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A counterexample concerning contractive
projections of real JB*-triples

By LASZLO L. STACHO (Szeged)

Abstract. We describe the complete real polynomial vector fields of a Euclidean
disc and we construct a contractive linear projection of a real JB*-triple onto a 2-
dimensional subspace with Euclidean norm such that the projected triple product vio-
lates the Jordan identity.

1. Introduction

In 1982 the author established [9] that the image by a contractive lin-
ear projection of the unit ball of a complex Banach space is holomorphically
symmetric whenever the unit ball itself has the same property. As a con-
sequence of this fact, in 1984 KAUP proved [7] by the aid of his Riemann
mapping theorem [6] on bounded symmetric domains that the image of a
complex JB*-triple by a contractive linear projection is a JB*-triple with
the projected product and this latter is the unique operation satisfying the
JB*-triple axioms on the image space. This theorem answered positively a
long standing conjecture stating that contractive linear images of complex
C*-algebras are JB*-triples. Also this result gave rise to the possibility
of generalizing the Arens product (defined originally for C*-algebras) to
biduals of complex JB*-triples [3].

Recall that by a complex JB*-triple we mean a Banach space E
equipped with an operation {zyz} (z,y,z € E) of three arguments (called
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the triple product) which is symmetric complex-bilinear in its outer vari-
ables z, z, conjugate-linear in the inner variable Yy, satisfies the C*-axiom
I{zzz}|| = ||z|f® (z € E), the Jordan identity {ab{zyz}} = {{abz}yz} —
{z{bay}z} + {zy{abz}} (a,b,2,y,2 € E), and the spectral axiom stating
that, for any a € E, the linear operator Doz = {aaz} is E-Hermitian
with non-negative spectrum (i.e. || exp(¢D,)]| < 1 whenever Re( < 0). In
particular complex C*-algebras with the triple product {zyz} := —%xy*z +
-21-zy*ac can be regarded as complex J B*-triples. Given a complex Banach
space I, there can be defined a JB*-triple product on F if and only if the
unit ball is symmetric holomorphically and this product is uniquely deter-
mined in the latter case. Conversely, given an operation {}:EF®* > E
on a Banach space F, there exists at most one equivalent norm | | on E
(the so-called JB*-norm of { }) which makes (B, ,{}) a JB*-triple. (For
details see e.g. [11].)

Recently considerable efforts are paid to develop a theory of real JB*-
triples [1], [11], [5], [8] defined as real subspaces of complex JB*-triples
being closed under the underlying triple product. Some positive results
[2], [4] have already appeared concerning the problem of contractive pro-
jections of real JB*-triples, and several experts raise the conjecture that
the contractive linear image of a real JB*-triple is a real JB*-triple with
the projected product. The simple example of Section 2 in 4 real dimen-
sions disproves this expectation: the projected product is no Jordan triple
product on the range of a rank 2 contractive linear projection P of the re-
alification of a 2 complex dimensional Cartan factor (E\NL L)) of Type 1.
In our example the intersection D of the unit ball of E with the range of the
projection P is a (2-dimensional) Euclidean disc. By the real version [10] of
the projection principle, the vector fields of the form Plc—{zcz}] 8/53: | D
are all complete in D.* However, they do not constitute a Lie-triple with
respect to the Lie triple product [X(z) a/(?x,Y(a:) 8/81:,Z(x) a/@m] =
[[X (z) 902, Y (z) 9 9a], Z(2) 9/92] where

(1.1) [X(m) 8/(%, Y(z) a/@m] = 1T1£% [X (a:—{-TY(m))—Y ((E+TX(:B))] a/810

*In our context, given a function f : E — E, we may identify f(z) 3/8:1: simply with f.
The vector field f(z) 3/ax Is said to be complete in D if for every zg € D there is a
differentiable function # : R — D such that z(0) = zo and %x(t) = f(z(t)) (t € R).
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is the usual Lie-commutator of vector fields. Our example based heuristi-
cally upon a complete parameterized list of the complete real polynomial
vector fields on a (2-dimensional real) Fuclidean disc, a result of inde-
pendent interest which we descuss in Section 3. Among the underlying
domains of real Cartan triple factors Hilbert balls play a distinguished
role: their gauge functions can be the JB*-norm for several different real
JB*-triple factors [8]. This latter fact seems to be one of the main obsta-
cles on the way to a pure real geometric theory of JB*-triples, and it is
commonly agreed that a deep understanding of the structure of the com-
plete real polynomial vector fieds of Hilbert balls can be crutial in this
direction.

2. Counterexample

Proposition 2.1. On the 2-dimensional complex space C? let

22)  {w =gl Gy (@yeed)

be the Jordan triple product of the complex type 1 Cartan factor structure
of C* with respect to the canonical scalar product {z | y) := =197 + 2272
and conjugation T := (Z1,%3), and let P denote the real-linear projection

2
Pr = ZRG(:U[@k)ek (.’2:::(231,.%2) GCZ)
k=1

onto the real-linear subspace Re; + Rey with the unit vectors ey := (1,0),
ey = (i/v/2,1/4/2). Then the projection P is contractive with respect to
the JB*-triple norm || - || associated with (2.2) but the operation

{zyz} = P{zyz} (z,y,z € Re; + Rey)

violates the Jordan identity.

Proor. It is well-known [8] that the JB*-triple norm of the triple
product (2.2) on C? coincides with the Hilbert norm associated with the
scalar product, i.e.

4

1/2
ol = (x| 22 = [Z(Re (o | ekﬂ (@ e CY)

k=1
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where e3 := (—i/\/2, 1/\/5) and eq :=(0,%). Since the system {e1,€e2,€3,€4}
is orthonormed with respect to the real scalar product Re (z | y) on CZ,
the operator P is an orthogonal projection with respect to Re (z | y) and
in particular contractive with respect to the norm Il ||. We have to show
that

(2:3) {ab}oyz)p}p # {{aba}pyz}p — {e{bay}ps}p + {oy{abe)p)p
for some @, b,z,y, 2 € Re; + Re,. For
(2.4) a:=ey, bi=ey, v:=e€y, yi=e, z:=ey
we have inequality. Indeed
{exerer}p = Plek | ex) ex = ey (k =1,2),

{ezezer}p = {e1e2e3}p = 1P[(ez | ea) er + (e1 | e2) €3]

2
1 i 3 1 3 1 3
= §P (el - ‘\7562> = P(Z’ _Z) =P <Z€1 - Z€4> =7
7 1 2
{eze1e2}p = P[(82 ! el)ez} =P <7§-€2> =P (——2—, 5)
1 1 1
=P <—§€1 + -2-64) =5
{ereze1}p = P[(el | €2>61] =P (~%el) = P (—\—}:2—, 0)
1 1
= 5P(€3 - 62) == —562,
It follows
1 3
{ab{myz}P}P = {6262{626162}P}P = —5{626261}1» = _§el’
1
{{“bZ}PyZ}P = {{626262 }P6162}P = {626162}p = —-2—61,
3 3
{z{bay}pz}lp = {ez{e2e2e1}pes}p = Z{ezelez}p = —gel,

1
{zy{abz}p}p = {eze1{ere22} P} p = {e2e162}p = —ze1
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Therefore the left hand side in (2.3) equals ~3/8¢; while the right hand
side takes the value —5/8e; for the choice (2.4). O

Remark 2.5. It turns out from the above proof that D := P{z € C? :
2]l <1} = {oner + azes 10, a2 €R, of + 02 < 1} is a 2-dimensional
Euclidean disc. Therefore there are even two different real Jordan triple
products, namely

{ayzh i= 5 Re (e |y)z 4 1 Re (2] ),
{oyz}s = Re(z | ) 2+ Re (2| y) 2 — Re (2| 2)7

which make ran(P) with the norm || || a 2-dimensional real JB*-triple.
That is the vector fields [c— {zcz},] a/(?:v (c € ran(P)) resp. [c—{zex}y] X
a/3:1: (c € ran(P)) are complete in D. Also all the polynomial vector

fields X, := [c— {zcz}p] a/(?x (c € ran(P)) of degree 2 are complete in D.
However, with the commutator of vector fields (1.1),

{[Xa, [ X5, XJ] : a,b,c € ran(P)} ¢ {X, :u € ran(P)}.

3. Complete real polynomial vector fields
on the disc

Throughout this section let z, y, z denote the coordinate functions

13(5,77)'—)5, y:(E,n)H'rla ZI:$+iy

on R2. Recall that by a polynomial P of the type R? — R of degree < N

we mean a function of the form P = ZkHSN ak,gwkyz with suitable real
k,£50

coefficients o p. Since z = (2 + Z)/2 and y = i(Z — 2)/2, by induction

on N it follows that R* — R polynomials of degree N can be written in

the complex forms

N

P= 37 | e + T2 = Y [pm(2P)2™ + b (212"
k+20<N m=0
k,£30
with suitable complex coefficients 15, and some polynomials pq,...,pN :

R — C (where each py, is of degree < (N —m)/2). In particular P vanishes
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at the points of the unit circle T := {(cost,sint) : t € R} if and only if

0 = P(cost,sint) = Zzzo {pm(l)eimt—f-pm(l)e‘imt] (t € R) which is

equivalent to p,, (1) =0 (m = 0,..., N). Since for a polynomial p:R—>C
we have p(1) = 0 iff p(p) = (1 - p)q(p) for some polynomial ¢, we conclude
that

(3-1) {P€Pol(R*R*) :p(T) =0} ={(1-[|2)Q:Q ¢ Pol(R?, R%)}.

In the sequel we identify R? with C via the complex coordinate z. Thus
we regard the point (£,7) € R? as the complex number £ + wn and the
mapping (pcosb, psinf) — (p™cosmb, p™ sin mf) is identified with the
complex function 2™ for m = 0,1,2,.... In terms of this identification
we have the following description of the complete real polynomial vector
fields of the unit disc D := {(¢,7) € R? : €2 +92 < IH(={¢eC: ¢ <1}.

Theorem 3.2. Let P € Pol(R? R?). Then the vector field P(v) a/5‘1}
is complete in D if and only if P is a finite real linear combination of the
functions

iz, pE™ — Ez™t? (reC m=0,1,...),

(1-12»HQ (@ € Pol(R?, R?) = Polg(C, C)).

PROOF. Let P denote the set of all polynomials P € Pol(R?,R?)

such that the vector field P(v) 3/81) is complete in D. Since D is a (real-
analytic) submanifold of R? with the analytic boundary T, for a polynomial
P € Pol(R? R?) we have P € P if and only if P is tangent to the circle T.
That is,

(3.3) P={PecPol(R*R*) : P(£,n) L (&) for£,neR, &€ +7° =1}
= {P € Pol(R*,R?) : Re(P(c'")e™") = 0 (r € R)}.

Let us write ¢ for the natural coordinate function ¢ : 7 — 7 of the_real
line R. Notice that, according to the identification z : R? ¢ C, P(e) is
a complex valued trigonometric polynomial of degree N whenever P is a
real polynomial R? — R? of degree N. Define

T = {trigonometric polynomials R — C} = @ ___Ce***,

-0

S:={P(e") : P e P}
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where @ denotes algebraic direct sum. By (3.3) we have
(3.4) S={T €T :Re(T e") =0}

Thus § is a real-linear subspace of 7. Given any T' € S , by differentiating
the relation Re(T - e*) = 0 we see that also 0 = Re(T" - et — iT - ¢it) =
Re[(T' — iT)e']. That is

AS CS where A(T):=T' —iT (T eT).

Observe that the complex-linear operator A acts diagonally with imaginary
eigenvalues over the canonical basis of 7

Aeikt:i(k_l)eikt (k_—_—_o,il’:{:Q,)

Since S is an A-invariant real-linear subspace of 7 and the eigenvalues of
A? are real, namely A%’ = —(k —1)2e®** it follows

(3.5) T =@®moTm where T, :={T €T :AT =-m’T}
— Cei(1+m)t + Cei(l—m)t’
S =®r-oSm where S, :=8NT,,.

Indeed, the decomposition 7 = &,,7,, is trivial; if T € S then we can
write T = Zﬁ:o T, with suitable N and T, € 7, (m = 0,...,N) and
here necessarily Ty, = £n,(A%)T € A%S C S where £, is the Lagrange
interpolation polynomial of degree N with the property £,,(—k?) = 6,k
(k=0,...,N). By (3.4) and (3.5),

Sm ={T € Ty : Re(T - ™) = 0}

- { Z Meei(em+1)t - Re Z Mseismt — 0}

e=+1 e=:#1

= { D nee M Ref(p + BIT)e ™) = 0}
e=z1

B { > et 4 = O}
e=+1

— {ﬂei(l—m)t __,u—ei(l-i-m)t cp € C}
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By sétting Zo ., = (1~ m)2, Zp , = pzm=1! — Az™ (m >0, pe Q),
we have pet(l=m)t _ gei(l+m)t _ Zm,u(€"). Thus for each real polynomial
P € P there exists some real linear combination of the real polynomials
Zm,, which coincides with P on the boundary T of D. That is, each
element of P is the sum of some real polynomial vanishing on T with a
real-linear combination of functions of the form Zm,u- Taking (3.1) into
account, this completes the proof. O
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