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Abstract

It is shown through a mathematical proof and by using simple test examples that the fundamental principles of the
method of Elber and Karplus (EK) for determining reaction paths are incorrect. Therefore the method, including its
improved versions, and the results obtained with the algorithms based on the stategy of EK, even when they are in
céncordance with experimental data, should be accepted with reservations. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

In the last two decades, a number of algorithms
have been developed for following reaction paths
(RP) or intrinsic reaction coordinates (IRC) involv-
ing stationary points corresponding to local minima
and transition states (TS) on potential energy sur-
faces (PES) of chemical systems or reactions. Such
algorithms can be divided into two main groups: (i)
the local (or ‘direct’) methods [1-11] follow the RP
either from the minima uphill towards the saddle
point (SP) presuming that there is a single SP along
the RP between the two minima representing the
stable states of reactants and products, or downhill
from the SP on a steepest descent path (SDP) to-
wards the minima, and (ii) the global (or ‘indirect’)
methods [12-21] which carry out the search in the
whole configuration space orthogonal to the RP. One
of the latter methods — used especially for large
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molecules with a very large number of degrees of
freedom — is the Elber-Karplus (EK) method [13],
still in wide use. The method is based upon a
principle stating that the RPs are energy average
minimizing curves. We believe this mathematical
basis to be unsound [22]. Czerminski and Elber [14]
amended the original EK method and the modified
version has been interfaced with a molecular me-
chanics program [23]. A recent method using the
strategy of the EK method proposed by Chiu et al.

[24] for the prediction of whole RPs of large molecu-

lar systems eliminates some of the deficiencies of the
original EK method. Although the energy average
functional has not been minimized, the improved
versions of the EK method always refer to the
minimization of the line integral (Eq. (1) of EK).
This is incorrect and, moreover, there has been some
confusion about which variant was used in a particu-
lar application [25-27]. Nevertheless, when employ-
ing certain techniques, the discretized form (Eq. (2)
of EK) can be used in practical calculations. In any
case, these techniques must be described clearly as
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part of the mathematical formulation because there
always is a danger; if the mathematical foundation of
a method is not sound and/or the numerical realiza-
tion or algorithm is not consistent with the mathe-
matical formulation, any later mending may not make
the method sound. One of our present aims is,
therefore, to verify this by a mathematical proof (see
Section 2.1) and to show that the procedure without
special interventions tailored to the actual problem
does not work even for small systems (see Section
3.1). On the other hand, extricating the EK method
from its fundamental defects leads to a variant of the
DDRP method, a fact which has been overlooked by
a number of authors [24-28]. To show the points
they have in common and in which they differ, a
comparison of the two path-following methods is
given in Section 3. As to our mathematical investiga-
tion [29], the method of Olender and Elber [30] does
not supply conventional RPs; however, it operates
with a new concept of the RP which is probably not
a true SDP in the mathematical sense, yet the solu-
tions of such a variational problem may approximate
or even replace the old concept of the RP. Another
purpose of this Letter is to distance our global DDRP
method [17-21] from thé methods based on the EK
strategy [28]. The DDRP method also proved to be
successful in the interpretation of the properties of
large systems (e.g. fullerenes [31]) by using a quan-
tum-chemical method in calculating the energy func-
tional.

To summarize, it can be concluded that, although

starting from wrong theoretical arguments, the EK -

method and its sequels may produce realistic results.
Nevertheless, the correctness of such results has not
been verified; our experience shows that unambigu-
ous results related to the RP cannot be obtained by
the EK method even for quite simple systems.

2. Discussion
2.1. Theoretical considerations
In a forthcoming paper [29], we give a rigorous

mathematical investigation of the energy average
functional

A(C) = fCU ds/L(C)

where [Uds=1lim,_  2;_\UClkB/n+(n—k)X
a/nllClkB/n+(n—k)a/n]— C[(k—1DB/n+
(n—k+ Da/nll is the energy integral and L(C) =
lim,_ 2;_lIClkB/n + (n — k)a/n] — Cl(k —
DB/n+(n—k+ 1)a/n]| is the length of a curve
C:la,B]— R" joining two local minima a = C(«)
and b= C(B) of the energy function U:R" — R.
Here only the main points of the mathematical inves-
tigation will be described. According to the funda-
mental hypothesis of the EK method [13], each
minimized curve of the average A is an RP between
a and b. One can disprove this argument even with
elementary mathematical tools. Let us start from any
curve C joining the points a and b and let ¢ be a
global minimum point of U (possibly ¢ = a or ¢ = b).
Let C',C" be any curves leading from b to ¢ and
back from c¢ to b, respectively, and for every n =
1,2,... let C,=CUC'UK,UC" where K, is a
closed curve which starts and ends at the minimum
point ¢ and passes in the sphere S, of radius 1/n
with a length at least n - L(C U C' U C"). Clearly the
curves C, join a with b and larger and larger pieces
of them pass in smaller and smaller neighbourhoods
of the minimum c. Therefore their energy averages
converge with lim, _,,, A(C,) = U(c) = minU. Con-
clusion: If the energy function is not constant along
the RP (that is always the case for chemical systems)
and C* is an arbitrary curve between a and b then

inf A=min U <A(C").

In accordance with the above construction, the nu-
merical attempts for minimizing the average A with
discretized curves lead to polygons with points clus-
tering mostly around low energy values [13] hence
the efforts of the numerical realizations to build
constraints into the minimization of A to force con-
vergency of the ‘reasonable’ piece of the approxi-
mating polygons by deleting the clustering part of
them. At this point we emphasize that, besides the
minimization of A, for a fair description of the
resulting curves the mathematical model of con-
straint should also be explicitly mentioned. However,
there is a theoretical indication showing that a curve
other than the RP can be obtained by such methods
even in realistic cases. In Ref. [29] we prove the
following fact. A local minimum of the functional A
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— in the sense of variational calculus — cannot be a
RP (with non-constant energy values).

Next we review two numerical implementations
of the (theoretically false) principle of minimal en-
ergy average for constructing approximate RP when
using the EK strategy. The first is the original EK
method [13] that introduces penalty functions along
with a Powell minimization [32] of A with the
apparent aim to inhibit clustering of points generated
by the iteration. Numerical experiences with a 2-
variable function show (see Section 3.1) that the
choice of different penalties may lead to completely
different results. The second one is that of Chiu et al.
[24] which is the best improvement so far. They
introduced a correction in the numerical EK method
by suggesting the use of equidistant redistribution of
the points on the approximating polygons. It is possi-
ble to give an infinitesimal mathematical interpreta-
tion of the limit curves of Chiu’s method with the
conclusion that it produces curves which can be
characterized by an Euler—Lagrange-type [33] equa-
tion giving no RP description. We remark also that
given a set of generalized spherical coordinates [33],
there is a unique polygon up to an isometry joining a
and b with equal consecutive side lengths such that
the direction vectors of the consecutive sides should
have the given angles of the generalized spherical
coordinates. In this manner, we can produce a more
stable variant of Chiu’s method which relies upon
unconstrained minimization with respect to spherical
coordinates. As for the numerical results with Chiu’s
method, we have found that they provide practically
good but theoretically inaccurate RP approximations
if the RP is a minimum energy RP (MERP) passing
at the bottom of a deep narrow valley as in the case
of the Miiller—-Brown [21,34] function. On the other
hand, if the RP is not a MERP, as in the case of the
Stach6-Ban model function of the conformational
changes in a catechol molecule [17], we shall have
remarkably different behaviour. In a neighbourhood
of a piece of RP where the graph of a 2-variable
energy function changes from valley to ridge [17,19]
equidistant EK-polygons bypass the piece of the RP
on the ridge at significantly lower energy levels.
From a theoretical point of view, this observation
may be the starting point for some criticism of the
usual RP concept; nevertheless, it can offer no relief
for the EK method.

3. Comparison of the two path-following strate-
gies: EK and DDRP

To make distinctions between the strategies of the
two global path-following methods EK and DDRP,
without going into details of the DDRP method
[17-21] it is worth mentioning its main charateristic
features and those of the methods based on the
strategy of the EK method [13,14,23,24,30] The
DDRP method does not start from the line integral, it
does not minimize this integral (or its discretized
form) and does not use penalty functions as con-
straints. The use of such criteria leads in the EK
method (and its sequels) to the controversial results
we argue against. Chiu et al. [24] are also starting
from the line integral (or from its discretized form)
and use minimization; however, instead of employ-
ing penalty functions, they introduce a redistribution
of the grid points. Unfortunately, this redistribution
is essentially the homogenization procedure de-
scribed in Refs. [17-21]. On the other hand, the
DDRP method is using the negative gradient to
guide and control the shifts of the points thus giving

" uniquely the really safe direction for the search, and

the parameters used in the search serve only for
controlling convergency. Moreover, exact, complete
and unambiguous mathematical foundations exist
only for a single global path-following method, the
DDRP method, in which the mathematical basis and
the numerical realization are in consistent union,
and, as proven by the mathematical arguments, the
result of the search is always a true SDP.

3.1. Tests with mathematical functions

(2) In order to follow theoretically and also practi-
cally the considerations described in Section 2.1, we
have chosen the test function

F(rir) =[(r =17+ (r,—2)"]
=2+ (- 1’| - 10

where

Fy =\/(x1 ~x2)2+(y1 "Y2)2+(Z1 “32)2 >

”2=\/(xz_x3)2+()’2‘)’3)2+(Zz_z3)2
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The variables r; can be regarded as the distances
rp =[P ~P,ll and r,=||P, — P,]| between the
points P, =(x,,y,,z,) (k=1,2,3) in the 3-dimen-
sional space R. It can easily be realized that this test
example is a simulated collinear H, (or H, + H)
system -except that its minima are not at infinity;
instead of using the actual potential energies, an
analytic function has been employed to facilitate the
calculations. Therefore the test function F, like the
potential energy functions of a system of 3 atoms, is
invariant under all isometric transformations (shifts,
reflections, rotations) of R’. Thus the algorithm in-
volving the penalty functions (4) and (7) in Ref. [13]
can be applied to F. The function F has its mini-
mum for (r,r,) =(1,2),(2,1) and its remaining sta-
tionary point is a SP with (r,,r,) =(1.5,1.5). Fur-
thermore, the RP of F in the configuration space
(ry,7,) is the straight line segment joining (1,2) with
(2,1).

In our first numerical experiment, we have started
the EK algorithm with the straight-line segment L,
={(P,Py(1),P,):0 < t < 1} where P, = (—1.5,0,0),
P;=(1.5,0,0) and P,(z)=(¢—0.5,0,0) which is a
RP itself. In the course of the calculations, we
represented the curves L;,L;,L,,... by 21 points.
At the beginning we set R, = (X1 V102000 X 10
Yo, 22,0 %35 V3,023,) (i=0,...,20) that is R, =
(P, P,(5),P,). With the notation

A/, =HR,‘ _R,‘_ln,
Al=5(A0 + -+ +AZ),r
At =R} X M(R,—~R?) + M(R,—R?)

used in Ref. [13] where R? is the position vector of
the ith point at the beginning of the calculation and
M stands for the diagonal matrix of atomic masses
(the unit matrix in our experiment) and the product
R X (R, ~ R?) is an abbreviation for (P), X (P, ,—
PP),P) X (Py; — P2, PO, X (P;,— P{ ) in terms

of the usual vectorial product. The two penalty func-
tions introduced in Ref. [13] are

QML) = DAAL-AsY,

0,(X.L) = ¥ X(Ar,)’

where A and X are two free positive parameters. We
have chosen the values of A and X' to be equal (as it
was done by EK [13]). According to the suggestions
in Ref. [13], the functional

T(Ry,....Ry. A X) = S(Ry,....Ry),

+Qi(AL) + 0,(XN,L)
should be minimized by the Powell algorithm [32]
where

1

"R2O)L= l—_ Z F(Ri)A/i

S(R,,.. TR

for a curve L is obtained during the iterations (started
from L,) by Powell minimizations of 7 and repre-
sented by the points R,,...,R,, where || L] = LAZ.
S(Ry, ..., Ry, A X)), is a discretized approximation
of the averaged path integral

$*(L) =HL[|“1[LF(R) dZ(R).

Some characteristic results are in Tables 1 and 2. It
is clear that for large values of A the penalty func-
tions prohibit the decrease of the target functional
S(Ry,...,Ry);. Thus, in the range 1000 <A <
10000, the decrease of § is nearly blocked. This
blocking effect is weaker for smaller values of A(=
X'), and with the choice A = 0.0001 we reach almost
the theoretical infimum value — 10. However, in
accordance with the theoretical predictions of Sec-
tion 2.1, the points Ry, ...,R,, of the final curve L
(with A = X' =0.0001) cluster in a small neighbour-
hood of the two minima of F. Therefore, the curve L

Table 1

Some characteristic values of the target functional and lengths of the path-following polygon in the range 1 < A = X' < 10000
M= X) 10000 1000 100 10 |
S(Ry,...), —9.8666688 —9.866 6807 —9.8079744 —9.866 7994 —9.8823709
L= LAL) 14142106 14142738 14148154 14201773 1.5279703
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Table 2

Some characteristic values of the target functional and lengths of the path-following polygon in the range 0.0001 < A= X < 0.1
M=) 0.1 0.01 0.001 0.0001

S(Ry, ... ), —9.9542220 —9.9808108 —9.9999865 —9.999 998
ILI=2,A7) 2.5734473 5.3313577 6.9674022 11.902 849

thus obtained can by no means be considered as a
final approximation of the RP. Choosing any initial
curve with parameters in the range 100 <A =X <
1000 the algorithm does not essentially change the
points R.. Of course, the reason for this effect is not
the fact that we have found the RP. It is obvious
from the third line of Tables 1 and 2 that at small
values of the penalty parameters A = A the length of
the curve obtained by the minimization procedure
becomes larger and larger.

(b) One of the best examples most frequently used
in testing ab initio methods and path-following pro-
cedures is the Miiller—Brown (MB) problem [21,34].
Through scrutiny of this test example, not only the
wrong working of the EK method has been illus-

2.00

1.50

D> 1.00

0.50

I O T O T T Y N U0 TN N YO N S Y O O T O OO 2 O SO O T T N O

trated for a case quite far from the complexity of a
large chemical or biochemical system with a large
number of atoms and degrees of freedom but, going
beyond this aim, it has been proven that by presum-
ing A = X the RP (and its characteristics) of the MB
problem can not be reproduced over a wide range
(between 0.0001 and 3000) of parameter values. Fig.
1 shows the best curves approximating the RP of the
MB problem calculated by the EK method starting
the calculations from a straight line, with n=25
equidistant points on it, between the two farthest
minima. Between 0.0001 < A < 1.0 the RP approxi-
mation curves are similar to curves 4-5 of Fig. 1
and, in the 500-3000 range, they basically coincide
and lie between curves 1 and 2. Even the best

0.00 L L L O T T L L O B O

-1.60 —-1.20 —0.80 -0.40 -0.00 0:40 0.80

X

Fig. 1. Path-following of the MB problem by the EK method. The numbered curves 1-5 were obtained by using the parameter values
(A= X) as follows: (1) 500, (2) 30, (3) 0.2, (4) 0.1 and (5) 5. Curve (6) is the final MB RP showing the positions of the stationary points as
obtained by the DDRP method.
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1.20 -
> 0.80

0.40
; ‘
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-1.60 ~1.20 ~0.80 ~0.40 -0.00 0.40 0.80

X

Fig. 2. Path-following of the MB problem by the DDRP method. Typical RP approximations have been selected from the series of curves
between the initial straight line joining the two farthest minima and the polygon converged to the real RP [21].

-

approximation RPs in the 1.0-500 range (curves
2-5) differ from each other and cannot follow
smoothly the bends of the real RP as calculated by
the DDRP method [21] (curve 6). Moreover, most of
the EK curves miss the stationary points and even
pass far from the third minimum (M2 of Fig. 1) and
the two SPs (SP1 and SP2 of Fig. 1). It is especially
true for curve 2 of Fig. 1 which was adjusted to get a
best value (101.230; experimental value, 106.035)
for the barrier height (the function value of SPI
using M1 as the reference point) by choosing the
parameters A = A = 0.1. The determination of the
RP by the DDRP method is illustrated in Fig. 2.
Starting again from a straight line with n =25
equidistant points, the consecutive approximation
curves /polygons fit smoothly closer and closer to
the final real RP, giving all the three minima and the
two SPs [21]. Here no penalty functions (or adjusting
parameters) are needed except parameters controlling
the convergency of the procedure, the speed of the
search and the smoothness of the curves. The end of
the search is indicated not by minimized function
values but by the final curve which must not vary

significantly by shifting the points in the direction of
the negative gradient when the procedure is contin-
ued (satisfying e.g. the Hausdorff criterion [20]).

4. Conclusions

(i) It has been proven that the line integral used in
the methods employing the EK strategy without con-
straints has no minimum. i

(i) Using polygons with points /vertices of dis-
crete numbers and without using penalty functions
the results obtained are not useful.

(iii) When using penalty functions, the resulting
curve can be interpreted as a sort of RP approxima-
tion; however, the larger the values of the parame-
ters, the more the minimization of the penalty func-
tions and not of the energy of the system will take
place.

(iv) The best way to get the right RP is not by
minimizing the energy averages calculated in the
vertices of the polygons, as done by the EK strategy,
but by searching for the consecutive approximating



334 L.L. Staché et al. / Chemical Physics Letters 311 (1999) 328-334

polygons along the negative gradient jointly with the
homogenization procedure as proposed by the DDRP
strategy. Then the end of the search will be indicated
not by the minimum but by the condition when the
convergency of the RP-approximating curve/poly-
gon reaches a predetermined limit or two subsequent
curves are practically unchanged. The DDRP method
does not require special starting positions (e.g. end-
points in minima) and/or an initial straight line for
the Oth approximation of the RP. The DDRP method
is very stable and no system has been found for
which it failed.
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