω with the value

denoted also by Dkf(x) at the points x ∈ Ω \ Ω◦. As a folklore consequence

of Whitney’s extension theorem [9], if Ω is closed in RN then every function

f ∈ C1(Ω) can be regarded as the restriction of a continuously differentiable func-

tion defined on RN . For any function f ∈ C1(Ω), we write f ′ for its Fréchet

derivative defined at any point x ∈ Ω as the linear functional

f ′(x)u =

N∑
k=1

Dkf(x)υk
(
u = [υ1, . . . , υN ]

)
.

In particular f ′(x)u = lim
t→0

t−1
[
f(x+tu)−fu

]
is the familiar directional derivative

at the points x ∈ Ω◦. If Ω has dense interior, for k = 0, 1 we define Ck0 (Ω) ={
f ∈ Ck(Ω) : f(x)=0

(
x∈Ω\Ωo

)}
(so that e.g. xy/(x2 + y2)∈C1

0(R2
+\{(0, 0)}).

Given any subset P ⊂ R2, we write Conv(P) for its convex hull. If P =

{p1,p2,p3} and the triangle T = Conv(P) is non-degenerate, the barycentric

weights (weight functions associated to the vertices) [1] are the functions

λi = λT
pi

: x 7→
det
[
x− pj ,x− pk

]
det
[
pi − pj ,pi − pk

] with (i, j, k) ∈ S3

where

S3 =
{

(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2), (1, 3, 2)
}
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denotes the set of all permutations of the indices 1, 2, 3. For the sake of brevity,

in the sequel we omit the background parameters in most formulas (like writing

λi=λT
pi

above) without danger of confusion. It is well-known that the mapping

x 7→ [λ1(x), λ2(x), λ3(x)] is a homeomorphism between T and the 3D-unit simplex

∆3 :=
{

[t1, t2, t3] ∈ R3
+ : t1 + t2 + t3 = 1

}
,

moreover [λ1(x), λ2(x), λ3(x)] is the unique triple of non-negative numbers such

that x=
∑
k λk(x)pk and

∑
k λk(x)=1. Furthermore λ1, λ2, λ3 : R2→R are affine

(linear+constant) functions with the necessarily constant Fréchet derivatives

Giu := λ′i(x)u =
d

dt

∣∣∣
t=0

λi(x + tu) independently of x.

Given any pair Ψ = [Ψ0,Ψ1] with Ψ0,Ψ1 ∈ C1
(
[0, 1]) such that

Ψ0(0) = Ψ′0(0) = Ψ1(0) = Ψ′1(0) = Ψ′0(1) = 0, Ψ0(1) = Ψ1(1) = 1 (2.1)

we introduce the basic triangular interpolation of first order with the shape func-

tions Ψ0,Ψ1 as the operator

FΨ
0 :

{
(pk, fk, Ak)

}3

k=1
7→

3∑
k=1

{
Ψ0

(
λk
)
fk+Ψ1

(
λk
)
Ak
(
x−pk

)}
(2.2)

defined for all first order function germs
{

(pk, fk, Ak) : k = 1, 2, 3
}

with T =

Conv{p1,p2,p1} ⊂ R2 being a non-degenerate triangle, fk ∈ R and Ak ∈
L(R2,R) in terms of the weights λk = λT

k . By definition, the domain of the

function F0 = FΨ
0

{
(pk, fk, Ak)

}3

k=1
is only the triangle T and F0 ∈ C1(T). By

straightforward calculation, for its Fréchet derivative we have

F ′0 =

3∑
k=1

{[
Ψ′0
(
λk
)
fk +

[
Ψ′1
(
λk
)
Ak
(
x− pk

)]
Gk + Ψ1

(
λk
)
Ak

}
. (2.3)

Remark. 2.4. (a) Conditions (2.1) do not restrict the value of Ψ′1(1).

(b) In view of (2.2) and (2.3), it is not hard to see that (2.1) is sufficient and

necessary for F0 to satisfy the relations

F0

(
pi
)

= fi, F ′0
(
pi
)

= Ai (i = 1, 2, 3) (2.5)

under any choice of the first order function germs
{
pk, fk, Ak)

}3

k=1
.

(c) We can express the terms Ak(x − pk) appearing in (1.3), (2.2) resp.

(2.3) in the form of linear combination of the weights due to the identity x =∑3
i=1 λi(x)pi as

Ak(x− pk) =

3∑
i=1

Ak(pi − pk)λi.
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Definition. 2.6. Henceforth we say that Ψ = [Ψ0,Ψ1] is a pair of admissible

shape functions if Ψ0,Ψ1 ∈ C1([0, 1]) and (2.1) holds. We also say for short

that
{

(pk, fk, Ak)
}3

k=1
is an admissible function germ if p1,p2,p3 ∈ R2 form a

non-degenete triangle, fk ∈ R and Ak ∈ L(R2,R).

As an immediate consequence of (2.3), since

λi
(
pj
)

= δij , Gi
(
pj − pk

)
= δij − δik,

λi(x
k
t ) = t, λj(x

k
t ) = 1− t, λk(xkt ) = 0,

xkt − pi = (1− t)(pj − pi), xkt − pj = t(pi − pj),

(2.7)

we obtain the following observation.

Lemma. 2.8. Given an admissible pair Ψ = [Ψ0,Ψ1] of shape functions

along with an admissible function germ g =
{

(pk, fk, Ak)
}3

k=1
, if i, j, k ∈ {1, 2, 3}

are three different indices then, at the generic point

xkt := tpi + (1− t)pj (0 ≤ t ≤ 1) (2.9)

of the edge [pi,pj ] in the triangle T = Conv{p1,p2,p3}, for the function F0 =

FΨ
0 g we have

F0

(
xkt
)

= Ψ0(t)fi + Ψ1(t)(1− t)Ai(pj − pi)+

+ Ψ0(1− t)fj + Ψ1(1− t)tAj(pi − pj);

F ′0
(
xkt
)

=
[
Ψ′0(t)fi + Ψ′1(t)(1− t)Ai(pj − pi)

]
Gi + Ψ1(t)Ai+

+
[
Ψ′0(1− t)fj + Ψ′1(1− t)tAj(pi − pj)

]
Gj + Ψ1(1− t)Aj .

(2.10)

3. Generic algorithm of reduced side derivatives (RSD)

In this section we are looking for C1-spline interpolation procedures analogous

to those described in [7] but with more general shape functions Ψ0,Ψ1 ∈ C1[0, 1]

instead of Φ,Θ there.

Henceforth let p1,p2,p3 ∈ R2 be the vertices of some (arbitrarily fixed) non-

degenerate triangle T with respective weight functions λm : R2→R and derivative

weights Gm := λ′m∈L(R2,R) (m=1, 2, 3) and let u1,u2,u3 ∈ R2 be given vectors

such that uk 6‖ pi − pj whenever (i, j, k) ∈ S3.

Furthermore Ψ=[Ψ0,Ψ1] resp. g=
{

(pk,fk,Ak)
}3

k=1
denote a fixed admissi-

ble pair of shape functions and a function germ. As earlier, we write

F0 = FΨ
0 g.

Our starting point is the following immediate consequence of (2.10):
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Remark. 3.1. Let H ∈ C1
0(T). Then the function F := F0 − H coincides

with F0 along the edges of T and hence, at the vertices, it has also the properties

F (pi) = fi, F (pi) = Ai (i = 1, 2, 3) analogous to (2.5).

Definition. 3.2. We say that the function

F = F0 −H, H ∈ C1
0(T) (3.3)

is an RSD modification of F0 (with respect to the directions u1,u2,u3 along

the edges
[
p2,p3

]
,
[
p3,p1

]
,
[
p1,p2

]
respectively) if for any index pemutation

(i, j, k) ∈ S3,

F ′
(
x
)
uk=Ψ1

(
λi(x)

)
Aiuk + Ψ1

(
λj(x)

)
Ajuk whenever x∈

[
pi,pj

]
.

Conveniently, in this case we refer to H as an RSD modifier of F0.

According to Lemma 2.8, we have the following.

Corollary. 3.4. A function H ∈ C1
0(T) is an RSD modifier of F0 with

respect to the directions uk along the edges
[
pi,pj

]
if and only if

H ′
(
xkt
)
uk =

[
Ψ′0(t)fi + Ψ′1(t)(1− t)Ai(pj − pi)

]
[Giuk]+

+
[
Ψ′0(1− t)fj + Ψ′1(1− t)tAj(pi − pj)

]
[Gjuk]

whenever xkt = tpi + (1− t)pj with (i, j, k) ∈ S3 and 0 ≤ t ≤ 1.

Theorem. 3.5. Let Ω ⊂ R3 be a set whose interior contains ∆3∩(0, 1)3. As-

sume χ0, χ1 ∈ C1(Ω) are functions vanishing along the edges ∆3,k=
{

(t1, t2, t3)∈
∆3 : tk=0

}
(k = 1, 2, 3) of ∆3 such that

D3χ0(t, 1− t, 0) = Ψ′0(t), D3χ1(t, 1− t, 0) = Ψ′1(t) · (1− t) (3.6)

with the following marginal conditions on the derivatives

χ′r(t) = 0
(
t ∈ ∆3,1 ∪∆3,2

)
; Dmχr(t) = 0

(
t ∈ ∆3,3, m = 1, 2

)
. (3.7)

Then the function H in (1.3) is an RSD modifier for F0 under any choice of the

vectors u1,u2,u3 with ui 6‖ pj − pk
(
(i, j, k) ∈ S3

)
.

Proof. Consider any permutation (i, j, k) ∈ S3. According to Corollary 3.4,

it suffices to see that, at the points xt = tpi + (1− t)pj we have

H(xt) = 0,

H ′(xt)uk =
[
Ψ′0(t)fi + Ψ′1(t)(1− t)Ai(pj − pi)

]
Giuk+

+
[
Ψ′0(1− t)fj + Ψ′1(1− t)tAj(pi − pj)

]
Gjuk.

(3.8)
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Notice that, in terms of the triples

t`,m,n=
(
λ`(xt), λm(xt), λn(xt)

) (
(`,m, n) ∈ S3

)
,

and by setting (`,m, n)1 =`, (`,m, n)2 =m, (`,m, n)3 =n, we can write

H(xt) =
∑

(`,m,n)∈S3

G`un
Gnun

[
f`χ0(t`,m,n) +A`(pm − p`)χ1(t`,m,n)

]
,

H ′(xt)uk =
∑

(`,m,n)∈S3

G`un
Gnun

[
f`

[ 3∑
q=1

Dqχ0(t`,m,n)G(`,m,n)quk

]
+

+A`(pm − p`)
[ 3∑
q=1

Dqχ1(t`mn)G(`,m,n)quk

]}
.

Observe that we have tijk = (t, 1 − t, 0) ∈∆3,3, tjik = (1 − t, t, 0) ∈∆3,3, tikj =

(t, 0, 1 − t) ∈ ∆3,2, tkij = (0, t, 1 − t) ∈ ∆3,1, tjki = (1 − t, 0, t) ∈ ∆3,2, tkji =

(0, 1 − t, t) ∈ ∆3,1. Hence the relation H(xt) = 0 is immediate. According to

(3, 7), all the terms Dqχr(t`,m,n) vanish except for the cases with λn(xt) = 0

and q = 3 that is for (q, r, `,m, n) ∈
{

(3, r, i, j, k), (3, r, j, i, k) : r = 0, 1
}

. In

view of (3.6) we have D3χ0(tijk) = Ψ′0(t), D3χ0(tjik) = Ψ′0(1− t), D3χ1(tijk) =

Ψ′1(t)(1−t), D3χ1(tjik) = Ψ′1(1−t)t which completes the proof of (3.8) and hence

the theorem. �

Definition. 3.9. Let [Ψ0,Ψ1] be an admissible pair of shape functions and let

χ0, χ1 ∈ C1(Ω) on a set Ω ⊂ R3 containing ∆3. We say that Π = [Ψ0,Ψ1, χ0, χ1]

is an RSD tuple if the expression H in (1.3) is an RSD modifier for F0 under

any choice ui 6‖ pj − pk ((i, j, k) ∈ S3). In particular we say that Π is an RSD∗
tuple if χ0, χ1 are functions satisfying the requirements of Theorem 3.5. Clearly

[Ψ0,Ψ1, χ0|∆3
, χ1|∆3

] is and RSD tuple if Π is an RSD∗ tuple.

Lemma. 3.10. Given any function h∈C0(R2
+), there exists χ∈C1

0(R3
+) such

that for all t1, t2, t3 ≥ 0 we have

0 = Dmχ(0, t2, t3) = Dm(t1, 0, t3) = Dm(t1, t2, 0) (m = 1, 2),

h(t1, t2) = D3χ(t2, t2, 0), 0 = D3χ(0, t2, t3) = D3χ(t1, 0, t3).

Proof. For t = (t1, t2, t3) ∈ R3
+, define the smoothing

ĥ(t)=
1

t23

∫ t1+t3

s1=t1

∫ t2+t3

s2=t2

h(s1, s2) ds2ds1 (t3>0), ĥ(t)=h(t1, t2) (t3 =0)
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of h(t1, t2, 0) and let us fix a function φ ∈ C1
(
[0, 1]

)
(e.g. φ(t) = 3t2 − 2t3) with

bounded derivative and being such that φ(0) = φ′(0) = φ′(1) = 0 and φ(1) = 1.

We show that the function

χ(t1, t2, t3) = φ
( t1
t1 + t3

)
φ
( t2
t2 + t3

)
t3ĥ(t1, t2, t3) (t1, t2 ≥ 0, t3 > 0)

extended with χ(t1, t2, 0) = 0 suits the requirements of the lemma.

It is folklore that, by the Newton-Leibniz theorem, the function ĥ is contin-

uous, moreover its restriction to R2
+×R++

(
= {(t1, t2, t3) : t1, t2 ≥ 0, t3 > 0}

)
is

C1 smooth. In particular, for any point t = (t1, t2, t3) with t3 > 0 and t1 = 0 or

t2 = 0 we have χ(t) = 0 and χ′(t) = 0. Furthermore, for any point t ∈ R+×R++,

with the indices m = 1, 2 resp. 3 we can write

Dmχ(t) =φ
( t3−m
t3−m+t3

)[
φ′
( tm
tm+t3

) t23
(tm+t3)2

ĥ(t)+φ
( tm
tm+t3

)∂[t3ĥ]

∂t1

]
,

D3χ(t) = −φ′
( t1
t1 + t3

)
φ
( t2
t2 + t3

) t1t3
(t1 + t3)2

ĥ(t) −

− φ
( t1
t1 + t3

)
φ′
( t2
t2+ t3

) t2t3
(t2 + t3)2

ĥ(t) + φ
( t1
t1+ t3

)
φ
( t2
t2+ t3

)∂[t3ĥ]

∂t3
.

Therefore it only remains to prove that given any point t∗ = (t∗1, t
∗
2, 0) ∈ R3

+ we

have
Dmχ(t)→0 (m=1, 2), D3χ(t)→h(t∗1, t

∗
2)

whenever R2
+× R++3t→t∗.

(3.11)

Actually, these relation follow from the mean value expressions

∂[t3ĥ]

∂tm
=

1

t3

∫ t3−m+t3

s2=t3−m

[
h(tm + t3, s2)− h(tm, s2)

]
ds2 =

= h
(
tm + t3, r3−m(t)

)
− h
(
tm, q3−m(t)

)
,

∂[t3ĥ]

∂t3
= − 1

t23

∫ t1+t3

s1=t1

∫ t2+t3

s2=t2

h(s1, s2) ds2 ds1 +

+
1

t3

∫ t2+t3

s2=t2

h(t1 + t3, s2) ds2 +
1

t3

∫ t1+t3

s1=t1

h(s1, t2 + t3) ds1 =

= −h
(
p1(t), p2(t)

)
+ h
(
t1 + t3, r2(t)

)
+ h
(
r1(t), t2 + t3

)
with suitable

p1(t), q1(t), r1(t) ∈ [t1, t1 + t3], p2(t), q2(t), r2(t) ∈ [t2, t2 + t3].
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Indeed, let R2
+×R++ 3 t→ t∗ = (0, t∗2, t

∗
3). Then p(t)→ (t∗1, t

∗
2), qm(t), rm(t)→

t∗m (m = 1, 2), whence ∂[t3ĥ]/∂tm → 0 (m = 1, 2) and ∂[t3ĥ]/∂t3 → h(t∗1, t
∗
2).

Since the function (s, t) 7→s/(s+t) is analytic on the open half plane {(s, t)∈R2 : s+

t>0} containing the rays R1 =R++×{0} resp. R2 ={0}×R++, (3.11) is immediate

in the cases t∗ ∈ Rm (m = 1, 2). If R2
+×R++ 3 t→ (0, 0, 0), we can deduce (3.11)

from the facts that, for ` = 1, 2, 3, the functions t`t3/(t` + t3)2, t23/(t` + t3)2 resp.

Φ
(
t`/(t`+t3)

)
,Φ′
(
t`/t`+t3)

)
are bounded, furthermore ∂[t3ĥ]/∂t`→h(0, 0)=0. �

Corollary. 3.12. By Theorem 3.5 and Lemma 3.10, for any admissible pair

[Ψ0,Ψ1], there exist χ0, χ1 ∈ C1
0

(
R3

+ \ {(0, 0, 0}
)

such that [Ψ0,Ψ1, χ0, χ1] is an

RSD∗-tuple.

Remark. 3.13. It is an immediate corollary of Theorem 3.5 that given any

RSD∗ tuple [Φ0,Ψ1, χ0, χ1], [Ψ0,Ψ0, χ0, χ0(t1, t2, t3)t2] is also an RSD∗ tuple.

Unfortunately, our convolution type generic construction provided by the

proof of Lemma 3.10 is far from being optimal in most cases from numerical view

points. In contrast, in view of Theorem 3.5, in many cases we may apply the

following satisfactory construction:

Proposition. 3.14. If [Ψ0,Ψ1] is an admissible pair of shape functions and

h0, h1 ∈ C1
0(R2

+) are functions such that h0(t, 1− t) = Ψ′0(t) and h1(t, 1− t) =

Ψ′1(t)(1−t) (0≤ t≤1) then [Ψ0,Ψ1, χ0, χ1] is an RSD∗ tuple with

χr(t1, t2, t3) = hr(t1, t2)t3 (r = 0, 1).

Example. 3.15. Cases with a factorization

Ψ′0(t) = w01(t)w02(1− t), Ψ′1(t)(1− t) = w11(t)w12(1− t)

for suitable functions wrk ∈ C1
0(R+) such that wrk(0) = w′rk(0) = 0.

(a) The procedure (1.1) with the shape functions (1.2) corresponds to the case

[Ψ0,Ψ1] = [Φ,Θ], χ0(t1, t2, t3) = 30t21t
2
2t3, χ1(t1, t2, t3) = 12t21t

2
2t3 with w01(t) =

30t2, w11(t) = 12t2, w02(t) = w12(t) = t2 since Φ′(t) = 30t2(1− t)2 and Θ′(t) =

12t2(1−t).
(b)

[
Φ,Φ, 30t21t

2
2t3, 30t21t

3
2t3
]

is an RSD∗ tuple by Proposition 3.14, corre-

sponding to the case w01(t) = w11(t) = 30t2, w02(t) = t2, w12(t) = t3.

(c) Let ΨH(t) = 3t2−2t3 be the 1-dimensional basic Hermite polynomial.

Then
[
ΨH ,ΨH , χH , χH(t1, t2, t3)t3

]
is an RSD∗ tuple with the choice

χH(t1, t2, t3)=
3t3
2

2∏
k=1

[
3t2k

(tk+t3)2
− 2t3k

(tk+t3)3

]
(2tk+t3)
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obtained by taking h(t1, t2) = 6t1t2 and φ = ΨH for smoothing weight func-

tion. Notice that, by the classification in [8], there is no RSD tuple of the form

[ΨH ,ΨH , ∗, ∗] since deg(ΨH) < 5.

(d) As for an RSD∗ tuple with non-polynomial shape functions, the perhaps

simplest example is
[
ΨS ,ΨS , χS , χS(t1, t2, t3)t2

]
with ΨS(t) = sin2(πt/2) and

χS(t1, t2, t3) =
16

πt3
sin2

(π
4
t3

) 2∏
k=1

sin2

(
π

2

tk
tk+t3

)
sin
(π

4
(2tk + t3)

)
obtained with the construction in the proof of Lemma 3.5 using h(t1, t2) =

π sin
(
πt1/2

)
sin
(
πt2/2

)
and Φ(t) = ΨS(t), respectively.

(e) Since 16(πt3)−1 sin2(πt3/4)=πt3+o(t
2
3)=2 sin(πt3/2)+o(t23), the function

χ̃S(t1, t2, t3) = 2 sin
(π

2
t3

) 2∏
k=1

sin2

(
π

2

tk
tk+t3

)
sin
(π

4
(2tk + t3)

)
also satisfies the relations (3.6) and (3.7). That is

[
ΨS ,ΨS , χ̃S , t2χ̃S

]
is an RSD∗

triple with algebraically simpler expressions for the shape functions in (d).

(f) By restricting χS to the simplex ∆3, due to the relations
∑
i ti = 1(

(t1, t2, t3)∈∆3

)
, we can write

∏2
k=1 sin

(
(π/4)(2tk+t3)

)
= cos

(
(π/2)(t1−t2)

)
/2.

Thus the tuple ΠS∆ =
[
ΨS ,ΨS , χS∆, t2χS∆

]
defined in terms of the expression

χS∆(t1, t2, t3) = sin
(π

2
t3

)
cos
(π

2
(t1 − t2)

) 2∏
k=1

sin2

(
π

2

tk
1− t3−k

)
is an RSD∗ tuple: despite its different algebraic form, it fulfills the marginal

conditions (3.6), (3.7). By replacing the variables ti with the weight functions λi,

we obtain the same interpolating functions as with the formulas in (e).

(g) Given any RSD∗ tuple Π =
[
Ψ0,Ψ1, χ0, χ1

]
along with a function ϑ ∈

C1(R) such that ϑ(1) = 0 6= ϑ′(1), its perturbation Πϑ =
[
Ψ0,Ψ1, χ0 +ϑ(s), χ1

]
where s = t1 + t2 + t3 is an RSD tuple but no RSD∗ tuple.

Remark. 3.16. It is an easy consequence of Whitney’s extension theorem [9]

that for any function ψ ∈ C([0, 1]) with ψ(0) = ψ′(0) = ψ′(1) = 0 there exists a

function h ∈ C1
0(R2

+) such that ψ′(t) = h(t, 1 − t). Hence every admissible pair

[Ψ0,Ψ1] with the property Ψ′0(1) = 0 admits functions h0, h1 ∈ C(R2
+) such that

[Ψ0,Ψ1, h0(t1, t2)t3, h1(t1, t2)t3] is an RSD∗ tuple.

We complete this section with a brief description of the local approximation

operator corresponding to Theorem 3.5 and its use in constructing C1-splines over

a 2D triangular mesh analogously as done in [7, Algorithm].
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Definition. 3.17. Let Π = [Ψ0,Ψ1, χ0, χ1] be an RSD tuple and write Ψ =

[Ψ0,Ψ1] resp. X = [χ0, χ1]. We introduce the RSD modification of FΨ by means

of the complementary shape functions X as the operator

FΠ:
{

(pk,fk,Ak,uk)
}3

k=1
7→ FΨ

{
(pk,fk,Ak)

}3

k=1
− HX

{
(pk,fk,Ak,uk)

}3

k=1

defined for all tuples
{

(pk,fk,Ak,uk)
}3

k=1
where

{
(pk,fk,Ak)

}3

k=1
is a non-de-

generate function germ and uk 6‖ pi− pj
(
(i, j, k) ∈ S3

)
and

HX
{

(pk,fk,Ak,uk)
}3

k=1
=
[
H in (1.3)

]
.

Recall [7] that, given a set V =
{
v1, . . . ,vR

}
of points in R2, by a triangular

mesh over V we mean a family
{
T1, . . . ,TM

}
⊂ R2 of non-degenerate triangles

of the form

Tm = Conv
{
vi(m,1),vi(m,2),vi(m,3)

}
, i(m, 1) < i(m, 2) < i(m, 3)

with pairwise disjoint interiors whose intersections are either empty or a common

vertice or a common edge, furthermore V ⊂
⋃M
m=1 Tm. A crucial ingredient

of the construction, we enumerate the edges of the mesh triangles Tm in the

form E1, . . . ,ES and associate a vector us 6‖ Es with each edge Es, furthermore

let s(m, k) denote the index of the opposite edge to the vertex vm(i,k) in the

triangle Tm. By replacing Φ,Θ with Ψ0,Ψ1, respectively the functions 30λ2
iλ

2
jλk,

12λ2
iλ

2
jλk with χ0, χ1 in a straightforward manner in [7, Proof of Thm. 2], we can

conclude the following: Given any germ
{

(vi, fi, Ai)
}R
i=1

of first order function

data over V, the union of the functions

Fm= FΠ
{(

vi(m,k), fi(m,k), Ai(m,k),us(m,k)

)}3

k=1
∈ C1(Tm) (m=1, . . . ,M)

is continuously differentiable on the mesh domain D =
⋃M
m=1 Tm.

4. Range shift property

One of the most frequent applications of splines over triangular meshes is

reconstructing approximately a smooth surface with a function graph passing

through a family of points. Such procedures correspond to a model of the following

pattern: We are given a smooth surface S ⊂ R3 which can be represented in

the form S = graph(f) =
{[

p, f(p)
]

: p ∈ R2
}

with some (a priori unknown)
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function f ∈ C1(R2). Accurate data (obtained with scanner equipments) are

available for a finite family of points v1, . . . ,vN ∈ R2 concerning the first order

data f [1](p) =
[
p, f(p), f ′(p)

]
and we approximate a piece of S with the graph

of a C1-spline function F ∈ C1(D) on the domain D of a triangular mesh with

vertices vn. The procedures used in constructing F are usually investigated from

the view points of estimating various biases between graph(F ) and S, respectively

from exhibiting features of algebraic-geometric character. In this note we only

discuss two kinds of the last category in the context of RSD methods: if the spline

graps are invariant with respect to tranlations of first order data and the property

that plane surfaces remain invariant.

Definition. 4.1. Throughout this section [P,U] denotes an admissible pair

of triples P =
{
pi
}3

i=1
,U =

{
ui
}3

i=1
with pi,ui ∈ R2. We write T = Conv(P)

and λ1, λ2, λ3 resp. G1, G2, G3 for the weight functions resp. their derivatives

associated with the vertices of the triangle T. Given any function f ∈ C1(R2), we

shall use the shorthand notations

f
[1]
P,U =

{[
pi, f(pi), f

′(pi),ui
]}3

i=1
, FΠ

P,Uf = FΠf
[1]
P,U.

An RSD tuple Π = [Ψ0,Ψ1, χ0, χ1] has the range shift property if the procedure

FΠ leaves the constant functions invariant, that is if for all admissible pairs P,U

and the constant unit function 1 : R2 3 x 7→ 1 we have

FΠ
P,U1 = 1|T

Remark. 4.2. Since 1(pi)=1, 1′(pi)ui=0, we can write

FΠ
P,U1 =

3∑
i=1

Ψ0(λi)−
∑

(`,m,n)∈S3

G`un
Gnun

χ0(λ`, λm, λn) =

=

3∑
n=1

{
Ψ0(λn)−

[
G`nun
Gnun

χ0(λ`n , λmn
, λn)+

Gmun
Gnun

χ0(λmn
, λ`n , λn)

]}

with (`1,m1) = (2, 3), (`2,m2) = (1, 3), (`3,m3) = (1, 2).

Lemma. 4.3. For any α1, α2, α3 ∈ R there exist u1,u1,u1 ∈ R2 such that

[
Giuj
Gjuj

]3

i,j=1

=

 1 −1− α2 α3

α1 1 −1− α3

−1− α1 α2 1

 .
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Proof. A suitable choice is u1 = p1 − 1
2 [p2 + p3] + ( 1

2 + α1)[p2 − p3],

u2 = p2− 1
2 [p3+p1]+( 1

2 +α2)[p3−p1], u3 = p3− 1
2 [p1+p2]+( 1

2 +α3)[p1−p2]. �

Proposition. 4.4. An RSD tuple Π = [Ψ0,Ψ1, χ0, χ1] has range shift prop-

erty if and only if

Ψ0(t) + Ψ0(1− t) = 1, Ψ′0(t) = Ψ′0(1− t) (0 ≤ t ≤ 1),

χ0(t1, t2, t3) = χ0(t2, t1, t3)
(
(t1, t2, t3) ∈ ∆3

) (4.5)

and 1 =
3∑
i=1

Ψ0(λi) +
∑

(`,m,n)∈S+
3

χ0(λ`, λm, λn).

Proof. Consider the points xt = tp1 + (1− t)p2 (0 ≤ t ≤ 1). Since 1′ ≡ 0,

1(xt) = 1, λ1(xt) = t, λ2(xt) = 1− t, and λ3(xt) = 0, by assumption

1 = 1(xt) = FΠ
P,U1 (xt) =

3∑
i=1

Ψ0

(
λi(xt)

)
= Ψ0(t) + Ψ0(1− t) + Ψ0(0)

where Ψ0(0) = 0 due to (2.1). Thus in view of Remark 4.2 and Lemma 4.3, the

expression of FΠ
P,U1 has the form

FΠ
P,U1 =

3∑
n=1

{
Ψ0(λn)−

[
αnχ0(λ`n , λmn

, λn)+(−1− αn)χ0(λmn
, λ`n , λn)

]}
where the coefficients α1, α2, α3 may assume any real value. This is possible only

if FΠ
P,U1 =

3∑
i=1

Ψ0(λi) + χ0(λ`, λm, λn) + χ0(λ`, λm, λn) + χ0(λ`, λm, λn) and

χ0(λ`n , λmn
, λn) = χ0(λmn

, λ`n , λn) (n = 1, 2, 3).

In particular, for n = 3 and given a generic point x =
3∑
k=1

tkpk
(
with

∑
k tk =

1, tk ≥ 0
)

of the triangle T we get χ0(t1, t2, t3) = χ0

(
λ1(x), λ2(x), λ3(x)

)
=

χ0

(
λ2(x), λ1(x), λ3(x)

)
=χ0(t2, t1, t3) which completes the proof. �

Lemma. 4.6. Given any smooth function φ defined on a domain Ω ⊂ R3

containing ∆3 and given any point x ∈T, for the function f = φ(λ1, λ2, λ3) we

have f ′(x) = 0 if and only if

D1φ(t) = D2φ(t) = D3φ(t) where t =
(
λ1(x), λ2(x), λ3(x)

)
.
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Proof. For any vector u ∈ R2 we have f ′(x)u =
∑3
k=1Dkφ(t)Gku. Hence

the statement is immediate from the relation
{

(G1u, G2u, G3u) : v ∈ R2
}

={
(α1, α2, α3) :

∑
k αk = 0

}
.
(
Actually, given any triple (i, j, k) ∈ S3 of indices,

by taking u = pi − pj we have Giu = 1, Gju = −1, Gku = 0 implying Diφ(t) =

Djφ(t) if f ′(x)u = 0
)
. �

Corollary. 4.7. An RSD∗ tuple Π = [Ψ0,Ψ1, χ0, χ1] has range shift prop-

erty if and only if (4.5) holds and

∂Σ

∂t1
(t1, t2, t3)=

∂Σ

∂t2
(t1, t2, t3)=

∂Σ

∂t3
(t1, t2, t3)

(
(t1, t2, t3)∈∆3

)
, (4.8)

Σ(t1, t2, t3)=
3∑
i=1

Ψ0(ti) +
∑

(`,m,n)∈S+
3

χ0(t`, tm, tn), S+
3 ={(1,2,3), (2,3,1), (3,1,2)}.

Proof. We established that Π has range shift property if and only if

Σ
(
λ1(x), λ2(x), λ3(x)

)
= 1

(
x∈Conv(P)

)
. (4.9)

Since Π is an RSD tuple, in any case we have FΠ
P,U(pi) = 1 (i = 1, 2, 3). Hence

the relation (4.9) holds if and only if the Fréchet derivative of the function FΠ
P,U1

vanishes, that is if [
Σ(λ1, λ2, λ3)

]′
(x) = 0

(
x∈Conv(P)

)
. (4.9′)

An application of Lemma 4.6 with φ = Σ completes the proof. �

Example. 4.10. The RSD procedures corresponding to tuples of the form[
t3(10 − 15t + 6t2), ∗, 30t21t

2
2t3, ∗

]
as in Examples 3.15 have range shift property.

This highly non-trivial fact can easily be established by verifying (4.8) as follows.

In such cases, we have

Σ(t1, t2, t3)=

3∑
i=1

t3i (10− 15ti + 6t2i ) + 30
(
t21t

2
2t3 + t22t

2
3t1 + t23t

2
1t2)

and it suffices to show that the polynomial ∂Σ
∂t1

is symmetric in t1, t2, t3 when

replacing t1 = 1−t2−t3. Since
[
t3(10−15t+6t2)

]′
= 30t2(1−t)2, if (t1, t2, t3) ∈ ∆3

then
[
t31(10− 15t1 + 6t21)

]′
= 30t21(t2 + t3)2 and

1

30

∂Σ

∂t1
= t21(t2 + t3)2 + 2t1t

2
2t3 + t22t

2
3 + 2t23t1t2 =

= t21t
2
2 + t21t

2
3 + t22t

2
3 + 2t1t2t3(t1 + t2 + t3) = t21t

2
2 + t21t

2
3 + t22t

2
3 + 2t1t2t3.
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Definition. 4.11. We say that a function Ψ ∈ C1([0, 1]) is d-symmetric if

Ψ′(t) = Ψ′(1− t) (0 ≤ t ≤ 1).

Corollary. 4.12. If Π = [Ψ0,Ψ1, χ0, χ1] is an RSD tuple with d-symmetric

shape function Ψ0 then Π[s] = [Ψ0,Ψ1, χ
[s]
0 , χ1] with

χ
[s]
0 (t1, t2, t3) =

1

2
χ0(t1, t2, t3) +

1

2
χ0(t2, t1, t3) (4.13)

is also an RSD tuple such that

FΠ[s]

P,U1 =
∑

(`,m,n)∈S3

{1

2
Ψ0(λ`) + χ[s](λ`, λm, λn)

}
. (4.14)

Proof. The marginal conditions (3.7) for χ
[s]
0 are immediate. As a conse-

quence of the d-symmetry of Ψ0, we have

D3χ
[s]
0 (t, 1− t, 0) =

1

2
D3χ0(t, 1− t, 0) +

1

2
D3χ0(1− t, t, 0) =

=
1

2
Ψ′0(t) +

1

2
Ψ′0(1− t) = Ψ′0(t)

establishing that Π[s] is an RSD tuple. Due to the symmetry of χ
[s]
0 in the

variables t1, t2 in Remark 4.2 applied to χ
[s]
0 , we can write

FΠ
P,U1 =

3∑
n=1

{
Ψ0(λn)−

[[G`nun
Gnun

+
G`mun
Gnun

]
χ0(λ`n , λmn , λn)

]}
.

Taking Lemma 4.3 into account, we obtain (4.14). �

Theorem. 4.15. Let [Ψ0,Ψ1] be an admissible pair of shape functions,

with Ψ0 being d-symmetric. Then we can find χ∗0 ∈ C0(R3
+) such that Π∗ =

[Ψ0,Ψ1, χ
∗
0, χ
∗
1] is an RSD∗ tuple with range shift property where χ∗0 is symmetric

in its first two variables.

Proof. According to Theorem 3.5 there exists an RSD∗ tuple of the form

Π = [Ψ0,Ψ1, χ0, χ1] with χ0, χ1 ∈ C1
0(R3

0). By Corollary (4.12), Π[s] =

[Ψ0,Ψ1, χ
[s]
0 , χ1] is also an RSD∗ tuple where the complementary shape func-

tion χ
[s]
0 is symmetric in its first two variables and such that (4.14) holds. Then,
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independently of the choice of the vector triple U = [u1,u2,u3], we can write the

difference function of 1 and FΠ[s]

P,U1 in the form

d = 1− FΠ[s]

P,U1 = δ(λ1, λ2, λ3) with

δ(t) = d
(∑3

k=1 tkpk
)

= 1−
3∑
i=1

Ψ(ti)−
∑

(`,m,n)∈S+

χ0(t`, tm, tn).
(4.16)

Observe that

d(x) = 0, d′(x) = 0 (x ∈ ∂T). (4.17)

Indeed, at the generic point (2.9) of the edge opposite to the vertex pk, by (2.2)

we have d(xkt )=1−[Ψ0(t)+Ψ0(1−t)]=0. In particular the functions 1 and FΠ[s]

P,U

coincide along the edge [pi,pj ], thus d′(xkt )(pj−pi)=0 with d(x)=0 for x∈∂T.

On the other hand, since trivially 1′(p) = 0 everywhere, the RSD construction

ensures that d′(xkt )uk=1′(xkt )uk−
[
Ψ0(t)1′(pk))uk+Ψ0(1−t)1′(pk))uk

]
=0. Thus

δ′(xkt ) vanishes in two linearly independent directions implying that d′(xkt )u = 0

(u ∈ R2) i.e. d′(xkt ) = 0.

Notice that x ∈ ∂T if and only if
(
λ1(x), λ2(x), λ3(x)

)
∈
⋃3
k=1 ∆3,k. Hence,

due to (4.17), we can apply Lemma 4.6 with f = d and φ = δ to conclude that

δ(t) = 0, D1δ(t) = D2δ(t) = D3δ(t) whenever t ∈
3⋃
k=1

∆3,k. (4.17′)

On the domain Ω := R3
+ \ {0}, define

χ∗0 = χ
[s]
0 +

1

3
δ̂ where

δ̂(t) = δ
( t1
t1+t2+t3

,
t2

t1+t2+t3
,

t3
t1+t2+t3

)
.

By writing s(t) = t1 + t2 + t3 for short, for k = 1, 2, 3 we have

Dk δ̂(t) =
∂

∂tk
δ
( t1
s(t)

,
t2
s(t)

,
t3
s(t)

)
=

= D1δ
( t

s(t)

) ∂

∂tk

t1
s(t)

+D2δ
( t

s(t)

) ∂

∂tk

t2
s(t)

+D3δ
( t

s(t)

) ∂

∂tk

t3
s(t)

.

In particular, if 0 6= t ∈ R3
+ then s(t)−1t ∈ ∆3, furthermore s(t)−1t ∈

⋃3
k=1 ∆3,k

whenever 0 6= t ∈ ∂R3
+. Thus, as a consequence of (4.17), we get

Dk δ̂(t)=

3∑
`=1

D1δ
( t

s(t)

) ∂

∂tk

t`
s(t)

=D1δ
( t

s(t)

) ∂

∂tk

s(t)

s(t)
=0

(
0 6=t∈∂R3

+

)
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It follows Dkχ
∗
0(t) = Dkχ0(t) for 0 6= t ∈ ∂R3

0 =
{

(t1, t2, t3) ∈ R3
+ : t1t2t3 = 0

}
and k = 1, 2, 3 whence, in view of Theorem 3.5 we conclude that Π∗ with χ∗1 = χ1

is indeed an RSD∗ tuple. �

Remark. 4.18. Since s(t) = 1 for t ∈ ∆3 and since
∑3
k=1 λk ≡ 1 in T, we

simply have χ∗0
(
λ1(x), λ2(x), λ3(x)

)
=
[
χ

[s]
0 − 1

3δ
](
λ1(x), λ2(x), λ3(x)

)
for x∈T.

Example. 4.19. From the function χS∆ in Example 3.15(f), the construction

of the proof of Theorem 4.15 results in

χ∗S∆ =
1

3

[
1−

3∑
k=1

sin2
(π

2
tk

)]
+

+
∑

(`,m,n)∈S+
3

3δ`,3 − 1

3
sin
(π

2
t`

)
cos
(π

2
(tm−tn)

) ∏
j=m,n

sin2

(
π

2

t6−`−j
1−tj

)
.

Thus
[
ΨS ,ΨS , χ

∗
S∆, t2χ

∗
S∆

]
is an RSD tuple with range shift property.

5. Affinity invariance

Definition. 5.1. An RSD tuple Π = [Ψ0,Ψ1, χ0, χ1] (and the related proce-

dure FΠ) is affinity invariant if

FΠ
P,Uf = f|Conv(P)

for all admissible pairs [P,U]
(
i.e. Conv(P) is a non-degenerate triangle,

p`−pm 6‖pn
(
(`,m, n) ∈ S3

))
and affine (linear+constant) functions f:R2→R.

Remark. 5.2. (a) Affinity invariance implies range shift property.

(b) Given any non-degenerate triangle T=Conv{p1,p2,p3}⊂R2, any affine

function R2 → R is a linear combination of the weights λ1, λ2, λ3. Hence to

verify the affinity invariance of Π, it suffices to prove the relation FΠ
P,Uλ1(x) =

λ1(x)
(
x ∈ Conv(P)

)
for all admissible pairs [P,U].

(c) In view of Remark 2.4(c) and the identities G1(x − pk) = λ1(x) − δ1k
resp. Gi(pj − pk) = λi(pj)− λi(pk) = δij − δik, we can write

FΠ
P,Uλ1 =

3∑
k=1

[
λ1(pk)Ψ0(λk) +G1(x− pk)Ψ1(λk)

]
−

−
∑

(`,m,n)∈S3

G`un
Gnun

[
λ1(p`)χ0(λ`, λm, λn) +G1(pm−p`)χ1(λ`, λm, λn)

]
=
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= Ψ0(λ1) + Ψ1(λ1)(λ1 − 1) + Ψ1(λ2)λ1 + Ψ(λ3)λ1−

−G1u3

G3u3

{
χ0(λ1, λ2, λ3)−χ1(λ1, λ2, λ3)

}
−G2u3

G3u3
χ1(λ2, λ1, λ3)−

−G1u2

G2u2

{
χ0(λ1, λ3, λ2)−χ1(λ1, λ3, λ2)

}
−G3u2

G2u2
χ1(λ3, λ1, λ2)−0−0.

with the ordering (1,2,3), (2,1,3), (1,3,2), (3,1,2), (2,3,1), (3,2,1) for S3.

Lemma. 5.3. If the RSD tuple Π = [Ψ0,Ψ1, χ0, χ1] is affinity invariant

then necessarily

Ψ1(t) = Ψ0(t) and Ψ0(t) + Ψ0(1− t) = 1 (0 ≤ t ≤ 1),

χ0(t1, t2, t3) = χ1(t1, t2, t3) + χ1(t2, t1, t3)
(
(t1, t2, t3) ∈ ∆3

)
.

(5.4)

Proof. Since Π is an RSD tuple, by Definition 3.2, the directional deriva-

tives F ′(x3
t )u3 along the side [p2,p3] with generic point x1

t = tp2 + (1− t)p3 of

the function F = FΠ
P,Uλ1 are the linear combinations

F ′(x1
t )u1 = Ψ1(t)F ′(p2)u1 + Ψ1(1− t)F ′(p3)u1 =

= Ψ1(t)G1u1 + Ψ1(1− t)G1u1 =
[
Ψ1(t) + Ψ1(1− t)

]
G1u1.

Due to the admissibility of [P,U], G1u1 6= 0. In case of the affinity invariance

of Π, F = λ1 with F ′(x1
t )u1 = G1u1 implying Ψ1(t) + Ψ1(1 − t) = 1. Also if

F = FΠ
P,Uλ1 = λ1 then, as a consequence of the relations (2.7), at the points

x3
t = tp1 + (1− t)p2 we have

t = λ1(x3
t ) = F (x3

1) = Ψ0(t)−Ψ1(t)(1− t) + Ψ1(1− t)t,

=
[
Ψ0(t)−Ψ1(t)

]
+ t
[
Ψ1(t) + Ψ1(1− t)

]
=
[
Ψ0(t)−Ψ1(t)

]
+ t

whence the first statement in (5.4) is immediate.

The proof of the second statement relies upon the fact that the formula for

FΠ
P,U in Remark 5.2(c) must be independent of the choice of the vectors in U.

Using the argument of the proof of Proposition 4.4, this means that the expression

Ψ0(λ1) + Ψ1(λ1)(λ1 − 1) + Ψ1(λ2)λ1 + Ψ(λ3)λ1−

−α3

{
χ0(λ1, λ2, λ3)−χ1(λ1, λ2, λ3)

}
−(−1− α3)χ1(λ2, λ1, λ3)−

−α2

{
χ0(λ1, λ3, λ2)−χ1(λ1, λ3, λ2)

}
−(−1− α2)χ1(λ3, λ1, λ2)

must be independent of the scalars α1, α2, α3 ∈ R. In particular it follows

χ0(λ1, λ2, λ3)−χ1(λ1, λ2, λ3)−χ1(λ3, λ1, λ3) = 0 which completes the proof. �
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Remark. 5.5. (a) According to (5.4), affinity invariant tuples are of the form

Π =
[
Ψ,Ψ, χ0, χ1)

]
, χ0

∣∣∆3 = 2χ
[s]
1

∣∣∆3 (5.6)

with a d-symmetric shape function Ψ and the symmetrization (4.13) of χ1.

(b) From the final argument in the proof of Lemma 5.3 it readily follows the

below converse statement.

Corollary. 5.7. Assume Π = [Ψ,Ψ, χ0, χ1] is an RSD-tuple with (5.6).

Then, independently of the choice of the vectors u1,u2,u3 we get

FΠ
P,Uλ1 =

3∑
i=1

Ψ(λi)λ1 + χ1(λ2, λ1, λ3) + χ1(λ3, λ1, λ2). (5.8)

Proposition. 5.9. An RSD tuple Π is affinity invariant if and only if it is

of the form Π = [Ψ,Ψ, χ0, χ1] with range shift property, (5.6) and

χ1(t2, t1, t3)+χ1(t3, t1, t2)= t1
∑

(`,m,n)∈S3

χ1(t`, tm, tn)
(
(t1, t2, t3)∈∆3

)
. (5.10)

Proof. Necessity: Assume the affinity invariance of Π. According to 5.5

and Corollary 5.7, we can write Π = [Ψ,Ψ, χ0, χ1] with

λ1 =

3∑
i=1

Ψ(λi)λ1 + χ1(λ2, λ1, λ3) + χ1(λ3, λ1, λ2). (5.10)

On the other hand (Remark 5.2(a), Lemma 5.3) Π has range shift property with

(5.6) and 1 =
3∑
i=1

Ψ(λi)+χ0(λ1, λ2, λ3)+χ0(λ2, λ3, λ1)+χ0(λ3, λ1, λ2) by (4.9).

Hence, in view of (5.6) we conclude that

1 =

3∑
i=1

Ψ(λi) +
∑

(`,m,n)∈S3

χ1(λ`, λm, λn). (5.11)

We obtain (5.10) by subtracting (5.10) from λ1 · (5.11).

Sufficiency: We obtain (5.10) i.e. the affinity invariance of Π by adding

the equations 0 = χ1(λ2, λ1, λ3)+χ1(λ3, λ1, λ2)−λ1

∑
(`,m,n)∈S3

χ1(λ`, λm, λn) and (5.11)

multiplied with λ1. �
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Corollary. 5.12. A tuple Π = [Ψ0,Ψ1, χ0, χ1] with range shift property

and such that χ1 = χ0ϕ for some ϕ ∈ C1
(
dom(χ0)

)
is affinity invariant if for

every (t1, t2, t3) ∈ ∆3 we have

1 =ϕ(t1, t2, t3) + ϕ(t2, t1, t3),

χ0(t3, t1, t2)ϕ(t3, t1, t2) + χ0(t2, t1, t3)ϕ(t2, t1, t3) =

= t1

[
χ0(t1, t2, t3) + χ0(t2, t3, t1) + χ0(t3, t1, t2)

]
.

(5.13)

Example. 5.14. The tuple Π =
[
Φ,Φ, χ0, χ0ϕ

]
is affinity invariant with

Φ(t) = t3(10− 15t+ 6t2), χ0(t1, t2, t3) = 30t21t
2
2t3, ϕ(t1, t2, t3) = t2 + t3/2.

Proof. The range shift property of Π is established in Example 4.10. The

identities (5.13) follow with straightforward calculation.

Inspired by [3, Section 2], we proceed to estimates for the accuracy of in-

terpolation with affinity invariant RSD operators. Conveniently, without loss

of confusion, we write ‖(x1, . . . , xN )‖ =
[∑N

i=1 x
2
i

]1/2
resp.

∥∥A∥∥ = max
‖e‖=1

‖eA|(
A = [aij ]

M
i=1

N
j=1 ∈ RM×N

)
for the Euclidean norm in RN spaces and the spec-

tral norm of M×N matrices, respectively. As previously, T denotes an arbitrarily

fixed nondegenerate triangle in R2 with vertices p1,p2,p3 and associated weights

λi : R2 → R composed in a vector function λ(x) = [λ1(x), λ2(x), λ3(x)] in terms

of the gradient ∇f = [D1f,D2f ] and the Hessian ∇2f =
[
DiDjf

]2
i,j=1

. We write

δT = max3
i,j=1 ‖pi − pj‖ , αT = area(T) , κT = δ2

T/[2αT]

for the diameter, the area and the flatness ratio of T.

Notice that, given an RSD tuple Π = [Ψ0,Ψ1, χ1, χ1] along with a family

U = {u1,u2,u3} ⊂ R2, the mapping C1(T) 3 f 7→ FΠ
P,U[f ] is a bounded linear

operator C1(T) → C1(T) of finite rank. Namely, by setting fi = f(pi) resp.

Ai(pj − pi) =
〈
∇f(x)

∣∣pj − pi
〉

in (1.3),

FΠ
P,U =

∑
(i,j,k)∈S3

[
Aijk + Bijk

]
with Aijk[f ](x) = f(pi)aijk

(
λ(x)

)
,

and Bijk[f ](x) =
〈
∇f(pi)

∣∣pj − pi
〉
bijk
(
λ(x)

) (5.15)

as the sum of 12 bounded operators C1(T)→ C1(T) of rank one where

aijk : ∆3 3 (t1, t2, t3) 7→ 1

2
Ψ0(ti) +

Giuj
Gjuj

χ0(ti, tj , tk) resp.

bijk : ∆3 3 (t1, t2, t3) 7→ Ψ1(ti)tj +
Giuk
Gkuk

χ1(ti, tj , tk) .

(5.16)
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Given any function f ∈ C(T) along with a point p ∈ T and a unit vector e ∈ R2,

we write fp,e for the section t 7→ fp + te. According to the Taylor formula

with remainder in integral form,
∣∣fp,e(t) − f(p)

]
≤ M1(f)t for any f ∈ C1(T),

furthermore in the case of f ∈ C2(T) we have∣∣∣fp,e(t)−
[
f(p)+t〈∇f(p)|e〉

]∣∣∣ ≤ 1

2
M2(f)t2 resp.

∥∥∥∇fp,e(t)−∇f(p)
∥∥∥ ≤M2(f)t.

For the investigation of affinity invariance, we introduce the operator

L[f ] =

3∑
i=1

f(pi)λi
(
f ∈ C(T)

)
. (5.17)

Observe that L is a linear projection onto the space of all affine functions on

T spanned by the weigths λi, such that g ∈ kernel(L) if and only if g(pi) = 0

(i = 1, 2, 3). The affinity invariance of F can algebraically be formulated in terms

of the identities

FL = L, f − F[f ] = (f − L[f ])− F(f − L[f ]). (5.18)

Theorem. 5.19. Let F : C1(T) → C1(T) be a bounded linear operator

leaving all affine functions T→ R invariant. Then for any function f ∈ C2(T),

‖f − Ff‖1 ≤M2(f)
(

1 +
∥∥F|kernel(L)

∥∥)(1 + κT +
1

2
δT

)
δT .

Proof. Consider a function f ∈ C2(T) and let g := f − Lf . According to

(5.18), f − Ff = g− Fg. In particular max |f − Ff | = M0

(
(I − F)g

)
max ‖∇(f −

Ff)‖ = M1

(
(I − F)g

)
, and hence

‖f − Ff‖1 ≤ ‖(I − F)g‖1 ≤
∥∥(I − F)|kernel(L)

∥∥‖g‖1 ≤
≤
(
1 + ‖F|kernel(L)‖

)
‖g‖1.

(5.20)

Since the Hessian of any affine function vanishes, we have ∇2f = ∇2g implying

that M2(g) = M2(f). Thus the statement of the theorem follows from the below

lemma of possible independent interest (but containing rough constants in the

estimates). �

Lemma. 5.21. Let g ∈ C2(T) be a function vanishing at the vertices

p1,p2,p3 of the triangle T. Then

max |g| ≤ 1

2
M2(g) δ2

T , max ‖∇g‖ ≤M2(g)
(

1 + κT

)
δT .
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Proof. Let p∗ be a point where the function |g| assumes it maximal value

(well-defined due to the continuity of g and the compactness of T). Disregarding

the trivial case g ≡ 0, we may assume without loss of generality that g(p∗) > 0.

We have the alternatives:

(1) p∗ is an inner point of T;

(2) p∗ is a relatively inner point of some edge [pi,pj ] of T.

In case (1) we have ∇g(p∗) = 0 while in case of (2) the directional derivative

g′(p∗)(pi − pj) = 0. In both cases we can find a vertex pi such that, toward the

unit vector e = ‖pi − p∗‖−1(pi − p∗), we have g′p∗,e(0) = 0. Then, by setting

t = ‖pi − p∗‖,

max |g| = g(p∗) = −
[
g(pi) + g(p∗)

]
= −

[
gp∗,e(t)− gp∗,e(0)

]
≤

≤ |g′p∗,e(0)|+ 1

2
M2(g)t2 =

1

2
M2(g)‖pi − p∗‖2 ≤

1

2
M2(g)δ2

T .

For the proof of the second inequality, we may assume that E = [p2,p3] is the

largest edge of T
(
i.e. ‖p2 − p3‖ = δT and q is a point where |g| attains its

maximum on E. Define v = ∇g(q), ρ = ‖q − p1‖, e = ρ−1(q − p1). Since

0 = g′(q)(p3 − p2) =
〈
∇g(q)

∣∣p3 − p2

〉
,

v ⊥ p3 − p2,
∣∣〈‖v‖−1v

∣∣p1 − q
〉∣∣ =

[
height of T over the edge E

]
=

2αT

δT
.

According to the Taylor formula, we can write

0 = g(p1) = gq,e(ρ) = gq,e(0) + ρg′q,e(0) +
1

2
νM2(g)ρ2 where |ν| ≤ 1.

On the other hand, also∣∣ρg′q,e(0)
∣∣ =

∣∣ρ〈∇g(q)|e〉
∣∣ =

∣∣〈v|ρe〉∣∣ = ‖v‖
∣∣〈‖v‖−1v|p1 − q〉

∣∣ = ‖v‖2αT

δT
,

gq,e(0) = g(q) = µmax |g| = µ
1

2
M2(g)δ2

T where |µ| ≤ 1.

That is, since νρ2 = ν‖q− p1‖2 ≤ ‖q− p1‖2 ≤ δ2
T,

0 =
µ

2
M2(g)δ2

T + 2σ‖v‖αT

δT
+
ν′

2
M2(g)δ2

T; |µ|, |ν′| ≤ 1 = |σ|.

It follows

‖v‖ = −µ+ ν′

4σ
M2(g)

δ3
T

αT
≤ 1

2
M2(g)

δ3
T

αT
.

We complete the proof with the argument that given any point r ∈ T we have

‖∇g(r)‖ ≤ ‖∇g(q)‖+ ‖∇g(r)−∇g(q)‖ =

= ‖v‖+ ‖∇g(r)−∇g(q)‖ ≤ ‖v‖+M2(g)diam(T). �
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Corollary. 5.22. Let FΠ
P,U be an affinity invariant RSD operator given in

the form (5.15− 16) with the ratios Giuj/Gjuj in terms of the coefficients αi in

Lemma 4.3. Then for any function f ∈ C2(T) we have

M0

(
f − FΠ

P,U[f ]
)
≤M2(f)δ2

T

[
1
2 +

(
1 + κT

)
CΠ,U

0

]
,

M1

(
f − FΠ

P,U[f ]
)
≤M2(f)δT

(
1 + κT

)[
1 + κTC

Π,U
1

]
with the constants CΠ,U

0 = 6
[

max
τ∈[0,1]

|Ψ1(τ)|+
(

1
2 +

3
max
i=1
|αi|
)

max
t∈∆3

|χ1(t)|
]

and

CΠ,U
1 = 6

[
max
τ∈[0,1]

|Ψ′1(τ)|+ max
τ∈[0,1]

|Ψ1(τ)|+
(

1
2 +

3
max
i=1
|αi|
) 3∑
m=1

max
t∈∆3

|Dmχ(t)|
]
.

Proof. We can refine the arguments of the proof of Theorem 5.19 relying

upon the specific form (5.15-16) of the operator FΠ
P,U as follows. Consider any

function f ∈ C2(T). Using the abbreviations g = f − L[f ], F = FΠ
P,U, M =

M2(f) = M2(g), δ = δT, κ = κT, we know that

Mk(f − F[f ]) = Mk(g − F[g]) ≤Mk(g) +Mk(F[g]) (k = 0, 1);

M0(f−F[f ])≤M δ2

2
+max

∣∣F[g]
∣∣, M1(f−F[f ])≤Mδ (1+κ)+max

∥∥∇F[g]
∥∥.

We estimate the values |F[g](x)| resp. ‖∇F[g](x)‖ (x ∈ T) as follows. Since

g(pi) = 0 (i = 1, 2, 3) by construction, we have the reduced formulas

F[g] =
∑

(i,j,k)∈S3

Bijk[g] =
∑

(i,j,k)∈S3

〈
∇g(pi)

∣∣pj−pi
〉[

Ψ1

(
λi
)
λj+

Giuk
Gkuk

χ1

(
λijk

)]
,

∇F[g] =
∑

(i,j,k)∈S3

〈
∇g(pi

∣∣pj − pi
〉
∇
[
Ψ1

(
λi
)
λj +

Giuk
Gkuk

χ1

(
λijk

)]
where λijk : x 7→

[
λi(x), λj(x), λk(x)

]
. By Lemma 5.21, ‖∇g(pi)‖ ≤ M1(g) ≤

Mδ(1 +κ) implying that
∣∣〈∇g(pi)

∣∣pj −pi
〉∣∣ ≤Mδ2(1 +κ) for any pair of indices

i, j. Also
∣∣Giui/Gjuj∣∣ =

∣∣ 1
2 ± αj

∣∣ ≤ 1
2 + maxj |αj | with i 6= j in all the 6

terms expressing F[g] resp. ∇F[g]. Since for x ∈ T we have |λj(x))| ≤ 1 and

λijk(x) ∈ ∆3, the estimate for M0(f) is immediate.

To estimate M1(f), we proceed analogously. Recall from plain geometry [1]

that, in terms of the rotation, R : [ξ1, ξ2] 7→ [−ξ2, ξ1] of R2, for any triple (i, j, k)∈S3

we can write ∇λk(x) ≡ g∗k with the vector g∗k =
〈
R(pj−pi)

∣∣pk−pi
〉−1

R(pj−pi)

and ‖g∗k‖ = [2 area(T)]−1‖pj−pk‖ ≤ κ/δ independently of the location x. Hence

∇
[
Ψ1

(
λi(x)

)
λj(x)

]
= λj(x)Ψ′1

(
λi(x)

)
g∗i + Ψ1

(
λi(x)

)
g∗j ,

∇χ1

(
λi1,i2,,i3(x)

)
=

3∑
m=1

[
D`χ1

(
λi1,i2,,i3(x)

)]
g∗im
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implying
∥∥∇[Ψ1

(
λi(x)

)
λj(x)

]∥∥ ≤ max
τ∈[0,1]

(
|Ψ′1(τ)| + |Ψ1(τ)|

)
κ/δ

(
i 6= j, x ∈ T

)
respectively

∥∥∇χ1

(
λijk(x)

)∥∥ ≤ 3∑
m=1

max
t∈∆3

|Dmχ1(t)|κ/δ
(
(i, j, k) ∈ S, x ∈ T

)
which completes the proof. �
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