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Abstract—A practical computational

program and pertinent sections of the code illustrated by flow-charts

for a searching procedure to determine dynamically defined reaction paths have been discussed,

1. INTRODUCTION

Considerable attention has recently been paid to
improve methods of finding reaction paths and
location of stationary points corresponding to equi-
libfum and transition states on potential energy
hypersurfaces. In relation to our theoretical work
(Stachd & Bén, 1992a) from among the hundreds of
references on the same subject we would like to
highlight those of Silver (1966), Fukui (1570). Mclver
& Komornicki (1974), McCullogh & Silver (1975),
Fukui et al. (1975), Halgren et al. (1975), Ishida et af,
(1977), Halgren & Lipscomb (1977), Peterson &
Csizimadia (1977), Mezey et al. (1977), Tachibana &
Fukui (1978, 1979), Muller & Brown (1979), Lawiey
(1980), Scharfenberg (1980), Truhlar (1981), Fukui
(1981), Sana et al. (1981), Bell & Crighton (1984),
Quapp & Heidrich (1984), Murrell er al. (1984),
Jorgensen & Simmons (1985), Hirst (1985), Baker
(1986, 1987), Schlegel (1987), Mezey (1987, 1988),
Baker & Gill (1988), Jasien & Shepard (1988), Kliesch
et al. (1988), Cummins & Gready (1989), Mezey
(1990), Kraka & Dunning (1990), Xantheas er al.
(1991), Ischtwan & Collins (1991), Natanson et al.
(1991), Chielke & Truhlar (1991), Gonzalez &
Schlegel (1991), Billing (1992), Melissas & Truhlar
(1992), and Datta (1992).

In the first paper of our series the fundamental
theory (Staché & Bén, 1992a), and in the second
paper (Staché & Béan, 1992b) the mathematical
background of a global strategy for determining
dynamically defined reaction path (DDRP) has been
given. In our third paper (Staché & Bén, 1993) the
algorithm and aspects of numerical applications have
been described. In the present paper the characteristic
features of a practical.computational program based
on the theory laid in the first three papers of this
series and pertinent sections of the code illustrated by
flow-charts have been discussed. A next paper
(Démotor et al., 1993b) will show the use of the
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searching procedure of DDRP on examples of simple
chemical reactions, by employing quantum chemical
methods for caleulating the (energy) functional. Here,
also experiences gained by the implementations of
quantum chemical procedures into the program of
DDRP will be discussed.

2. PROCEDURE

Recalling the fundamental theorem and the theor-
etical considerations described in the first paper
(Staché & Ban, 1992a) we suggest to determine
tangent curves of a vector field ¥ between two given
singular points by taking the limit (in the sense of
Hausdorff distance) for t—+co of curves of the form

M

Here ¢° is any piecewise analytic curve joining the
given singularities or simply joining points from the
respective catchment regions of these singularities.
The exponentials of the vector field ¥ are the map-
pings x - x' satisfying the steepest descent path
equation

ch=exp(tV)(c?).

[ D=
vl =V, x°=x

exp(tV){(x) = x'.

Thus in this manner we approach the reaction path
between two singularities of the potential energy
function by not trying to move forward in the
suspected reaction valley according to some fixed
strategy (as most known popular methods do), but~—
using 2 well-visualizable analogy—by “stretching a
cord onto the reaction path” from an almost
arbitrary starting position joining the given two
endpoints. A careful mathematical analysis (Stacho &
Ban, 1992b) ensures the convergence of this pro-
cedure even in cases with a seemingly very hopeless
starting curve or a potential surface with the possi-
bility of a ramifying system of intermediate products.
Of course, this high grade of reliability must be payed
through 2 higher amount of calculations. However,
as it was pointed out (Stachd & Ban, 1993) our
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method is completely parallelizable, in contrast with
other strategies of moving forward. Moreover it is
very robust in the sense that it is not very sensible for
the local accuracy of the chosen method of solving
the differential equation (d/d¢)x' = F(x*). Indeed, the
simplest method of steps (with relatively large steps)
is suitable for our practical purposes.

The main features of our algorithm are as follows.
First we fix a curve ¢® (say 2 straight line segment)
between the points representing reactants and prod-
ucts. It is not necessary to know very exactly where
these points are because the algorithm will find them
automatically when the endpoints of a curve lie in
their respective catchment regions. We fix also a
number T which will play the role of a (virtual) time
unit. In the first step we determine the curve ¢7 by
solving the differential equation (d/dr)x’ = V(x) on
the time interval {0, T] with all possible initial values
x"e ¢®. Knowing the curve c7, we determine ¢¥¥ in a
similar manner and so we continue. For n—co the
curves ¢'7 converge uniformly to an IRC, ie. to a
curve consisting of steepest descent path pieces be-
tween stationary points and joining continuously the
points of reactants and products.

Next we describe the numerical realization of the
above somewhat idealized procedure in details.

As usual, we represent curves by finite sequences of
their points. The main novelty of our algorithm is the
application of a homogenization # by the aid of
which we construct an approximate representative
Z ={z,. «.2Zy} for the curve ¢'*¢ from an other
approximate representative ¥ ={y,,...,y]} of ¢' in
the form

Z =(2%Y)) @

where @¢ denotes some numerical approximation of
exp(d¥). It turns out that even the relatively simplest
constructions for J# and @° may lead to satisfactory
sotutions. For @° we can use the ordinary step
approximations of exp(6¥). That is, with a given
input parameter M, we compute

PUy) = i = Fona(Foa (- Fau(¥) M 3)
R —'

M times
where

BO)=y+h¥(y) (h>0,yeR). (4)

It may be convenient to restriet the resulting curves
to some sphere D'={y e R": ||y || < R} where the ra-
dius R is again an input parameter. Then we can use
the transformations

Fi= P(F) ©)
instead of F, with
P = [projection onto D} %)

With an appropriately chosen parameter ¢ we can
use the following homogenization procedure:
# = . To calculate

‘.. {zl"":ZM}=‘#«{yl»:-"r)’l} (7)

first we determine the distances
A=yl (=1,...,0-1). {8
Then we choose consecutively the indices
I=ih<h< - <p=n )
defined unambiguously by the requirement

Y d<e< ¥ 4 (I1sk<p-1). (10)
LRich 41~ GRi<ix 4y
Finally we obtain the sequence {z,, ..., z,} from
{ro:k =1,...,p} by deleting all points with indices
not belonging to the set {i;, ..., i,} and by inserting
entier (4, /e) affincly interpolating equidistant points
between y, and Yu,, Whenever i, = +1 (ie. if
d, >¢).

Thus, given the controlling parameters 8, M, ¢ (and
possibly the radius R of cutting) with a representative
sequence YO={y{: =1,...,4} of the initial curve
c®, we compute iteratively the representative se-
quences

Vis 2 (05(Y"Y) (1)

for the curves ¢® (j=1,2,...).

A reasonable stop-condition can be given in terms
of the norm maximum of the vector field ¥, Introduc-
ing a new controlling parameter 4, a satisfactory
stop-condition for the idealized version of the algor-
ithm is the condition

dy(c®, eV M) < 15 max| Vi (12)

where dj, stands for Hausdorff distance of subsets in
R". However, no a priori upper estimates for | V|| are
available in the literature. On the other hand, even if
max, [V (x)] is known, the simplest analogous con-
dition

dy (Y, Y- 1) < 26 max| V(x)| (13)

cannot be satisfied in most cases where P denotes the
polygon joining the consecutive points of Y. The
following may indeed happen: all the points of ¥/ and
Y/~ e very near ¢ = lim,.. ¢’ and a singularity
of ¥ at a sharp angle of ¢ = belongs to ¥/~ ! while the
homogenization ¥, deletes y from Y/. In this case
dy(Y’, Y~} may exceed the value ¢ /4.

A way of avoiding this difficulty is to modify
somewhat the homogenization #,. Let us change the
definition of the distances d, as follows. Instead of
setting d;= ||y, — y|| define

€
4=y, =yl +3 angle(y, =y 1s Yoy = 1)

(1<i<i). (14)
In this manner any stop-condition of the form
d (Y, Y"1 <Q (15)

can be reached when choosing /. sufficiently small and
M sufficiently large (under the hypothesis of the
theorem (Stach¢ & Ban, 1993)).
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Small values of J or ¢ may lead to representatives
Y’ consisting of 100 many points while cheosing large
values of M causes time-consuming calculations with
relatively little gain in accuracy.

For practice we suggest that the above deseribed
algorithm should be divided into two procedures (see
the flow-charts in Figs 1 and 2):

NEWCURVE calculates the curve representa-
tive Z = @4 (Y) for ¢'*4 from a representative
Y of ¢! in which a subroutine with name
VFIELD generates the values of the vector
field ¥,

HOMOGENIZE determines the homogenized
fitting ¥ = 5#,(Z) of a curve representative Z.

We may achieve a good control over the evolution
of the curves ¢’ when calling NEWCURVE and
HOMOGENIZE equipped with suitable 1/O routines
independently from an interactive batch file. Instead
of caleulating Hausdorfl distances of interpolating
polygons of curve representatives it is convenient to
use the approximate Hausdorff distance

1 m
(Y, 2)= max{maf( Smp Ay lz24, 7)),
mo
max min 4z, [y, ,,y,])} (16)
Procedure NEWCURVE

DPUT m &Y (= oo we) € (RY)Y, 6,0, By V(R"— B")

“ Simne gV (=10

- ] .

i

yee

OUTPUT: Z = ¢4, (¥) (= (x,,.... 1) € (R")9)

Fig. i. Flow-chart of the program-segment NEWCURVE
used in the procedure DDRP. (For notations see Section 2)

€AC §7:4eg

Procedare ROMOGENIZE

DPUT: 0 0 Z (= (31,..., £} € (R)"™), ¢

mEﬁlm -ul =l mo1))

0=0, k=l pim]
‘d.gtuduﬂJ

OUTPUT ¥ =R, (2) (= Bn,...,1y) € (R7)

Fig. 2. Flow-chart of the program-segment HOMOGEN-
IZE used in the procedure DDRP. (For notations see
Section 2.)

between Y=(y,....y} and Z={z,...,2,}
where d(a, [b, c]) denotes the distance

minlua ~{£6 + (1 - &)l

0gix

of the point a from the line segment joining b
and c.

The marked boxes in the flow-charts of Figs 1 and
2 show where paralle] computation is suggested if
parallel facilities are available.

3. FORTRAN REALIZATION

According to the previous section we divide
the above described computational program into

two subroutines, whose pertinent sections are the
following:

NEWCURVE calculating the curve represen-
tative Z from ¥ in which a subroutine with
name VFIELD generates the values of the
vector field ¥, HOMOGENIZE determining

the ¢-homogenized fitting ¥ of a curve repre-
sentative Z.
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In sections of both subroutines the parameters
are interpreted as follows:

N " dimension of the underlying space
RH

T corresponds to the time step &

Y1) the Jth component of the Ith
point of Y

ZLn the Jth component of the Ith
point of Z

L the number of points of both ¥

and Z in NEWCURVE

LX, LY are the cardinalities of ¥ resp. Z
in HOMOGENIZE

EPS,M, R denote the controlling parameters
e, M, R

Inputs of NEWCURVE are N, L, array Y (of
type L x N), T, M, R.

Output of NEWCURVE is array Z {of type
L x N).

Inputs of HOMOGENIZE are N, LZ, array Z
(of type LZ ¥ N), EPS.

Outputs of HOMOGENIZE are LY, array Y
(of type LY x N).

For the sake of completeness we give also the
FORTRAN code of the pertinent section of the
subroutine HAUSD for determining the approximate
Hausdorff distance @,,(Y, Z) of two curve represen-
tatives (consisting of LY, resp. LZ points in the
Euclidean N-space).

Inputs of HAUSD are N, LY, LZ, array Y (of type
LY x N), array Z (of type LZ x N).

Output of HAUSD is D.

SUBROUTINE NEWCURVE(N,L,Y,Z,TM,R)
REAL Y(lmo,30),z(1000,30),x(30),V(EO)
ETA=T/M
R2=R*R
DO 7 I=1,L
DO 1 J=1N
I X(D=Y(Ly)
DO 5 K=1.M
CALL VFIELD(N,X,V)
DO 2 J=IN
2 X(J)=X(J)+ETA‘V(J)
D=0,
DO 3 J=IN
3 D=D+X{1)*X(%)
IF(D.GT.R2) THEN
D=SQRT(D}
DO 4 J=1N
4 X(N=R*X(J)/D
ENDIF
5  CONTINUE
DO 6 J=1,N
6 Z{L)=X(J)
7 CONTINUE
RETURN
END

SUBROUTINE HOMOGENIZE(N,Y.LY.Z,LZ.EPS)
REAL Y(1000,30),Y1{1000,30),2(1000,30},D(1000)
L=LZ-1

DO 2 I=1,L

$=0

=141

DO 1 J=1,N
S=8+(Z(11,3)-2{1,7))**2
D(1}=SQRT(S)

DO 3 J=1,N

Y1(1,J)=2(1,3)

LY1=1

8=0,

DO B8 I=1L

=141

DD=D(L)
H‘((DD‘GE.EPS).AND.(S.GT.D)) THEN
LY1=LY1+1

DO 4J=1N

Y1(LY1,3)=2(1,J)

ENDIF

IF(DD.GE.EPS) THEN
M1=DD/EPS
IF(DD.GT.M1*EPS) M1=M1+1
DO 5 K=1M1

LY1=LY1+1

DO 5 J=1 N
YI(LYI.J):((MLK)‘Z(I.J)+K'Z(11,J))/M1
8§=0.

GOTO 8

ENDIF

§=5+DD

IF(S.GT.EPS) TREN
LY1=LY1+1

DO 6 J=IN

Y1(LY1,3)=2(1,)

S=DD

ENDIF

IFLEQ.L) THEN

LY1=LY1+1

DO 7 J=1,N

Y1{LY1,0)=2(11,0)

ENDIF

CONTINUE

DO 9 I=1,LYL

DO 9 J=1,N

Y({LJ)=Y1{L])

LY=LY1

RETURN

END

SUBROUTINE HAUSD(N,Y,L’Y,Z,LZ,D)
REAL Y(1000,30),2(1000,30)
CALL HAUSD'I(N,Y,LY,Z.LZ.D!)
CALL HAUSDZ(N‘Z‘LZ,Y,LY,D)
IF(D1.GT.D) D=D1
D=SQRT(D)

RETURN

END
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SUBROUTINE HAUSD2(N,G,LG,H,LH,D)
REAL G(1000,30),H(1000,30)
D=0.
DO 4 J=1,LH
DO 3 I=2,LG
=11
P=0.
81=0.
DO 1 K=1,N
P=P+(H(J,K)-G(LK})*(G(11 K)-G(L,K))
1 81=S14+{G{LK)-G(I1,K))**2
IF{(P.LE.0.).OR.(51.EQ.0.)) P=0.
IF(S1.GT.0.) P=P/S1
I[F(P.6T.1.) P=1.
8=0,
DO 2 K=1,N
2 S=8+{G(LK)+P*(G(11 K)-G(LK))-E(1,K))**2
IF({LEQ.2).0R.(S.LT.D1)} D1=S§
3 IF(DLLE.D) GOTO 4
D=D1
4 CONTINUE
RETURN
END

Program availability—The practical computational pro-
gram as complete listings is available on request from the
authors but will also be available on disk through circu-
lation by the QCPE (Démétér er al,, 1993a),
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